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Abstract Novel methods for drug discovery are constantly

under development and independent exercises to test and

validate them for different goals are extremely useful. The

drug discovery data resource (D3R) Grand Challenge 2015

offers an excellent opportunity as an external assessment

and validation experiment for Computer-Aided Drug Dis-

covery methods. The challenge comprises two protein tar-

gets and prediction tests: binding mode and ligand ranking.

We have faced both of them with the same strategy: phar-

macophore-guided docking followed by dynamic undock-

ing (a new method tested experimentally here) and, where

possible, critical assessment of the results based on pre-

existing information. In spite of using methods that are

qualitative in nature, our results for binding mode and

ligand ranking were amongst the best on Hsp90. Results for

MAP4K4 were less positive and we track the different

performance across systems to the level of previous

knowledge about accessible conformational states. We

conclude that docking is quite effective if supplemented by

dynamic undocking and empirical information (e.g. binding

hot spots, productive protein conformations). This setup is

well suited for virtual screening, a frequent application that

was not explicitly tested in this edition of the D3R Grand

Challenge 2015. Protein flexibility remains as the main

cause for hard failures.

Keywords D3R � Drug discovery data resource � Grand
Challenge � Docking � Dynamic � Undocking � GC2015 �
Protein flexibility

Introduction

Computer-Aided Drug Discovery (CADD) methods are

constantly under development anda wide spectrum of

options is available to the scientific community to address

each specific situation at every stage of the drug discovery

process [1–3].

Independent validation experiments are extremely use-

ful to test the different methods, try them out under dif-

ferent circumstances and validate them for a specific goal.

For instance, there have been experiments to help the

development of protein structure modeling software [4],the

prediction of protein–protein interactions [5] or certain

physico-chemical properties of small molecules [6].

In this direction, the D3R Grand Challenge 2015 pro-

vides an independent exercise to assess and validate CADD

tools related with protein–ligand interactions. Two proteins

(Hsp90 and MAP4K4) with datasets comprising different

ligands with measured affinities and crystal structures are

provided as blind sets. Different measures for each of the

datasets were used to evaluate the performance of different

methods in two situations that are common in drug dis-

covery projects: ligand ranking and binding mode

prediction.

Docking, scoring and free energy methods have been

widely applied in structure-based drug discovery [7–12]
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as they provide an excellent assistance particularly in

early stages of the development of new drugs. Docking is

a very common method that can be used both for pre-

dicting the binding mode of a protein–ligand complex and

for virtually assaying thousands to millions of drug-like

molecules in a relatively short amount of time, speeding

up the finding of promising candidates and dramatically

decreasing the cost in comparison with the experimental

alternative [13]. However, the scoring functions employed

in docking have been trained to reproduce specific data

sets and are qualitative in nature. As such they are not

expected to correlate with binding free energies [14].

Further limitations include receptor flexibility or the

presence of water molecules that can be wither trapped or

displaced by the ligand.

In our particular approach, docking is a central com-

ponent tackling the D3R Grand Challenge 2015, but we

aim to overcome some of its limitations with comple-

mentary tools and, whenever possible, guiding the calcu-

lations with previous knowledge about the systems.

Specifically, we have used rDock software [15] as the

docking engine, using pharmacophoric restraints to ensure

that the predicted ligand poses fulfil certain key interaction

points [16–18]. In the case of Hsp90, they correspond to a

hydrogen bond with the carboxylate of Asp93 and, in case

of MAP4K4, a hydrogen bond with the nitrogen atom of

Cys108 in the hinge region (a short linear sequence that

acts as a hinge between the N-terminal and C-terminal

domains in kinases). These interaction points can be

identified merely by superimposing all the available crystal

structures of protein–ligand complexes for each system in

the PDB and obtaining a pharmacophore definition as

detailed in the Methods, which can be supplemented to

rDock in order to increase its efficiency as shown in pre-

vious studies [15]. Hsp90 presents at least one water

molecule that can be displaced by certain ligand classes.

By excluding this water molecule, we make the receptor

definition valid for all chemotypes [19]. Then, to address

the protein flexibility, we took a knowledge-based

approach. We investigated the effect of protein flexibility

on docking performance using Hsp90 as a test set, so we

are familiar with the different conformations the protein

can adopt upon ligand binding. We selected the We

selected the most common conformation amongst all

known Hsp90 protein–ligand complexes (namely, closed

lid) for running docking and revised the quality of the

predictions knowing that certain chemotypes can induce a

conformational change of the lid to the open or helical

states [20]. In contrast, MAP4K4 is a much less well

characterized protein and we took a best guess based on our

previous knowledge about other kinases. As we will dis-

cuss below, the different degree of previous knowledge for

each system has had a major effect on the outcome and

highlights the importance of the human factor, which

remains essential even as the computational tools improve.

Finally, we have introduced the use of Dynamic

Undocking (DUck), a new tool used to assess the structural

stability of protein–ligand complexes [21]. Here we have

experimentally adopted a consensus approach, where the

docking poses are re-evaluated and re-ranked based on

their resistance to break the key hydrogen bonding inter-

action. This approach allowed us to detect not only false

positives but also false negatives from docking results.

DUck has been shown to be orthogonal to docking, as it

evaluates structural stability as opposed to binding affinity

[21]. For some ligands, re-scoring by DUck has allowed us

to identify good binding poses which are apriori discarded

due to bad docking scores. In other cases, docking and

DUck selected the same pose, increasing our confidence on

predicted binding modes that would be deemed doubtful if

they had been backed up only by docking.

In the next sections, we will discuss in detail the

methodology and the results obtained in the D3R Grand

Challenge, drawing some conclusions to explain the fail-

ures and successes, as well as some recommendations for

future editions of this challenge.

Methods

Selection of cavity

The D3R Grand Challenge 2015 has two differentiated

objectives: predict the crystallographic poses and the

affinities or rankings for a series of ligands. Both of these

objectives rely on a good definition of the system and a

reliable characterization of the ligand-receptor interaction

is crucial. For Hsp90, 4 receptor structures from the PDB

were proposed by the organizers (2JJC, 2XDX, 4YKR and

4YKY). All of them were in the so-called closed confor-

mation of the lid with the exception of 2XDX, which had

the lid in open conformation.

As most of the known ligand-Hsp90 complexes have the

lid in closed conformation, 2XDX was discarded. 2JJC was

also discarded because, unlike the ligands in the test set, it

is a very small and may be unable to modulate the cavity

for better docking performance [22, 23]. Structures 4YKY

and 4YKR are very similar in all respects (both bind a

ligand of the resorcinol family) and were considered

equivalent. The former was selected as reference structure.

In a previous study [15] we demonstrated the improvement

in virtual screening applications when guiding the docking

process by adding previous knowledge, with a specific

example for Hsp90. Additionally, it is known that three

interfacial water molecules have an important role medi-

ating the protein–ligand contacts. For this reason, they have
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been included in all docking runs as structural waters in the

binding site. Some ligand types (e.g. adenine) interact with

a fourth interfacial water molecule, but it is displaced by

others ligands (e.g. resorcinol) and cannot be kept as part of

the receptor [24]. Hence, the protocol used in all the

docking calculations for Hsp90 includes a pharmacophore

definition of two hydrogen bonds with Asp93:OD2 and one

of the water molecules (included in all the runs as non

displaceable), as previously defined in [15]. For undocking,

the water molecule is added explicitly to the initial struc-

ture. In case of MAP4K4, 2 receptor structures from the

PDB were supplied by the organizers (4OBO and 4U44).

The main difference between the conformations of the two

crystals is a loop folding towards the hinge region in

4OBO, thus decreasing the size and the solvent exposure of

the binding site. Due to those restrictions we decided to use

4U44 as reference for all MAP4K4 applications, which had

a bigger and more accessible binding site. In order to guide

docking, we performed a pharmacophore search (more

details in the next section) using all crystal structures of

MAP4K4-ligand complexes in the PDB. We then supplied

all docking calculations with a pharmacophore defined by a

hydrogen bond with Cys108:N, located in the hinge region.

Pharmacophore search

To get a reliable pharmacophore definition for the

MAP4K4 system, a set of known protein–ligand 3D

structures was necessary. We selected all MAP4K4 pro-

tein–ligand complexes from the PDB (4OBO, 4OBP,

4OBQ, 4RVT, 4U40, 4U41, 4U42, 4U43, 4U44, 4U45,

4ZK5 and 5DI1) and aligned them to the reference 4U44.

The ‘‘Pharmacophore Search’’ tool of MOE was run and a

hydrogen bond with Cys108:N in the hinge region was

selected as pharmacophore. It was fulfilled by all 12

ligands in the PDB subset. Moreover, it was consistent with

other protein–ligand interactions in the kinases family

[25, 26].

Molecular docking

For all molecular docking simulations we used rDock

[15, 27], a fast and reliable docking program that we

released as open source several years ago. To run rDock,

only a correctly prepared 3D structure of the receptor and a

definition of the binding site are needed. In this work, we

defined the cavity using the crystallized ligand found in

both PDB structures for Hsp90 and MAP4K4, 4YKY and

4U44 respectively. Some rDock rbcavity parameters were

decreased with respect to the default values in order to

optimize the binding site definition: radius (changed from

10.0 to 6.0), which defines the region around the reference

ligand that will be used to define the docking binding site

and max_cavities (from 99 to 1), as we only want to run

docking in one cavity. The pharmacophoric restraints were

defined as mandatory and all the ligands unable to fulfill

the definition were discarded. For the docking protocol, no

modifications were made to the standard as previously

published [15]: 50 individual docking runs per ligand,

which is considered exhaustive sampling, in order to ensure

that the lowest-energy binding mode is found.

Receptor preparation

The 3D structure of the receptor has to be provided to

rDock with standard Tripos MOL2 format and atom types

[28]. However, as rDock relies on the user-supplied

structure, we need to provide it with correct protonation

states and charges, as well as correct orientations of flex-

ible side chains (rDock only considers as flexible atoms of

the receptor the hydrogen atoms of terminal OH and

NH3 ? groups within 3 Å of the binding site cavity). The

‘‘Structure Preparation’’ tool from MOE [29] was used to

protonate at pH 7.0 and correct all the issues found for

Hsp90 and MAP4K4 receptors, such as chain breaks,

missing loops or disulfide bonds, incorrect residue labeling

or alternate conformations. The prepared structures were

then saved in mol2 format and used as input for rDock.

Ligand structure

As all ligands provided by the organization were in 2D

format, Ligprep from Schrödinger [30] was used to cal-

culate the 3D structure with correct topology, bond orders

and geometry of bonds, angles, dihedrals and rings. The

ionisable groups were protonated at pH = 7 with a toler-

ance of ±1. All ligands were saved in MOL SDF format

and used as input for docking.

Dynamic undocking

We used Dynamic Undocking, or DUck, as a comple-

mentary tool to molecular docking in order to improve the

overall performance of docking-based virtual screening

[21]. DUck is a methodology developed in our group based

on Steered Molecular Dynamics (SMD). The interaction of

the ligand and the receptor with the key interaction point

(specified when defining the cavity and protocols for

docking) is monitored with SMD. In particular, DUck

simulations consist on unbiased molecular dynamics (MD)

simulations of the complex and repeated SMD simulations

launched at 1 ns intervals of the MD to simulate the rupture

of the ligand-receptor interaction and measure the force

needed to achieve a state where the interaction has just

been broken or, as we named it, a Quasi-Bound state. The

work profiles obtained from the SMD simulations are
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processed to obtain the work to achieve the Quasi-Bound

state (WQB), which will be used to score and rank the

ligands. Moreover, in order to increase throughput and

reduce the influence of peripheral interactions and focus on

the desired interaction, we use a model receptor that

includes only a small part of the protein of interest. This

portion is created around the defined key interaction point

and preserves its local environment, simplifying also the

dissociation pathway and avoiding artifactual results (more

details about DUck can be found in Ref. [21] and http://

www.ub.edu/bl/undocking/). For Hsp90 and MAP4K4, the

following protocol was set: protein models were created

containing the residues with any atom within 6 Å around

the key interaction points (as detailed in Selection of the

Cavity section) and manually refined to include other

important residues for the binding site environment (Fig-

ure S1; Table S2). The best-scored docking poses for each

ligand were subjected to an in-house script that automati-

cally parameterized each ligand and prepared the necessary

files for running the MD and SMD simulations of DUck.

Each protein–ligand complex system was placed in a

cuboid box with a minimum distance between each atom

and the edge of the box of 12 Å in every dimension and

solvated with TIP3P water molecules and Na? or Cl- ions

were added to the solvation box depending on the charge of

each of the protein–ligand complexes in order to ensure the

electroneutrality of the simulated systems. Due to the

artificiality of the protein models, MD simulations were run

with harmonic restraints (1 kcal/mol Å2) in all heavy

atoms of the receptor to prevent big conformational chan-

ges. In order to preserve key hydrogen bond interaction

during the equilibration part of the simulations, distances

beyond 3 Å are penalized (parabolic restraint with

k = 1 kcal/mol Å2 between 3 and 4 Å; linear restraint with

k = 10 kcal/mol Å beyond 4 Å). All unbiased MD steps

were run using a Langevin thermostat with the cutoff for

non-bonded interactions set to 9 Å and the collision fre-

quency to 4 ps-1. The equilibration consisted in 1000

cycles of minimization, gradual warming from 100 K to

300 K for 400 ps in the NVT ensemble and equilibration of

the system for 1 ns in the NPT ensemble. At intervals of

1 ns (starting right after the equilibration), two SMD runs

are executed from the same restart file (at 300 and 325 K,

as described in Ref. [21]) for 500 ps. During this time, the

distance of the key hydrogen bond is steered from 2.5 to

5.0 Å with a spring constant of 50 kcal/mol Å2. More

unbiased MD steps (1 ns each) were run to create more

starting points for SMD runs to repeat the process as much

as desired. All simulations were run with AMBER 14 [31]

using in-house NVIDIA GeForce TITAN X GPUs or at the

Barcelona Supercomputing Center using NVIDIA Tesla

M2090 GPUs. AMBER forcefield 99SB was used for the

protein and parm@Frosst [32] for the ligands.

Binding mode prediction

For all of the ligands where a binding mode was to be

predicted, the protocol was the following: 1- Run docking

as described in the ‘‘Molecular Docking’’ section above. 2-

From the docking results, select a set of poses with a

RMSD between them higher than 1 Å using the sdrmsd

script from rDock package. 3- Run DUck to calculate the

WQB for all the sets of selected poses per ligand. 4- Select

the pose with the highest WQB as the correct binding mode

and 5- visually inspect the results to check the selected

poses fulfilled the defined interaction and the receptor

conformation (more details in the following sections).

Ligand ranking

A few differences from the protocol for binding mode

prediction were introduced in case of ligand ranking: 1-

Run docking as described in the ‘‘Molecular Docking’’

section above. 2- From the docking results, select the top

scored pose for each ligand. 3- Run DUck to calculate the

WQB for the selected poses. 4- For each of the ligands in

the sets, the similarity to all known PDB ligands with

measured affinity for the corresponding receptor (Hsp90 or

MAP4K4) was calculated and taken into account to check

the rankings and possible docking errors. 5- Docking score

and WQB from DUck were normalized for each of the sets.

All ligands were ranked according to the sum of the two

corresponding normalized scores. In the cases where

docking was not able to find a good binding mode (i.e. the

key interaction was not fulfilled), the similarity of each

ligand with respect to other ligands in the challenge set and

other ligands in PDB was used to assign a corrected

ranking. Finally, a final step of visual analysis was carried

on to check all ligands and re-rank some of them taking

into account our previous experience.

Results and discussion

Following our primary hypothesis, we designed a docking

protocol that would reinforce the importance of the most

important binding hot spot. This was done through the

introduction of pharmacophoric restraints that forced the

presence of hydrogen bonding groups at specific locations

(Fig. 1). The protein conformation was chosen to be as

general as possible, thus for MAP4K4 we selected 4U44 as

it has a bigger cavity than other structures available. For

Hsp90, the biggest cavities present a ligand-induced

hydrophobic sub-pocket (the PU3 cavity), but the associ-

ated protein conformation (helical) is energetically penal-

ized and tends to downgrade the docking results [19]. For

this reason, we chose a non-helical conformation (4YKY)
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taking care that the binding site was not blocked by any

side-chain.

Binding mode prediction

We ran rDock to generate 50 poses per ligand. Poses with

restraint penalties higher than 1 kJ/mol (indicating that the

pharmacophore is not fulfilled) were discarded. After that,

we selected a diverse set of the remaining poses, sorted by

docking score to be re-evaluated by Dynamic Undocking

(DUck). On average, 10 poses per ligand were selected for

next step. DUck measures the work needed to break a given

hydrogen bond (WQB). We have found that true ligands in

their correct binding mode, form hydrogen bonds that are

much harder to break than decoys [21]. Here we employ this

method to compare various binding modes of the same

ligand. In themajority of cases, the binding posewith the best

docking score also presented the highest WQB value and was

proposed as the correct solution. But often DUck provides a

much more clear distinction between poses, removing

uncertainty from the decision. This is illustrated with the

Hsp90 ligand 40, which presented two alternative binding

modes (Fig. 2). In the first bindingmode, the ligand interacts

with Asp93 through the resorcinol, whereas the cyclic urea

plays this role in the second binding mode. Though their

docking scores are relatively similar (-23.4 and

-18.9 kJ/mol, respectively), the hydrogen bond formed by

the second binding mode is extremely labile (WQB = 0.5

kcal/mol), which makes this binding mode very unlikely. By

contrast, the first binding mode presented a very strong

hydrogen bond (WQB = 17.7 kcal/mol) and was selected

with full confidence. For Hsp90, in several cases a lower

ranking pose was selected based on the DUck calculation

(Table S1). This is shown in Fig. 3, where the Hsp90 ligand

73 presents a relatively similar binding mode with two dif-

ferent orientations. The first one (green) is the preferred one

by docking (score = -20.3 kJ/mol), whereas the second

one (pink) is heavily penalized due to a steric clash of the

1-chloro-3-nitrobenzene moiety (score = 1.3 kJ/mol).

Dynamic undocking indicated that the latter binding mode

was actually preferred (WQB = 11.6 kcal/mol vs.

10.9 kcal/mol), which prompted us to seek a protein con-

formation where the second binding mode would fit without

Fig. 1 a Hsp90 receptor definition. Asp93 and two surrounding water
molecules (shown in sticks) define the key interaction element. The

pharmacophoric points (transparent blue spheres) force the presence

of a H-bond donor next to Asp93:OD2 and a H-bond acceptor next to

the interstitial water molecule. b MAP4K4 receptor definition. The

hinge region is a characteristic binding hot spot of protein kinases. A

pharmacophoric restraint forced the presence of a hydrogen bond

acceptor next to Cys108:N (transparent blue sphere)

Fig. 2 Two binding modes proposed by docking for ligand 40 in the

Hsp90 set (green and pink sticks; RMSD = 5.5 Å). Dashed lines

represent the hydrogen bond between each ligand and Asp93. The

crystal structure of ligand 40 is represented in white sticks for

comparison
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clashing. In this particular case, the ligand binds to helical

conformation (e.g. 2WI6) where a hydrophobic pocket (the

PU3 pocket) emerges [20].

The results submitted to the stage 1 of the D3R Grand

Challenge are summarized in Tables 1 and 2 for Hsp90 and

MAP4K4, respectively. The accuracy of binding mode

prediction is generally measured in terms of root mean

squared deviation (RMSD) from the crystallographic pose.

It is also common to convert this value to a binary decision

(correct/incorrect) based on a fixed threshold (usu. 2.0 Å).

This is a debated topic, and several alternative solutions

have been put forward [33, 34].

In practice, the best measure may depend on the par-

ticular problem that one is facing. For instance, a prediction

that captures the main interactions is valid when dealing

with a new chemotype, but inadequate at the lead opti-

mization stage. Since our lab focuses on the hit identifi-

cation stages of drug discovery, we are particularly

interested in predicting the position of the central scaffold,

i.e. the part of the ligand that forms the main interactions

and defines the vectors of growth in the hit to lead stage.

Thus, we have complemented the objective RMSD mea-

sure with a subjective binary classification telling if the

prediction is sufficiently accurate to be used in the hit

progression. In terms of RMSD, our average results were

1.6 ± 0.9 Å for Hsp90 (8th position among the partici-

pants of the D3R Grand Challenge 2015) and 3.7 ± 2.8 Å

for MAP4K4 (3rd position). On the former set, we predict

all but one ligand within 2.0 Å of RMSD. The only

exception is ligand 44 (RMSD = 3.0 Å), but even then the

position of the scaffold is correct and the deviation is due to

the different orientation of a part of the ligand that does not

engage in interactions with the protein (Figure S2).

The MAP4K4 results are much worse, but we still fared

better than most participants, which highlights the diffi-

culty of this set. Using the 2.0 Å RMSD cutoff, we only

predicted 11 ligands correctly (37 %). In our subjective

assessment, we predicted the position of the scaffold cor-

rectly for 18 ligands (60 %). The reason behind the poor

performance is almost exclusively due to the flexibility of

the protein. As this is a key issue in molecular docking, it

will be discussed in detail. On the positive side, our pro-

tocol was still capable of predicting the main interaction

correctly for a majority of ligands. Worthy of note, the

structure of ligand 32 was originally inverted (Fig. 4).

Docking, but particularly Dynamic Undocking, argued

strongly against this binding mode. After consultation with

the crystallographers our predicted binding mode was

accepted as the proper binding mode. This is a reminder of

the necessary dialogue between crystallographers and

modelers, particularly where various binding modes are

consistent with the observed electron density (e.g. due to

tautomerism) [35].

Protein flexibility: the greatest docking challenge?

Reviewing the cause of the cases in MAP4K4 where we

failed in making a good prediction, we found that using a

single receptor conformation was by far the most important

factor. There is a large body of literature indicating the

importance of protein flexibility [36–38] but back in 2005

we demonstrated that using multiple protein conformations

could actually downgrade the results, particularly in virtual

screening applications [19]. Since then, other authors have

suggested that judicious selection of two or three structures

can produce a small but systematic improvement over the

best single structure [39–41]. However, as we did not have

any previous knowledge on this system, we adopted the

Fig. 3 Two different binding modes (RMSD: 2.5A) for ligand 73 in

the Hsp90 set proposed by docking represented in green and pink

sticks. The green one is the preferred conformation according to

docking, whereas the pink one has a really bad score due to a clash

penalization. With DUck, we could detect that the correct binding

mode was the pink one. The crystal structure of ligand 73 is

represented in white sticks for comparison, the RMSD with respect to

the pink binding mode is 0.61

Table 1 Summary of the results for the 6 ligands in the Hsp90

system Stage 1

Ligand ID RMSD (Å) Scaffold OK

40 1.71 Yes

44 3.00 Yes

73 0.61 Yes

164 1.40 Yes

175 1.94 Yes

179 0.70 Yes

Summary RMSD (Å) Scaffold OK

Average 1.56 6/6 (100 %)
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simple approach of using the biggest cavity (4U44), hoping

that it would be valid for a larger proportion of ligands

[42].

Once the experimental structures were disclosed, we

observed that a large proportion of the ligands actually bind

to a conformation where the cavity is partly occluded by

Table 2 Summary of the results for the 30 ligands in the MAP4K4 system Stage 1, and simulation of Stage 1 results for MAP4K4 taking into

account additional conformations of Tyr36 (ligands with bad prediction only)

Lig ID RMSD (Å) RMSD Flexible (Å) Scaffold OK Lig ID RMSD (Å) RMSD Flexible (Å) Scaffold OK

1 2.26 – Yes 17 8.44 6.94b No/No

2 3.59 10.44a No/No 18 1.99 – Yes

3 1.02 – Yes 19 1.85 – Yes

4 7.16 6.14b No/No 20 1.29 – Yes

5 8.90 1.13a No/Yes 21 0.96 – Yes

6 2.50 – Yes 22 1.47 – Yes

7 1.03 – Yes 23 2.66 1.46a Yes/Yes

8 1.43 – Yes 25 3.40 3.13a Yes/Yes

9 2.49 3.55a No/No 26 6.77 6.93a No/No

11 0.68 – Yes 27 1.29 – Yes

12 11.06 1.42a No/Yes 28 1.68 – Yes

13 5.71 1.06a No/Yes 29 6.34 6.58a No/No

14 4.95 1.50a No/Yes 30 3.83 0.52a Yes/Yes

15 2.14 – Yes 31 6.64 7.25a No/No

6 5.69 4.83a No/Yes 32 3.09c 1.32ac Yes/Yes

Summary Original Flexible

Avgerage RMSD (Å) 3.74 2.57

Scaffold OK 18/30 (60 %) 23/30 (77 %)

a P-loop and Tyr36 faced inwards to the cavity
b No hydrogen bond made with Cys108 in the hinge region
c Measured with respect to the corrected crystallographic pose

Fig. 4 Structure of MAP4K4 ligand MAP32 in the disclosed

crystallographic structure (a) and the alternative mode we proposed

(b). Note the different tautomers with inverted methyl and hydroxyl

groups, where in the crystallographic pose there is a clash between the

methyl group and Glu106, we found a well structured hydrogen bond

between the hydroxyl group and Glu106
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the side-chain of Tyr36 in the P-loop (Fig. 5). In order to

measure the impact of these effects, we ran the exact same

experiments using as receptor structure 4OBO (Tyr36-IN),

which has this alternative conformation. As shown in

Table 2, most of the recalculated poses have an RMSD

lower than the one we submitted to the D3R Grand Chal-

lenge 2015. Taking the best RMSD of the different binding

modes, we obtain an average RMSD improvement of 1.1 Å

(2.6 vs. 3.7 Å) with 18 ligands (60 %) below the 2.0 Å

threshold and 23 ligands (77 %) with a correctly placed

scaffold. While the results are still imperfect, one must

consider that three structures are still insufficient to rep-

resent the whole array of conformational possibilities. In

fact, we deem that there are only 2 ligands (7 %) for which

the failure cannot be attributed to the conformation of the

protein: Ligands 4 and 17 do not form a hydrogen bond

with the backbone of Cys108 (the hinge region) and are

thus incompatible with our docking and dynamic undock-

ing protocol. On the other hand, if the relative energies of

the conformational states are not properly considered,

using multiple structures may cause more problems than it

solves [43]. In our opinion, except for direct experimental

observation of the conformational states [44], empirical

knowledge gained from detailed analysis of multiple

crystallographic structures is—at present—the only prac-

tical solution to this problem.

This is indeed the case for Hsp90, a system that we have

studied thoroughly. Here, we were able to predict not only

the structure of the ligands, but also which conformation

would the protein adopt upon ligand binding. This aspect

was not evaluated in the D3R Grand Challenge 2015.

Considering the importance of this issue, we suggest that it

should be included as a measurement of success in future

editions. As shown in Table 3, the RMSD of the residues

lining the binding site was below 0.4 Å in all cases, and the

change in backbone conformation induced by ligand 73

could be predicted based on the DUck calculations (vide

supra).

Virtual screening

For Stage 2 of the D3R Grand Challenge 2015, we were

asked to predict the affinities or affinity rankings for 180

ligands in Hsp90 and 18 ligands in MAP4K4 systems. The

tools developed and used in our group are geared towards

virtual screening, where we aim to identify true ligands

from huge libraries of chemical compounds. As such, our

predictions are fast and qualitative and not well suited to

predict binding affinities, instead our goal was to produce a

ranked list enriched with potent ligands in the top posi-

tions. For this reason, we only discuss the results in terms

of virtual screening performance: area under the curve

(AUC) of the Receiver Operating Characteristic (ROC)

curve and Enrichment Factors (EF). This type of analysis

could not be performed on the MAP4K4 set because 15 out

of the 18 ligands were considered as active (IC50\ 1 lM)

and the other three were in a close range (1.74, 2.25 and

10 lM). The Hsp90 set presented more dispersion: 40.6 %

of ligands (73 out of 180) had an IC50 lower than 1 lM and

are considered active, the remaining are considered inac-

tive even though 21.7 % (39 out of 180) have an IC50

between 1 and 10 lM. The fact that the inactive set con-

tains molecules that are, a) true binders and, b) structurally

very similar to the active ones makes this a very unusual

and challenging test set. We encourage the organizers to

include more standard virtual screening test sets in future

editions of the challenge.

Our ranking protocol was based on an initial docking

stage followed by DUck simulations of the top scoring

Fig. 5 Comparison between the two MAP4K4 supplied starting

structures 4OBO (blue) and 4U44 (orange). In the former structure

the side-chain of Tyr36 in the P-Loop is facing inwards, reducing the

cavity space available for ligand binding

Table 3 RMSD (Å) between binding site residues of submitted

Hsp90 receptor structures and crystal structure

PDB Code submitted Crystal structure

40 44 73 164 175 179

2CCU 0.29 0.30 1.19 0.27 0.25 0.37

2WI6 1.05 1.05 0.34 1.05 1.07 1.03

List of residues defining the binding site: LEU48, ASN51, SER52,

ALA55, ASP93, ILE96, GLY97, MET98, ASN106, LEU107,

GLY108, PHE138, TYR139, VAL150, THR152, THR184 and

VAL186

For each of the crystal structures, the submitted PDB receptor

structure is highlighted in italics
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pose. We combined the scores obtained from docking and

DUck and, following visual inspection to check all the

ligands and the corresponding rankings, the final position

of 49 ligands (27 %) in the ranked list was manually

modified. Visual inspection introduces a subjective step

that is difficult to control, but is essential in real applica-

tions to correct some of the limitations of docking. In our

case, we used it mostly to rescue compounds that were

predicted as inactive because they had an incorrect binding

mode (e.g. ligands binding to the helical conformation that

could not fit in the docking cavity). Considering the qual-

itative nature of our approach, the ROC curve (Fig. 6)

demonstrates a very good performance, as do the corre-

sponding enrichment factors (Table 4). To assess the effect

of consensus ranking and visual inspection, we also plotted

the ROC curve that would be obtained after the first stage

(docking) and without the visual inspection (Figure S3).

The AUC was much better for the combined ranking (0.71

vs. 0.55) and the enrichments were also higher for the

combined ranking. This was the best performance across

participants in this metric. Unexpectedly, we also ranked

well in terms of Spearman correlation (0.39). This was

surprising because both Docking and Dynamic Undocking

are designed to discriminate between active and inactive

compounds, rather than to obtain a quantitative assessment

of their (relative) binding free energies. In part, this reflects

our knowledge about this particular system, where we can

anticipate from previous experience the conformational

changes that take place in the protein and the ligand fea-

tures that contribute to binding affinity. However, this

correlation should not be considered a success, as it is

likely insufficient to drive drug design. Instead it indicates

that ranking ligands using structure-based methods is par-

ticularly challenging. In fact, many ligands in the test set

have analogues with published binding affinity and we

anticipate that a purely ligand-based strategy might have

provided very good results. We suggest that the perfor-

mance of one such knowledge-based approach would be

useful as a benchmark of the performance of all partici-

pants in the contest.

Conclusions

Through the participation in the D3R Grand Challenge

2015, we have been able to validate the methods developed

and used in our lab. We must emphasize that our main

focus is virtual screening, an application that has not been

considered explicitly in the challenge. Binding mode pre-

diction is a first essential step for any subsequent predic-

tion, so we had a particular interest on this part of the

challenge. Binding affinity prediction (or ligand ranking) is

much more demanding than virtual screening, and we

participated in this part of the challenge somewhat reluc-

tantly, expecting a clear underperformance compared to

free energy methods.

Fig. 6 ROC Curves of the 180 ligands in the Hsp90 Stage 2 Set. Ligands with an IC50 higher than 1 lM were considered as active. a Ranking

according to rDock docking scores (AUC = 0.55). b Consensus ranking as submitted to the challenge (AUC = 0.71)

Table 4 Summary of statistics for Hsp90 system stage 2 results

Ranking AUCa Enrichmentb

1 % 10 % 20 %

Docking score 0.55 1.23 0.68 1.37

Combination 0.71 2.47 1.91 1.99

a Max.value for AUC = 1.00
b Max.enrichment possible = 2.47
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We used a combination of qualitative techniques that,

together, have worked much better than any of them sep-

arately. Namely, we used rDock for molecular docking

with pharmacophoric restraints and DUck, a new technique

based on molecular dynamics. For Stage 1, we were able to

correctly predict how the ligands bind, particularly the

position of the central scaffold forming the main interac-

tions with the protein: for Hsp90 5 out of 6 ligands had an

RMSD lower than 2 Å and 100 % of the scaffolds were

correctly predicted; for MAP4K4 11 out of 30 ligands had

an RMSD lower than 2 Å and 60 % of the scaffolds were

correctly predicted. This figures would have increased to

18 out of 30 ligands and 77 % of the scaffolds if one single

additional conformation (Tyr46-IN) would have taken into

account. Retrospectively, we performed additional experi-

ments to understand the failures, finding that protein flex-

ibility was the major factor limiting the quality of the

results. Predicting protein conformations is feasible, but

increasing the number of conformation generally leads to

decreased docking performance [19] and even when few

conformations are considered, their relative energies must

be considered to avoid artifacts [44]. This is a tall order that

we have by-passed by employing previous knowledge

about the system, which enabled us to predict the most

likely receptor conformation for each Hsp90 ligand purely

based on chemical structure. The fact that we did not have

this information for MAP4K4 explains the difference in

performance between both systems. It should be possible to

extract this type of knowledge automatically from existing

crystal structures deposited in the PDB, but we are not

aware of any tool capable of doing this task. Forcing cer-

tain interactions during the docking process is equally

important because it corrects some of the limitations of the

scoring functions. Fortunately, in this case, the main

pharmacophoric points can be extracted easily and auto-

matically with existing tools. In the absence of known

ligands, binding hot spots can be identified from molecular

simulations [45].

In Stage 2, for Hsp90 we performed much better than

expected considering the qualitative nature of our methods.

The results were biased by our previous knowledge on this

system, which had an important effect on the final per-

formance, but this reflects the typical situation in drug

discovery, where expert users combine tools and previous

knowledge whenever possible. Our relative success high-

lights the challenges that free energy methods are still

facing, but also indicates that there is a lot of potential in

combining relatively simple structure-based tools with

knowledge-based approaches. No doubt, machine learning

will play an increasingly important role in the future, dri-

ven both by the growing body of public data [46, 47] and

major advances in the field [48, 49].

Finally, we have several suggestions to improve future

editions of the challenge. Namely, the prediction of protein

conformation as a measure of success in binding mode

prediction, the inclusion of a virtual screening prediction

set and the introduction of an automated ligand-based

approach as a baseline for measuring success of ligand

ranking applications. We consider that all these aspects

may improve what is already an extremely useful and

necessary exercise.
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