
Lessons learned from comparing molecular dynamics engines
on the SAMPL5 dataset

Michael R. Shirts1 • Christoph Klein2 • Jason M. Swails3 • Jian Yin4 •

Michael K. Gilson4 • David L. Mobley5 • David A. Case3 • Ellen D. Zhong6

Received: 7 July 2016 / Accepted: 20 September 2016 / Published online: 27 October 2016

� Springer International Publishing Switzerland 2016

Abstract We describe our efforts to prepare common

starting structures and models for the SAMPL5 blind pre-

diction challenge. We generated the starting input files and

single configuration potential energies for the host-guest in

the SAMPL5 blind prediction challenge for the GRO-

MACS, AMBER, LAMMPS, DESMOND and CHARMM

molecular simulation programs. All conversions were fully

automated from the originally prepared AMBER input files

using a combination of the ParmEd and InterMol conver-

sion programs. We find that the energy calculations for all

molecular dynamics engines for this molecular set agree to

better than 0.1 % relative absolute energy for all energy

components, and in most cases an order of magnitude

better, when reasonable choices are made for different

cutoff parameters. However, there are some surprising

sources of statistically significant differences. Most

importantly, different choices of Coulomb’s constant

between programs are one of the largest sources of dis-

crepancies in energies. We discuss the measures required to

get good agreement in the energies for equivalent starting

configurations between the simulation programs, and the

energy differences that occur when simulations are run

with program-specific default simulation parameter values.

Finally, we discuss what was required to automate this

conversion and comparison.

Keywords Molecular dynamics � Simulation validation �
Molecular simulation � SAMPL5

Introduction

The goal of the ongoing SAMPL blind prediction chal-

lenges [1–4] is to compare purely computational blind

predictions of thermodynamic properties, such as hydration

free energies, partition coefficients, and binding free

energies, for a range of both model and more realistic

systems. Such blind prediction challenges can be very

useful in identifying unexpected reasons for differences

between methods that should, in theory, yield the same

result. For example, the same program used with what is

listed as the same force field can sometimes still yield

significantly different results. In the SAMPL4 blind test,

two different sets of simulations performed with GRO-

MACS, TIP3P water, and GAFF/AM1-BCC parameters

had differences of 2� 0:5 kJ/mol that were ultimately

tracked down to whether the large host molecule had AM1/

BCC partial charges determined fragment-wise or for the

entire molecule at the same time. This level of detail often

does not make it into publication, [5] which can severely

hamper efforts in reproducing results. During the SAMPL5

challenge reported in this special issue, free energies of

binding using the same GAFF/RESP force field with TIP3P

water were calculated with a number of different molecular
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dynamics engines, often with statistically signficant dif-

ferences, but it is still not entirely clear where those dif-

ferences come from [6].

One particular question that can be difficult to address is

to what extent methods that are supposed to be identical

will give different results when applied with different

simulation programs. Therefore, one of the tasks carried

out in preparation for SAMPL5 was to prepare starting

simulations in several of the most common molecular

simulation packages (AMBER [7], GROMACS [8],

LAMMPS [9], and DESMOND [10]). To ensure that the

simulation inputs were translated correctly between pro-

grams, it was also necessary to compare the evaluated

energies of the initial configurations in the simulation

programs that were native to each file format to ensure that

the translation had been done correctly. This also involved

determining the necessary simulation conditions and

parameter choices for each program to give the same, or

sufficiently the same, energy. To make this task feasible for

the 22 host-guest systems and 190 distribution coefficient

systems, this process was necessarily highly automated.

We present here the results of energy comparisons carried

out in the process of SAMPL5 preparation and validation.

One important change from the initial work carried out for

SAMPL5 and this paper is adding CHARMM-format

starting files as well as the initial energies generated with

the CHARMM simulation program.

There are two main ways that one can compare

molecular simulation engines. The first task that a molec-

ular simulation engine has is to take a molecular configu-

ration and a model (i.e. a specification of all force field

parameters) and from these ingredients generate the energy

of the model in that configuration and, in molecular

dynamics approaches, also the forces acting on each par-

ticle. Next, given the assignment of energies and forces to a

configuration, a molecular simulation engine then also

generates a sequence of configurations that belong to a

desired ensemble of that model, such as the microcanonical

(NVE), canonical (NVT), or isobaric-isothermal (NPT)

ensemble, with their corresponding probability distribution

for each configuration. There are therefore two types of

comparison that can be done between simulation engines.

The first is to take one (or a few) configurations and

compare the potential energies engines generate. The sec-

ond is to compare the observables, such as density or

enthalpy, that the simulations generate after the generation

of an ensemble of configurations. The comparison of the

final experimental observables calculated from simulation

ensembles is the most fundamentally important type of

comparison, since it corresponds directly to experiment.

However, this second task requires a large number of

different decisions that are made mostly independently of

the assignment of energy to a set of coordinates. For

example, slightly different integration methods will give

rise to slightly different ensembles. Different thermostats

will converge to the correct ensemble (if they are actually

correctly implemented thermostats) but the speed at which

they approach to that value can vary. Different programs

have different recommended integration schemes.

Additionally, simulation observables are ensemble aver-

ages, and are thus statistical quantities with associated sta-

tistical error. Since the uncertainty scales as (simulation

time)�1=2, increasing the accuracy by a factor of 10 requires

100 times as much simulation time. Small differences in the

parameters used to run the simulations give rise to similarly

small changes in the ensemble averages. If we attempt to

calculate a small difference between ensemble averages

hOi1 and hOi2, carried out at simulation parameter sets 1 and

2, with statistical uncertainties r1 and r2, the error in hOi1 �
hOi2 will be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21 þ r22
p

. If hOi is, for example, the enthalpy of

a calculation, it might be of order �100; 000 kJ/mol for a

large simulation. For a given amount of simulation time, if

the relative error in hOi is 0.0001 % or about 10 kJ/mol, then

error in hOi1 � hOi2 will be of order 14 kJ/mol. Clearly, it

would be important to know if a change in a simulation

parameter changed the enthalpy difference by anywhere near

14 kJ/mol. To take that uncertainty down to, say, a 95 %

confidence interval of 1 kJ/mol would take approximately (2

standard deviations � 14)2 � 800 times as much simulation

as determining hOi itself to one part in 10�6. Reweighting

approaches have recently been developed to include the

correlation between variables, allowing in many cases the

uncertainty to be calculated by one to three orders of mag-

nitude more efficiently [11]. However, even with this

acceleration, it is still extremely expensive.

Because of the difficulties of comparing the simulation

ensemble averages, as outlined above, this study focuses on

validation of the first task of molecular simulation engines,

the generation of energies from a configuration of a

molecular system and a well-defined model for that

molecular system, testing only those parts of the molecular

dynamics simulation engines. Addressing the multitude of

possible ways that simulations could differ using different

integration schemes and running simulations long enough

to detect small changes is beyond the scope of this study.

The validation of the energy generation presented here

serves as a necessary building block for later studies to

more easily evaluate the differences between simulation

engines in calculating simulation observables, and the

comparison of more advanced simulation methods between

different simulation programs.

Comparison between simulation programs are typically

tedious and error prone, because the input configurations and

model must be converted. This is either done using

painstaking manual copy-and-pasting, one-off scripts, or
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occasionally existing scripts that can convert from one

specific program to another. Some examples include

ACPYPE, a converter from AMBER to GROMACS [12],

CHAMBER [13], a converter from CHARMM to AMBER,

TopoGromacs, a converter from CHARMM to GRO-

MACS [14], CHARMM-GUI [15], which can convert from

CHARMM to GROMACS (and uses ParmEd to manipulate

AMBER files), and amber2lmp, a script converting

between LAMMPS and AMBER files. However, converting

between a large number of simulation programs has not, to

the best of our knowledge, previously been done in a study.

A significant additional challenge in comparing the

output of programs with theoretically the same model

occurs when the energy and forces are approximated in

order to increase the number of molecular dynamics or

Monte Carlo steps in a fixed amount of computing time.

For example, Lennard–Jones terms may be truncated at

some separation distance, with some sort of approximation

for longer distances [16–18], or Coulombic interactions

long-range terms may be approximated by an interpolated

mesh [19] rather than a direct lattice sum. Not only does

each program make different default choices, most of these

choices are left up to the user, meaning different results can

be obtained by different users of the same code, and the

recommended or default behavior of each code will almost

certainly differ from program to program to some degree.

This study therefore focuses on the automated conver-

sion of molecular simulation input files using (to the extent

possible) automated all-to-all conversion tools, and the

comparison and validation of the energies of single con-

figurations among these programs. In this process, we

attempt to find reasonable simulation parameter choices

that allow the nonbonded energies to be directly compared.

Methods

The molecular interconversion software programs InterMol

(https://github.com/shirtsgroup/InterMol) and ParmEd

(http://github.com/ParmEd/ParmEd) were used to perform

comparisons between five different simulation input

parameter files and engines. InterMol is designed as a

generalizable all-to-all converter between molecular sim-

ulation file formats; however, it currently only has full

support for GROMACS, LAMMPS, and DESMOND file

formats. ParmEd is a library for defining and manipulating

atomic-level molecular topologies with force field

descriptions. It provides a program-agnostic representation

of a molecular topology and its force field that supports

editing molecular topologies as well as providing the

infrastructure to convert files between the native formats

for the GROMACS, AMBER, CHARMM, and OpenMM

programs.

We took advantage of this overlap in conversion func-

tionality to provide output files in five formats. The process

is as follows: We took files initially parameterized in

AMBER format with GAFF/RESP force field parameters

using AmberTools, as described in the SAMPL5 overview

paper [6] and read them using ParmEd. We then used

ParmEd to convert them into GROMACS input file for-

mats. We then convert from these GROMACS files into

LAMMPS and DESMOND input files using InterMol.

ParmEd was also used for this study (though not the

original SAMPL5 release) to convert the AMBER simu-

lation files into CHARMM simulation files directly.

We use the InterMol convert.py tool to manage all

of the conversions (including interfacing with the ParmEd

API). InterMol allows control of simulation input param-

eters by either reading a user-defined (or default) sample

simulation parameter file (for DESMOND, AMBER, and

GROMACS) or inserting user-defined strings defining

nonbonded terms into the parameter and topology files

(LAMMPS and CHARMM). Full any-to-any conversion is

not yet possible using the combination of tools so far, since

ParmEd cannot yet convert between some dihedral formats,

making it impossible to write many valid GROMACS files

into CHARMM or AMBER formats.

We use the 22 host-guest molecules distributed as part

of the SAMPL5 blind challenge for our comparison of

energies. The systems used for the distribution coefficient

challenge portion of SAMPL5 were also converted and

their energies evaluated [20], but the results were similar

with no additional lessons, and so we focus on the host-

guest molecules here. Both energies and configurations for

the distribution coefficient challenge are for the near future

still posted on the SAMPL5 web site (https://drugde

signdata.org/about/sampl5).

The first two hosts, with six guests apiece, are OAH [21]

and OAMe [22, 23] from the Gibb laboratory, are also

known as octa-acid (OA) and tetra-endo-methyl octa-acid

(TEMOA). The last host is CBClip [24], with 10 ligands,

from the Isaacs laboratory. Specific details of the topology

construction and configuration generation is described in

the SAMPL5 overview paper [6].

For this study, we attempted to use the most up-to-date

releases of all molecular dynamics simulation programs. In

most cases, this resulted in very little difference in the

results between the current study and the SAMPL5 study,

but in some cases as noted, the results do change. Units are

given in SI units (kJ/mol and nm, for example), though

different programs use different default units, and in one

case we use nonstandard units for reasons explained there.

The five programs were:

– AMBER: Energies were calculated originally for

SAMPL5, with sander as included AmberTools 14,
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but for the current study sander from the most recent

AmberTools 16 were used.

– GROMACS: Energies were calculated originally and

here with GROMACS 5.0.4, compiled in double

precision.

– DESMOND: Energies were calculated in the original

SAMPL5 release with version 3.6012 (distributed as

part of the Schrödinger 2013 package for academic use)

but all tests are performed here with version 4.5

(distributed as part of the Schrödinger 2016–2011

package for academic use). Rather than directly writing

the DESMOND .dms files, the automated conversion

routines were written to create MAESTRO .cms files.

– LAMMPS: Energies were calculated with the April 5,

2014 build in the SAMPL5 release, and the Feb 16,

2016 release in the current study. Only the additional

modules required to run atomistic simulations were

installed (MOLECULE, RIGID, and KSPACE)

– CHARMM: Energies were only generated for this

study, with developmental version 40b2 of the free

version of CHARMM (‘‘charmm’’), which has all of the

features of the CHARMM program except for the

DOMDEC and GPU high performance modules.

All programs were compiled in RHEL 7 with the gcc 4.8.5

compiler suite, and run on the same desktop computer.

It is difficult to choose simulation parameters that agree

among all simulation engines. For example, each program

generally has different types of default switching functions

to taper nonbonded interactions. There is certainly an

argument to be made that any parameters that affect the

energy, such as switching scheme, cutoff, and Coulomb’s

constant should be considered part of the forcefield, but in

essentially all general usage, they are not—‘force field’ in

general usage refers to the specification of partial charges,

atom types, van der Waals parameters, mixing rules, and

bond/angle/torsion parameters.

For this comparison, we tried to choose for our non-

bonded interactions methods that were sufficiently cutoff

independent that differences in the cutoff scheme between

programs would minimally affect the results, given the

limitations imposed by the size of the system.

For electrostatic interactions, we chose either particle

mesh Ewald (PME) implementations (CHARMM,

AMBER, GROMACS, CHARMM) or particle-particle

particle-mesh (PPPM) methods (LAMMPS). We chose a

cutoff of 1.5 nm for both Coulomb and van der Waals

interactions to eliminate much of the issues with errors at

short range cutoffs. We chose a real space error cutoff of

1� 10�8, which corresponds to a j (also known as b)
parameter of 0.020822755 nm. For PPPM, we chose a

tolerance of 1� 10�8. For AMBER and CHARMM, we

used a PME mesh grid of 48 � 48 � 48 grid points with 4th

order interpolation. DESMOND allows significantly less

control over the PME parameters at the MAESTRO

interface level, and we used an PME relative tolerance

(ewald_tol) of 1� 10�10.

For Lennard–Jones interactions, we avoid the problems

of trying to match switching schemes between programs,

which are usually quite different, by using an abrupt cutoff

to zero potential. This approach is not recommended for

running molecular dynamics simulations, as it creates a

mismatch between forces and energies, but which is rea-

sonable for comparing simulation energies. An analytic

isotropic long-range correction was used for LAMMPS,

AMBER, DESMOND, and GROMACS [16, 17], with the

isotropic periodic sum approach [18] used for CHARMM.

At this longer range, the results become essentially inde-

pendent of the precise cutoff for both methods, though the

isotropic periodic sum is even less cutoff dependent, as

seen in Table 1. This cutoff independence in the Lennard–

Jones energies is expected for systems that are homoge-

neous at long range, such as a host-guest system sur-

rounded by water. However, this approach will not be

cutoff-independent for a heterogeneous system such as a

lipid bilayer or a liquid/vapor interface [25]. The parame-

ters listed above are referred to in this study as the ’ideal’

parameters, and listed in Table 2.

We also ran the test with an attempt to be as close to

default parameters as possible and still have comparable

energies. For all simulations, we used a 0.9 nm abrupt

cutoff, as differences in switching methods lead to signif-

icantly different Lennard–Jones energies. For AMBER, we

used the same Ewald parameters (48 � 48 � 48 Fourier

points in the grid), with the isotropic analytical dispersion

correction included for Lennard–Jones. For GROMACS, a

Fourier spacing of 0.1 nm is used. For LAMMPS, we set

pair_style lj/cut/coul/long 9.0 9.0. We include a dispersion

correction, and use PPPM, with 10�8 as the tolerance. For

DESMOND, default ewald parameters were used, with

ewald_tol equal to 10�9. These parameters are referred

to as the ’default’ parameters in this study, and listed in

Table 2.

All input files used are documented in the ‘‘runfiles.tgz’’

directory of the Supporting Information (with details given

in the README.txt). Converted input simulation files are

available in AMBER, CHARMM, DESMOND, GRO-

MACS, and LAMMPS formats for the 22 host-guest sys-

tems are provided as tar/gzipped files. The 20

configurations used in the paper for the comparison of

average simulation energies are only included with the

original AMBER .rst7 files for storage space reasons.

We also examined how dependent the energy differ-

ences are on the individual configurations. For twelve of

the systems (the six OAMe and the six OAH octa-acid
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host-guest systems), we take 20 different configurations.

These configurations were generated with electrostatic

parameters and Lennard–Jones parameters as listed in the

‘default’ parameter section. Temperature was maintained

at 298.15 K with the Langevin thermostat with a damping

constant c of 1 ps�1 with a timestep of 2 fs with constrained

bonds involving hydrogen. Simulations were started from

the SAMPL5 example files and run for 2 ns, and configu-

rations were taken every 100 ps.

Different simulation packages use file formats which

have different default precisions, which means both input

parameters and coordinates can be rounded differently.

This truncation can have dramatic impacts on computed

energies. Clearly, all parameters must match, or else the

model will be different than intended. In InterMol, we use

by default 8 decimal places in the parameters to ensure

matches to high precision, though ParmEd truncates

CHARMM exported files at a varying precision depending

on the parameter (almost always 5 significant digits, except

for angle force constants, which were 4 significant digits).

This did not cause adverse deviation for bond or angle

energy terms compared to other programs, though may

account for CHARMM dihedral energies being 3–4 times

further from the program average than other programs.

Although nonbondeds were truncated at 7 significant fig-

ures, no rounding with respect to the other programs

occurred for this dataset.

However, matching the precision in the coordinates in

two file formats is also important in order to verify ener-

gies. We examined the importance of matching the preci-

sion in coordinates. While keeping the precision of the

input files the same, we truncated the precision of the

converted files to a range of different precisions, ranging

from four decimal places to nine decimal places to see how

the precision of the energy components are affected.

Note that using lower precision coordinate files will not

have an effect on ensemble averages if such files are only

used as starting points for simulation. But the precision in

the coordinates will matter quite a bit if stored output

configurations are used to re-evaluate the energy

contributions, as low precision coordinates could introduce

significant error.

Another source of differences in energy relates to the

precision of the binary. We therefore also compare the

deviation from the program average for the same version of

GROMACS compiled in double precision (the precision

that is used in the reference calculations) and in a reduced

precision version of the binary. In GROMACS, ‘‘mixed

precision’’ is the official name for this reduced precision

version, which uses single precision for the state vectors

(velocity, position) and forces, but not for particularly

sensitive calculations like the virial and the integration. It is

essentially, therefore, single precision for energies, and we

will refer to it in the text as single precision, since the

energies are being computed in single precision.

Results

We first compare ten different energy terms between the

five different simulation programs with the previously

defined ideal nonbonded calculation settings. Results are

shown in Fig. 1. All results are averaged over the 22 host-

guest systems included in the SAMPL5 blind prediction

challenge. To avoid picking a favored reference program,

we look at the deviation of each term from the average of

all five programs, calling this the ‘‘program average’’ for

the molecule. ‘‘Potential energy’’ is the total potential

energy of the system, but is not the total over all 9 other

listed energy terms, since several of these terms are sums

of other terms: ‘‘Bonded’’ is the sum of ‘‘Bonds’’, ‘‘An-

gles’’, ‘‘All dihedrals’’ (including both improper and proper

dihedrals). It is difficult to assign a label ‘‘proper’’ or

‘‘improper’’ to a given dihedral, since in different programs

the same functional form is used for both types of dihe-

drals. We thus put all of these energies together as a sin-

gle dihedral energy when reporting them to avoid having to

deal with the ambiguity of different decompositions.

‘‘Electrostatic’’ is the sum of ‘‘Coulomb-14’’, Coulomb

short range and Coulomb long range forces, ‘‘van der

Table 1 Using an analytical correction, the van der Waals energy due

to the Lennard–Jones interactions are essentially independent of

cutoff, with a total change of 0.001 % in the total van der Waals

energy for the analytic long range correction in GROMACS (and

similar to other programs) and 0.00008 % with the isotropic periodic

sum in CHARMM, over a change of 0.3 nm cutoffs

Distance (nm) GROMACS Van der

Waals energy (kJ/mol)

CHARMM Van der

Waals energy (kJ/mol)

1.5 12,223.489 12,223.753

1.4 12,223.524 12,223.749

1.3 12,223.667 12,223.748

1.2 12,223.659 12,223.742

This particular example uses the CBC-G1 system
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Waals’’ is the sum of ‘‘LJ-14’’ and van der Waals short and

long range terms, and ‘‘Nonbonded’’ is the sum of

‘‘Electrostatic’’ and ‘‘van der Waals’’ terms.

We examine three statistical measures to describe the

deviations between the programs: the average differences

from the program average over all molecules, the average

of the absolute value of the difference from the program

average, and the average of the relative absolute value of

the difference. The program average is defined as:

Eprog ¼
1

Nprog

X

Nprog

i¼1

Ei

where the sum is over molecular simulation programs of

interest, and Ei is the energy term of interest from the ith

simulation program. The average difference from the

program average is:

DEprog ¼
1

Nprog

X

Nprog

i¼1

Ei � Eprog

The average of the absolute value of the difference from

the program average is defined as:

DEprog

�

�

�

� ¼ 1

Nprog

X

Nprog

i¼1

Ei � Eprog

�

�

�

�

The average of the relative absolute value of the difference

is defined as:

DEprog

�

�

�

�

rel
¼ 1

Nprog

X

Nprog

i¼1

Ei � Eprog

Eprog

�

�

�

�

�

�

�

�

Each statistical measure gives somewhat different

information about the trials. DEprog gives information

about the manner in which energy component deviates

from the program average, while the absolute value of the

differences from the average DEprog

�

�

�

� shows the magnitude

of the deviation, avoiding any cancellation due to different

signs. Because some terms are much smaller than others,

for example, the bonded energy terms being two to three

orders of magnitude smaller than the electrostatic terms,

the relative absolute difference DEprog

�

�

�

�

rel
is needed to

show the fractional error in each term.

We find that the bonded terms match very well between

all programs. Average differences from the program

average are below 0.05 kJ/mol in magnitude for all terms

for all programs, and usually about an order of magnitude

lower, and around or below 0.002 kJ/mol (CHARMM was

slightly higher than the others). Average absolute differ-

ences in the total bonded term are below 0.004 kJ/mol for

all programs except CHARMM. CHARMM’s average

absolute value is 0.007 kJ/mol, but is dominated byT
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differences in the dihedral terms; bond and angle terms are

as low as other programs. Note that this is not per inter-

action, but the sum over all interactions.

The average relative absolute quantities are perhaps a

more important comparison metric, since they are intensive

quantities. Total deviation of the energy will of course

Fig. 1 Electrostatic energy interactions dominate the deviations

between the programs both in absolute and relative error, though

many components have measurable relative error. We compare the

variation of 10 different energy terms between five different

simulation programs (AMBER, GROMACS, LAMMPS, DES-

MOND, and CHARMM) for the ’ideal’ choice of cutoff parameters.

For each term, we plot the deviation of each program from the

average over all programs (the program average), to avoid choosing a

single arbitrary reference program. All statistical measures are

averaged over the 22 SAMPL5 host-guest systems. We plot the

average deviation (top), the absolute average deviation (middle), and

relative absolute average deviation (bottom). ’N/A’ is listed when the

energy term cannot be extracted from the simulation output for that

program
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become larger as the system becomes larger, so normal-

izing by the total energy, which will be proportional to

system size, will result in a more useful comparison. With

this statistic, we see that the bonded terms are accurate to

generally about 3 parts in 106, with CHARMM slightly

higher at 7 parts in 106. Given that this is approximately the

limit of precision one would see in single precision cal-

culations, and given the fact that some programs only

output energies to four (AMBER) or five (CHARMM)

decimal places, or eight significant digits total (LAMMPS),

this seems for all programs to be a reasonable amount of

agreement in bonded interactions for most purposes. It

demonstrates that the conversion process has successfully

copied parameters with the correct functional form for

bonded interactions between all of the programs of interest,

and the energies are being calculated in a consistent way

for these bonded interactions. More generally, it suggests

that with no extra fiddling, all programs should in typical

cases generate essentially equivalent bonded energies.

We next examine the nonbonded interactions. Coulomb

1–4 and van der Waals 1–4 interactions are a good measure

of whether the nonbonded parameters are being copied

correctly from one set of files to another, as they generally

are all calculated with real space interactions and are

shorter range than any reasonable cutoff. Therefore, their

comparison is not affected by nonbonded simulation

parameter choices such as treatment of long-range

electrostatics.

We see that, like the bonded interactions, the 1–4

interactions, when separated out from other interactions by

the simulation program, are in good agreement. In all

available cases, the van der Waals 1–4 interactions have

relative absolute differences at least a factor of 2 better

than even the bond and angle interactions, at about 1 part in

107. LAMMPS and CHARMM do not calculate 1–4

interactions independently, but some post-processing tricks

involving subtracting energies with different input param-

eters show that the CHARMM van der Waals 1–4 energies

have similar accuracy, in particular being generally within

output precision of AMBER.

The story from the Coulombic 1–4 interactions is more

complicated. Looking at the absolute difference, we see

that the difference of GROMACS and DESMOND from

the program average is about half of what the difference is

from AMBER. In this case, the difference in Coulombic

1–4 interactions between GROMACS and DESMOND is

actually less than 10 % of what the differences is between

AMBER and the other two programs is. Since the program

average is the average of the three programs, this means

that essentially all the deviation from the program average

is because of AMBER’s difference from the other two

programs. Since the LJ-14 parameters are shown to be in

good agreement by the fact that the LJ-14 energies are in

good agreement, the difference must come from some other

source.

After further analysis of the data, it became clear that

the value of Coulomb’s constant 1
4p�0

, the constant of pro-

portionality f in U ¼ f q1q2
r

is the main cause of the differ-

ences in the Coulomb 1–4 terms. In Table 3, we show the

value of Coulomb’s constant in a range of different simu-

lation programs compared to the NIST 2014 CODATA

value. We list the AMBER number as ‘‘AmberTools’’

because in AMBER, the constant is set by multiplying the

charge by
ffiffiffi

f
p

in the .prmtop file, rather than set inter-

nally by either sander or PMEMD, the AMBER molecular

dynamics engine. Clearly, AmberTools, and to a lesser

extent CHARMM, have significant deviation from the best

experimental value. It is possible that this difference may

primarily come from decisions in the 1970’s to use Bohr’s

radius to calculate Coulomb’s constant assuming a value of

0.529167 Å (vs. an improved value of 0.592177 Å today),

but there appears to be no clear historical answer. Of

course, the more important question is, how much does this

deviation affect the results?

We tested the effect of changes in Coulomb’s constant

on the energy. To add a more rigorous control, we looked

at the RMS difference in energy between AMBER energies

and GROMACS energies evaluated with the Coulomb

constant from version 5.0.4, and then with GROMACS

recompiled with the AmberTools Coulomb’s constant.

Results are shown in Table 4, where we have used RMSD

over all molecules to compare these programs. We see that

matching Coulomb’s constant removes 98.8 % of the

variation in the Coulomb 1–4 term between the two pro-

grams, 69.5 % of the total electrostatic energy difference,

and 74.2 % of the total potential energy difference between

the two programs, strongly indicating that the lack of

agreement of AMBER with the other programs is almost

entirely a result of mismatched Coulomb’s constant.

The longer range nonbonded interactions are signifi-

cantly harder to get in good agreement between programs.

Validating the van der Waals and Coulombic 1–4 interac-

tions demonstrates that the Lennard–Jones parameters and

Coulombic charges are correctly created in the other file

formats. In that sense, validating the conversion of file

formats can be done without comparing the long-range

interactions. However, if we are interested in comparing

results of molecular dynamics programs in realistic situa-

tions, we will need to compare the entire potential energy,

including these terms.

One complication is that different programs both cal-

culate and print out the different components of nonbonded

interactions differently, such as the direct space energy, the

Fourier space energy, the Ewald self term, and so forth.
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Thus, it is often difficult to examine anything except the

total Lennard-Jones or total electrostatic energy. This

makes it hard to determine exactly the source of any dis-

crepancy between programs, and motivates our attempt to

find ‘ideal’ simulation parameters to best make this

comparison.

Discrepancies in the nonbonded energy terms are always

much larger in magnitude than discrepancies in the bonded

interactions for any liquid phase simulation, since there are

many more intermolecular interactions than intramolecular

interactions. It is therefore instructive to look first at the

average relative absolute deviations from the program

average (Fig. 1). For GROMACS, AMBER, LAMMPS,

and CHARMM, the fractional difference in the van der

Waals energy is approximately 1� 10�5, which is 2–5

times larger than the difference in the bonded energy

(DESMOND does not separate the long-range energy out

into components). GROMACS and LAMMPS are gener-

ally closer to each other, usually within one part in 106, and

CHARMM and AMBER are clustered together, though not

as closely as GROMACS and LAMMPS. Because of the

close match of Lennard–Jones 1–4 parameters, deviations

in the total Lennard–Jones energy are likely due to dif-

ferences in the calculation of long range interactions.

Differences from the program average in the total

electrostatic energy are smaller than errors in the total van

der Waals energy for GROMACS and LAMMPS, but are

significantly larger for AMBER. As seen above, a large

portion of the electrostatic deviation of AMBER from

those two programs is because of the inconsistent choice of

Coulomb’s constant. Although CHARMM also has a rel-

atively inaccurate Coulomb’s constant, the differences in

the CHARMM potential energy are of opposite sign from

AMBER, indicating a difference in the way the electro-

static energy is calculated relative to the other programs.

For AMBER, about 70 % of this deviation is due to Cou-

lomb’s constant choice, leaving significantly less of the

deviation from other programs due to other choices in

nonbonded simulation parameters. Correcting CHARMM’s

Coulomb’s constant would actually make the energy fur-

ther from the other three programs. However, it is impor-

tant to notice that the fractional difference is still on the

order of 2:5� 10�5, likely too small to matter for most

quantities of interest over long simulations.

The deviations from the program average of the total

potential energy are dominated by the differences in the

nonbonded terms, since those are so much larger than

differences in the bonded energy. For CHARMM and

Table 3 Values of Coulomb’s

constant f currently used in

molecular simulation programs

compared to the value of

332.06371302(32) kcal/mol

Å e�2 or 138.93545753(14)

kJ/mol nm e�2, calculated from

NIST 2014 CODATA

Program Value r from NIST 2014 reference value

AmberTools 332.0522173 51,000

GROMACS (� 5.0) 332.063693 89

GROMACS ([5.1) 332.0637138 3.3

CHARMM 332.054 43,000

LAMMPS 332.06371 13

DESMOND 332.063762 220

NAMD 332.0636 510

Specific versions of the programs used are described in the text. Two versions of GROMACS are listed

because SAMPL5 energies were originally generated with version 5.0.4, but the value has been changed

since then. Coulomb’s constant was calculated as keNAe
2, where ke is Coulomb’s constant defined exactly

in N m2 C�2 (or J m C�2), Na is Avogadro’s number, and e is the elementary charge from NIST 2014

CODATA, and then converted to kcal/mol Åe�2. Non-SI units are used in this case because the number

represents the value actually coded in the majority of programs. Uncertainties in f were calculated using

standard error propagation using NIST 2014 CODATA values with the correlation coefficient between NA

and e of -0.9985, also from NIST 2014 CODATA. At less than 1000 standard deviations, however, errors

due to Coulomb’s constant are no longer the largest source of error

Table 4 RMSD in kJ/mol of different energy components in GROMACS 5.0.4 from AMBER energies as the GROMACS Coulomb’s constant is

varied. Averages are calculated over all 22 SAMPL5 host-guest systems

Coulomb-14 Electrostatic Total potential

GROMACS original constant 0.00522 0.789 0.872

AmberTools constant 0.000064 0.241 0.225

Percent difference explained 98.8 % 69.5 % 74.2 %
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AMBER, differences in the electrostatic nonbonded energy

dominates. DESMOND total potential energy differences

from the program average are almost the same as GRO-

MACS and LAMMPS, indicating that since the bonded

interactions match the two programs well, the nonbonded

also must agree relatively well.

The energies generated using the ‘default’ parameters

defined above are shown in Fig. 2. The bonded interactions

are essentially identical, as there are no significant differ-

ences between the simulation parameters used for the

‘ideal’ and ‘default’ energy evaluations. AMBER, GRO-

MACS AND LAMMPS nonbonded deviations from the

program average are approximately twice as large with the

default states, while DESMOND nonbonded deviations are

approximately five times larger. The patterns are similar to

what is seen with the ‘ideal’ parameters, but the larger

magnitudes obscure the sources of these deviations in

energy, requiring the creation of the ‘ideal’ parameter set.

In most cases of simulating physical observables, these

deviations would still likely be accurate enough for most

thermodynamic calculations, with relative average absolute

difference of 0.005 % from each other, likely much smaller

than the errors due to statistical variation in the calculation

itself.

We also are interested in the deviations of energies as a

function of the number of digits used in the coordinate

output file in order to determine what is required to convert

between different simulation formats with high fidelity.

The results of the comparison between AMBER (full pre-

cision input) and GROMACS (reduced precision output)

are shown in Fig. 3. We choose only to show GROMACS,

as the other programs show similar behavior. We plot the

� log10 of the average relative absolute difference between

the GROMACS energy and the AMBER energy as a

function of the number of decimal places in the output

GROMACS coordinates. We go from 8 digits after the

decimal place (measured in nanometers) down to 4 after

the decimal place, which is what one would obtain from a

file downloaded from the PDB.

We see that the total energy loses approximately 0.75–1

digits of relative precision in the energy for each digit of

precision of coordinate removed. Since the van der Waals

and electrostatic nonbonded energies contribute the

majority of the potential energy, their loss of precision

mirrors the overall loss of precision. Interestingly, the

bonded and both 1–4 terms are less sensitive to changes in

coordinate precision, not losing much precision until get-

ting down to 5 or fewer digits after the decimal point. Bond

and angle terms individually lose precision, but the dihe-

dral energy dominates the total bonded energy. Both

Lennard–Jones and electrostatic nonbonded energies fall

off similarly in precision, so large errors created by

rounding in the repulsive r�12 interactions do not seem to

be larger than changes in the Coulombic r�1 terms as the

coordinates become more approximate. Overall, losing just

a few digits of precision completely washes out any other

source of error observed in this study, demonstrating the

importance of matching the coordinates to high precision in

order to make the rest of the conversion valid.

We are also interested in how much changing the

numerical precision of the energy calculation affects energy

comparisons. We focus on the comparison between single

and double precision GROMACS, as it is specifically

designed to be compiled in either single and double preci-

sion, though the single precision is the default version most

simulations are run with. In Table 5, we compare the RMS

differences averaged over all 22 compounds between the two

GROMACS binaries, AMBER and single precision GRO-

MACS, and AMBER and double precision GROMACS.We

use RMS differences instead of average deviation statistical

measures presented above as the effects of precision aremost

likely to affect the variation of the results, rather than the

average deviations. This comparison allows us to see both

the magnitude of the difference due to changes in binary

precision, and how much this differences affects the com-

parison to, for example, AMBER.

The differences between single and double precision

shown in Table 5 for bonded terms are 2–8 times larger

than the difference between AMBER and double precision

GROMACS, and are usually the dominant contribution to

the difference between AMBER and single precision

GROMACS. Differences between the precisions for LJ-14

are about equal to differences between either precision and

AMBER. Differences between precisions for Coulomb-14

terms are as low as the difference between LJ-14, which is,

of course, much less than the GROMACS to AMBER

difference, because of the previously described difference

in Coulomb constant. The differences in precision for the

total van der Waals energy is an order of magnitude lower

than the difference between AMBER and either GRO-

MACS precision caused by differences in calculating the

long-range nonbonded terms. However, the single to dou-

ble precision change results in significant difference in the

overall electrostatic term, as large as the magnitude

between GROMACS and AMBER. Because the total van

der Waals energy changes relatively little between preci-

sions, it is likely that the short-range electrostatics (which

are functions only of the distance) are also relatively

accurate, and it is the Ewald summation part that changes

upon changes in binary precision.

We are also interested in how much of the differences

between programs vary with the configurations of each

molecule. For example, if we were to take different con-

figurations of the same molecule, would we get similar
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deviations from the program average for all of the mole-

cules? We address this question by taking the 12 octa-acid

hosts, and generating 20 configurations as described in the

Methods section using NVT molecular dynamics. The

average over these 20 configurations is a rough approxi-

mation to the ensemble average energy of the system.

Fig. 2 We compare the variation of 10 different energy terms

between five different simulation programs (AMBER, GROMACS,

LAMMPS, DESMOND, and CHARMM) for the ’default’ choice of

cutoff parameters (described in Table 2). As above, for each term, we

plot the deviation of each program from the average of all programs,

to avoid choosing a single arbitrary reference program. All statistical

measures are averaged over 22 molecules. We plot the average

deviation (top), the absolute average deviation (middle), and relative

absolute average deviation (bottom). Nonbonded potential parameter

deviations are approximately a factor of 2–5 larger than using the

‘ideal’ parameters. ’N/A’ is listed when the energy term cannot be

extracted from the simulation output for that program
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We then compare the RMSD from the program average

rconfig, averaged over all 12� 20 ¼ 240 configurations,

and the RMSD of the average energy of all configurations

of the same molecule from the program average over the 12

host-guest systems rmolecule. If the variation from program

to program is independent of configuration, and only

dependent on the differences between molecules, then we

would expect that the two different RMSDs would be

roughly equal, meaning there is low conformation depen-

dent variation. If instead the variation is independent of the

specific molecule, and depends on interactions from ran-

dom atoms, independent of the molecule, then the RMSD

from the configurationally averaged deviations from pro-

gram averages, rmolecule, would be significantly smaller

(approximately
ffiffiffiffiffiffiffiffiffiffi

1=20
p

� 22 % of the value rconformation
value). The extent to which rmolecule is smaller than rconfig
shows how much of the variation is inherent to the mole-

cules, and how much is only dependent on the

configurations.

We can quantify this difference in the source of varia-

tion by calculating the fraction of the total variation due to

conformational variability, calculated as
r2
config

�r2
molecule

r2
molecule

, for

each energy term. If this quantity is low, then variation is

mostly due to differences between molecules, not config-

urations. If it is near one, then variation between programs

is mostly due to changes in conformation.

We can observe the results in Fig. 4. At one extreme are

the bond energies, which have only about 8 % of the total

variation between programs due to configurational varia-

tion, near the minimum of 1/20 � 5 %. Most of the dif-

ferences are due to differences between the molecular bond

terms, but not the specific conformation. Similarly, the

variations in van der Waals 1–4 interactions are mostly due

to differences between molecules.

At the other extreme are the Coulomb 1–4 terms, where

almost 100 % of the variation is due to conformational

variation. After averaging the differences over molecules,

there is very little variation left due to conformational

Fig. 3 The match in energy between converted files become rapidly

worse as the number of digits of precision in the converted coordinate

files decreases. We plot � log10 of the average relative absolute value

in each energy term between AMBER and GROMACS, with fixed

input coordinate precision, and variable output precision with the

number of decimal places in the coordinates in nanometers, varying

from 8 down to 4, the precision of a standard PDB file

Table 5 Differences between

double and single GROMACS

energy evaluations are of

similar magnitude to the

differences between AMBER

and GROMACS, but are

dominated by differences in the

long-range electrostatics. All

energies in kJ/mol

E term RMS(Esingle � Edouble) RMS(Eamber � Esingle) RMS(Eamber � Edouble)

Bond 0.000066 0.000068 0.000008

Angle 0.000044 0.000043 0.000007

All dihedrals 0.000015 0.000031 0.000018

Bonded 0.000081 0.000086 0.000011

LJ-14 0.000013 0.000020 0.000025

Coulomb-14 0.000007 0.001250 0.001251

van der Waals 0.001894 0.021756 0.023116

Electrostatic 0.218874 0.403839 0.189265

Nonbonded 0.217209 0.422827 0.209207

Potential 0.217134 0.422781 0.209214
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changes. It is not entirely clearwhyCoulomb1–4 and van der

Waals 1–4 have such different patterns, given that they are

both primarily determined by the locations of the same set of

1–4 atoms. One possible explanation is the Coulomb 1-4

terms have both positive and negative energies, while the

Van derWaals 1-4 terms involve only attractive interactions,

but it is not clear if this is the entire explanation. Similarly,

almost 100 % of the variability in the total van der Waals

energy is due to conformational variability. Variation in

angle energies from the program average is again relatively

dependent on configuration (around 80 %).

Total electrostatic energy variation is one of the few

energy components where the fraction of conformational

variation depends significantly on the programs. For

AMBER, it is not very dependent on configuration; for

other programs, it is much more dependent on configura-

tion. This is likely because of differences in Coulomb’s

constant and in the treatment of long-range electrostatic

energies; Coulomb’s constant changes can make such a

difference because the long-range energies are much less

dependent on individual molecular distances, instead being

dependent on the average distribution of charge within the

system, which does not change significantly for a host-

guest system over time, and which will scale with the

changes in Coulomb’ constant. On the other hand, the

Coulomb 1–4 interactions are dominated by the variability

of which atoms are closest to each other at any given time,

which is larger than the Coulomb constant differences.

The analysis in the variation of the total potential energy

illustrates again that the dominant reasons that the molec-

ular simulations differ are the evaluation of long-range

interactions, especially the electrostatics, and the choice of

the Coulomb constant. We find that the total variation of

the potential energy, like total potential energy itself,

depends almost entirely on the nonbonded terms. Since the

van der Waals variation between programs is almost

entirely conformation dependent, with very little deviation

in programs between the ensemble average estimate for

each molecule, the conformational dependence of the total

energy is essentially determined by the conformational

dependence of the electrostatic energy. The differences in

bonded terms are essentially negligible.

Discussion

Issues in file conversion

Creating true all-to-all functionality, from any of a set of

molecular simulation programs to any other, is particularly

difficult. There are a number of one-to-one conversion

utilities and scripts: for example, ACPYPE [12], CHAM-

BER [13], and amber2lmp. InterMol and ParmEd have

been explicitly developed as all-to-all converters, though

not all functionality yet exists. A truly all-to-all converter

would substantially simplify the current painstaking pro-

cess of molecular simulation conversion.

There are a number of differences between programs not

immediately obvious that nonetheless need to be carefully

matched for the same system to be represented in both pro-

grams. For example, GROMACS builds lists of 1–4 inter-

actions based on the bond topology: if three bonds connect

two atoms, they are 1–4 interactions. However, AMBER

uses the presence of dihedrals to define 1–4 interactions. A

dihedral with zero energy in GROMACS is essentially

redundant and can be eliminated without affecting the

energy, but is used to define 1–4 interactions in AMBER.

Additionally, the same interaction in different programsmay

have different names and functional formats. This can either

be handled by hard-coded conversions (ParmEd) or con-

verting all interactions through a canonical form (InterMol).

The first has the advantage of readability, whereas the second

is more general. It is not yet clear what the optimal strategy

would be.

Fig. 4 Fraction of variation from the program average due to

conformational variability instead of molecular variability, calculated

as
r2
config

�r2
molecule

r2
molecule

, where rconfig and rmolecule are standard deviations from

the program energy over all configuration from all molecules and over

only molecular
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One of the most challenging problems in conversion of

molecular simulation files is handling the different units in

each simulation engine. Both InterMol and ParmEd address

this problem by automatically converting units between

simulation input files, removing the need for manual unit

conversion. This is handled by creating data types that carry

units with them, making conversion much simpler. Without

such unit-carrying data types, doing anything other than one-

to-one conversion becomes significantly harder.

Issues in matching energies

It is difficult to saywhat the ‘‘right’’ energy is for a given force

field, as there are several different reasonable choices for

implementation of long-range interactions. For a sufficiently

large box, one could simply extend out the cutoffs, treating an

increasingly larger amount of the system using straightfor-

ward direct space interactions. However, these systems, at 4.0

nm across, are not large enough to take the direct-space

electrostatic treatment out far enough for the different pro-

grams to completely converge together. This remains a key

weakness of the study,making it difficult to decide on a single

reference energy to compare the simulations. This resulted in

our choice to examine deviations from the program average,

rather than attempt to determine the correct energy.

One point of view is that the differences in long-range

energy calculations specified by the program, such as the

switching scheme used, the cutoff used, and Coulomb’s

constant, should themselves be considered part of the force

field, since they influenced the parameterization of the

force field. However, explicitly stating all possible variants

of simulations that might affect the energy would require

significant additional functionality added to each different

molecular simulation engine. Instead, it is preferable to

implement methods such as periodic summation of Len-

nard–Jones or long range corrections [18, 25, 26] that

result in simulation parameters such as the cutoff and

switching scheme not affecting the total energy or force in

a statistically significant way. This way, the developers of

each simulation engine can choose the parameter-inde-

pendent algorithms that best suited their needs.

In order to aid further analysis of the energies, all energy

output and summarized analysis presented here in this paper

is provided in the ‘analysis.tgz’ tarred and gzipped directory

in the supporting information, as described in the

‘README.txt’ supporting information file.

Conclusions

The results from this study confirm the simulation input

files for SAMPL5 are properly converted, based on the

very strong agreement, essentially within single precision

rounding, for all bonded terms, Lennard–Jones 1–4 terms

and (with one caveat outlined below) Coulomb 1–4 inter-

actions. Only the long-range interactions deviated by

moderate amounts between programs, especially the elec-

trostatic Fourier-space interactions.

The results also strongly suggest that all molecular

simulation programs should choose a sufficiently consistent

value for Coulomb’s constant. A value that deviates from

experiment by 0.01 out of 332.06371 kcal/mol Å e�2 (one

part in 105) is simply not accurate enough to allow simu-

lations to agree. We find that that once the deviation is

below 0.0001, this error contributes less than other sources

of error, so a value of 332.06371 ± 0.00005 should reduce

this sort of discrepancy to a negligible error. This level of

agreement is present in all current programs with the

exception of CHARMM and AMBER, with GROMACS,

previously at the edge of that range, recently improving the

precision by a factor of 4 in the 5.1 release.

Other than the difference in Coulomb’s law, most pro-

grams agree quite well, probably enough for most practical

purposes as most thermodynamic quantities cannot be

measured experimentally that accurately. Even those dif-

ferences are unlikely to affect most thermodynamics

computations to within the statistical error generally

accepted in simulation studies. The energy calculations for

all molecular dynamics engines for this molecular set agree

to a better than 0.1 % relative absolute energy for all

energy components, and in most cases an order of magni-

tude better, when reasonable choices are made for different

cutoff parameters. However, to get good agreement, we

must use carefully matched cutoff treatments, as different

ways to shift or switch the cutoffs can introduce significant

differences between the energies of the same system

evaluated with different simulation engines.

We believe that this study represents the largest auto-

mated comparison between different programs that has

been performed so far, a process only possible because of

the automated conversion. The pipeline described in this

program, properly scaled up for diverse ranges of systems,

could be useful for a range of comparison studies that

require the precise comparison across multiple simulation

engines, or in modeling pipelines that require one simula-

tion program for part of the pipeline, and another simula-

tion engine for a different part.
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