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Abstract Computer-Aided Drug Design (CADD) is an

integral part of the drug discovery endeavor at Boehringer

Ingelheim (BI). CADD contributes to the evaluation of new

therapeutic concepts, identifies small molecule starting

points for drug discovery, and develops strategies for

optimizing hit and lead compounds. The CADD scientists

at BI benefit from the global use and development of both

software platforms and computational services. A number

of computational techniques developed in-house have sig-

nificantly changed the way early drug discovery is carried

out at BI. In particular, virtual screening in vast chemical

spaces, which can be accessed by combinatorial chemistry,

has added a new option for the identification of hits in

many projects. Recently, a new framework has been

implemented allowing fast, interactive predictions of rele-

vant on and off target endpoints and other optimization

parameters. In addition to the introduction of this new

framework at BI, CADD has been focusing on the

enablement of medicinal chemists to independently

perform an increasing amount of molecular modeling and

design work. This is made possible through the deployment

of MOE as a global modeling platform, allowing compu-

tational and medicinal chemists to freely share ideas and

modeling results. Furthermore, a central communication

layer called the computational chemistry framework pro-

vides broad access to predictive models and other com-

putational services.

Keywords Computational chemistry � Molecular

modeling � Predictive modeling � Chemoinformatics �
Virtual screening

Introduction

Computer-Aided Drug Design and Computational Chem-

istry (here termed CADD) are an integral component of

drug discovery programs at multiple Boehringer Ingel-

heim (BI) research sites. The CADD scientists at BI work

across different therapeutic areas at their sites in close

proximity to the medicinal chemists (including combina-

torial chemistry). The CADD groups at BI contribute to

individual drug discovery projects employing a multitude

of approaches extending from chemoinformatics to

molecular modeling. These approaches include most

aspects of structure-based and ligand-based drug design,

predictive modeling, as well as the prioritization and

analysis of compound selections through virtual screen-

ing, triaging of screening hit sets, and the design of

combinatorial library screening decks. The application of

these techniques ranges from target selection to lead

discovery and optimization including toxicity predictions.

In addition, providing CADD technology and encouraging

the uptake of decision supporting solutions by project
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teams is a driving force for CADD activities at BI. Tasks

related to bioinformatics, such as pathway or gene data

analyses, are typically the remit of the computational

biology groups. With very few exceptions, the CADD

work at BI focuses on small molecule drug discovery,

although in some cases biologics research has been sup-

ported [1, 2].

Although the CADD groups mostly support site-specific

projects at the three main BI research sites in Ridgefield,

Biberach and Vienna, we have also been implementing a

global concept for developing key strategies, best practices,

sharing of workflows, protocols and software solutions

across all sites. We will illustrate the synergy that can be

gained from this growing global focus using examples

taken from the recently established Computational Chem-

istry Framework (CCFW), an in-house global virtual

screening platform for designing libraries for lead identi-

fication, and a global infrastructure for deploying numerous

predictive models. In addition, we will illustrate how the

CADD scientists contribute to the advancement of projects,

interact with medicinal chemists and develop technology

that impacts project decisions.

The roles of CADD in drug discovery

Usually, CADD scientists at BI join research project teams

at the stage of hit identification. A CADD scientist fulfills

different roles within a drug discovery project team, which

are categorized here as project contributor, data analyst and

technical enabler. In the major role as project contributor, a

CADD scientist applies rational computational chemistry

approaches to finding novel compounds with improved

overall property profiles. To this end, a CADD scientist

contributes to devising and executing hit finding plans,

often including virtual screening or de novo design, ana-

lyzing screening hit sets, and finding and designing hit

analogs, as well as target deconvolution and the identifi-

cation of target-ligand associations in phenotypic screening

campaigns. Hypotheses and models are generated that

guide further compound optimization and trigger novel

design ideas. During lead optimization, CADD influences

or guides the team direction by solving project-specific

problems that are often associated with target-independent

parameters ranging from target selectivity to PK, tolera-

bility and safety related issues. As more and more

unprecedented targets are being pursued in drug discovery,

a number of factors help to inform target selection deci-

sions or to design research plans for target enablement. The

preferred modes of action (allosteric or orthosteric target

modulators), target drug ability and opportunities to iden-

tify potential tool compounds are typical examples of

CADD scientists getting involved early on before hit

identification. All of these tasks are part of the standard

repertoire of every CADD scientist at BI.

CADD scientists collaborate very closely with scientists

from other experimental disciplines (i.e., screening and

profiling units or protein crystallography, for structure-en-

abled projects) and the medicinal chemists. BI encourages

project team members to compete for generating the best

design ideas. All design proposals are collected and shared.

CADD scientists work very closely with individual che-

mists to understand their objectives, plans, strategies,

timelines and synthesis conditions. Particularly in relation

to structure-based projects, the CADD scientists hold reg-

ular 3D design and brainstorming sessions with the entire

project team to interactively generate new synthesis sug-

gestions from within the team. The team then comes

together and decides which compounds will be synthesized

next. This decision is based on a transparent and data

driven analysis that is independent of the source of the

idea. Open, transparent communication, sharing of ideas

and team spirit are essential for entering into a productive

competition of ideas capable of inspiring even better

designs.

The second role of a CADD scientist is to act as a data

analyst. Within the context of CADD a data analyst is

specialized in transforming the relevant experimental data

into hypotheses, which are in turn used to drive the dis-

covery and optimization of compounds. This role is sup-

ported by the knowledge of the existence, availability,

content, integrity [3] and architecture of internal and

external data sources, as well as by the expertise in

accessing, processing, and analyzing the data. Pipelining

tools such as Pipeline Pilot [4] or KNIME [5] are key to

extracting, combining and pre-processing data before they

are subjected to more sophisticated computational analy-

ses, such as principal component analysis, machine learn-

ing or clustering. Very often, the role of a data analyst also

includes project team support by compiling the project-

relevant data, e.g. for SAR analysis. Additional input to

data-driven decision making within project teams is pro-

vided by analyzing cross-project data, such as the results

from previous screening campaigns for the identification of

potential off-targets or the triaging of hit sets [6].

The third, and increasing, role of a CADD scientist is to

enable medicinal chemists to utilize the computer-aided

drug design tools on their own. The medicinal chemists at

BI design compounds in collaboration with computational

chemists and use some CADD design tools independently.

Medicinal chemists have been trained in the use of certain

CADD tools and have gained an adequate understanding of

the methodologies involved. This stimulates discussions

about novel computational tools for compound design and

simplifies the alignment between CADD and medicinal

chemistry. CADD tools in the hands of the medicinal
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chemist enable a rapid iteration of design ideas within the

context of the constraints imposed by synthetic accessi-

bility and compound profile requirements, leading to

overall faster design cycles. Enabling the medicinal che-

mists in this way frees up time for the CADD scientists,

who can then concentrate on more demanding design or

analysis tasks or new tool development.

The CADD scientists at BI are permanent or temporary

project team members contributing to projects beyond

their three core roles described above. Where appropriate,

they can also lead the chemistry component of early drug

discovery projects in the exploratory and hit identification

phases. Due to the close collaboration with structural

biologists and assay scientists, as well as the focus on

devising hit finding plans tailored to the individual pro-

jects, experienced CADD scientists are well suited to this

role.

CADD adds value to a project when it drives or

influences the decisions taken by a project team, and

when it facilitates faster decisions. While it is straight-

forward to describe the qualitative indicators for value

added, a quantitative assessment is much more difficult.

Different metrics for CADD performance have been dis-

cussed, including categorizing and counting the CADD

contributions to individual projects [7] or quantifying the

quality of CADD work (e.g., agreement of computations

with experimental data [8]). Another way of measuring

performance is, of course, the assessment of the customer

(project team) satisfaction. At BI we collect internal

feedback from project team leaders and other key part-

ners. In our experience, a direct dialogue about the mutual

expectations and the subsequent impact of CADD on a

project is an appropriate way of assessing the added

value. These discussions occur on an ongoing basis

throughout the year to ensure an optimal alignment of

CADD work and project needs within the context of the

project portfolio.

In addition to contributing to drug discovery projects,

CADD scientists advance the portfolio of CADD tech-

nologies that can be applied to projects. The use of

sophisticated and computationally demanding CADD

technology is encouraged at BI. While we agree, at least

in principle, with the concept of parsimony when apply-

ing modeling approaches to projects, as postulated

recently by Roche scientists [9], we are also convinced

that it is worth investing in computer-intensive tech-

nologies when the results lead to new, meaningful and

testable hypotheses. Molecular dynamics simulations are

performed for multiple purposes at BI, including the

analysis of water clusters, thermodynamic integration

calculations [10] for calculating binding free energies, or

simulations for assessing the stability of proposed binding

modes of compounds or fragments [11]. We use GPU

clusters to enable high speed MD simulations, and we

have also started exploring cloud computing as an addi-

tional resource for MD simulations and other computer-

intensive tasks.

In order to advance new computational chemistry

methodologies into productive, value-adding applications

in drug discovery projects, the CADD scientists proactively

monitor the trends and new developments within the field.

To keep in-house efforts associated with the implementa-

tion and maintenance of new algorithms at a minimum, we

typically take advantage of new functionalities when they

are added to our commercial computational chemistry

software suites or robust open-source frameworks. How-

ever, very often the scheduling of new functionalities

added to commercial or open-source software tools is not

in-line with the in-house needs for enhancements as gov-

erned by ongoing drug discovery programs. Tapping into

the full potential of new technology requires the use of in-

house data sets for validation, preferably in prospective

settings. Also a tight integration of new technology into

internal workflows becomes necessary to harvest the full

potential of technology developments. Collaborations with

academic groups have proven to be an essential element in

advancing the technology that is available for in-house

applications. Many technologies that are now part of the

productive CADD portfolio at BI were initially explored in

collaboration with academic partners and summer students.

These methods include SAR analyses [12], predictive

modeling [13, 14], quantum-chemical calculations of

H-bond strengths [15], optimal pi–pi stacking geometries

[16], GPCR modeling [17], computational protocols to

postulate druggable binding sites at protein–protein-inter-

action interfaces [18], and conformational analyses [19].

We are also engaged in research into methodologies that

are still at a very early stage but that we anticipate will

have a high impact on applications in the future. An

example of this type of research is the decomposition of

protein–ligand interaction energies employing quantum-

chemical calculations [20]. Furthermore, academic col-

laborations have great value in stimulating discussions

between academic groups and the CADD scientists at BI,

as current procedures are challenged and ideas for further

advancement are generated. Often, the integration of tools

from academic collaborations into the in-house IT and

high-performance computing environment requires addi-

tional effort. We have found that working with widely

accessible toolkits or platforms such as Java, Python [21],

Knime [5] or RDKit [22] helps to keep this effort to a

minimum. In some cases we have implemented new

algorithms from scratch [23, 24] and, more recently, we

have employed crowd-sourcing as part of a community

challenge to generate predictive models for mutagenicity

[25, 26].
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A common platform for compound design

A common platform shared by CADD scientists, structural

biologists and medicinal chemists strengthens both team-

work and collaboration in compound design. Moreover, it

enhances the efficiency and transparency of decision

making because hypotheses, such as proposed binding

modes and ideas for compounds to be synthesized, can be

shared in a common format. Molecular modeling tools such

as MOE [27] are complex and powerful expert systems,

with their own built-in development toolkits. These allow

the development and implementation of new modules, and

the design of highly customized user interfaces for incor-

porating in-house and external tools. In recent years,

medicinal chemists have become more amenable to using

such tools and to conducting, for example, structure-based

compound design campaigns. However, exploitation of the

full potential of modeling tools requires skills such as

scripting and GUI customization, and an in-depth under-

standing of the individual functionalities and their under-

lying computational algorithms. These skills are more

likely to reside with computational chemists and IT

experts. At BI, a global MOE working group has been

installed to coordinate the deployment of tools and new

features in MOE, as well as the individual customization of

the user interface at each of the three BI research sites. An

efficient, world-wide deployment procedure has been

implemented for new releases of MOE and the updating of

BI-specific features. Computational chemists and IT

experts compile one global MOE package that also allows

the inclusion of site-specific settings. For example, there is

a site-specific top-level menu for each site that governs the

access to available tools. All site-specific customizations

are setup independently to avoid dependencies. Based on a

mechanism that determines from which site a MOE session

is being started, the appropriate menus and libraries are

loaded. MOE has been enhanced by a number of external

tools that are invoked via a communication meta-layer

(vide infra). These tools include, for example, various

property (e.g., logP) and in silico ADME descriptors,

including property profile meta-services. The services can

be invoked from within the MOE system or from the MOE

database viewers (MDB).

Another recent example is the introduction of a DFT-

based torsional analysis tool to medicinal chemists. This

tool permits an easy, color-coded assessment of optimal

compound conformations (Fig. 1).

Following the interactive selection of the four atoms that

define a torsion angle, the molecule along with the torsion

angle specification, is submitted to a calculation service

engine (CCFW, vide infra). Input molecules with fixed

incremental torsion angles are constructed and subjected to

QM calculations on an HPC cluster. Due to the computa-

tion times required, a synchronous service cannot be

operated interactively. Therefore, the results are collated in

MOE, MOE database and Excel spreadsheet formats, and

are automatically sent to the user by email after the cal-

culation has been completed. Another complex service

estimates the mutagenicity potential of compounds based

on ab initio calculations of nitrenium ion stability for

aromatic amines [28, 29]. These examples illustrate how

fairly complex and CPU intensive tasks can be transferred

to the medicinal chemists at BI, provided that the tasks can

be reasonably standardized or formalized as a routine

workflow without the need for manual intervention by the

user.

Another tool frequently used by the medicinal chemistry

community is a docking utility that runs GOLD [30] and,

optionally, a 2D–3D conversion step using CORINA [31]

in the background. The preparation, optimization and

provision of the GOLD configuration files and pre-aligned

protein structures are the responsibility of the computa-

tional chemistry experts. The various configuration files

that control the different docking scenarios are provided,

such as constrained, unconstrained or covalent docking,

depending on the individual project requirements. Medic-

inal chemists can then select the most appropriate docking

protocol from a web-based interface that submits all input

files (protein structure and ligand, configuration file) to the

backend service. Docking poses are returned in SDF or

MOE format ready to be used in further design cycles. The

docking results can be automatically combined with

property predictions that prompt the medicinal chemists to

consider multi-parameter optimization criteria as part of

their decision making.

An important part of the support given to medicinal

chemists in computational compound design is the pro-

vision of 3D-structural data that are ready for use. We

have established an automated workflow for compiling

pre-aligned structural data in so-called project master files

that can be customized for each project. The workflow

utilizes the MOEProject framework and in-house scripts

for calculating the crystallographic packing environment

around ligand binding sites, splitting protein multimers

into biologically relevant units, protonating the structures,

and aligning defined protein chains onto a reference. In

addition, structures can be annotated and grouped by

chemical scaffolds, biological activity data, calculated

properties and customized classifications such as, for

example, the flip state of a certain side chain, point

mutation, or cofactor type. This facilitates the survey of

the available structural information allowing immediate

utilization of the appropriate structures in compound

design.
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Learning from data: predictive modeling
and matched molecular pair (MMP) analyses

Prospectively predicting experimental parameters or the

effect of molecular transformations on molecular proper-

ties significantly impacts the efficiency and shortens the

design-learning cycle. Therefore, predictive modeling for

ADMET endpoints has been a growing focus for compu-

tational chemists at BI [32, 33]. Unsurprisingly, commer-

cially available models for most endpoints are not as

relevant as those built from the vast repository of assay

data accumulated over time at BI. We have established the

following principles for building in silico models and for

sharing them with the medicinal chemists:

1. Frequent, automated re-training and updating of pre-

dictive models guarantees the use of all relevant data,

including the most recent data that can be particularly

relevant for predictions on new analogs of actively

explored compound series. After a few weeks, a

deterioration in the predictive power of the predictive

models can be measured [33]. Recently, we introduced

a model rebuilding scheme that starts automatically as

soon as new data becomes available. Automatically

updating models ensure that the best prediction is

available at all times. This means that predictions

made today can be different from those made yester-

day. The idea of giving up prediction consistency in

favor of prediction accuracy has been gaining wider

acceptance at BI.

2. Each prediction is returned together with a confi-

dence estimate. Providing an easily interpretable way

of managing expectations was found to be of great

value when discussing prediction results with medic-

inal chemists. Predicted values with a confidence

value below a certain threshold are not typically

taken into account in the decision making process.

In our experience confidence estimates derived from

prediction agreements from an ensemble of different

models perform particularly well (Fig. 2). However,

applicability in descriptor space and confidence

assessments by prediction distribution methods are

used as well.

3. Early human dose predictions are used as an alterna-

tive to multi-parameter optimization scores. Currently,

human dose predictions are triggered when in vitro

stability and potency data are collected [34]. Initially,

volume of distribution, plasma protein binding, and the

efficacious dose are predicted by in silico methods [13]

and are subsequently refined as experimental data

becomes available.

Fig. 1 View of DFT-based torsion scan results in MOE. The conformations are color-coded by torsion strain energy. Structures with carbon

atoms colored in green represent the low energy conformations
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4. Seamless access to predicted properties and integration

with other modeling output, such as docking results, is

highly valued. Automated docking results are, for

example, sometimes combined with predicted ADME

properties without a specific request. The properties

are then predicted on the fly when chemists draw or

modify the structures in Marvin or MOE.

Although there is a trend towards building more pre-

dictive models serving a global (across sites) medicinal

chemistry community at BI, many models are still built at

the individual sites, primarily for local customers and often

for project-specific purposes. However, we have stan-

dardized the deployment of and access to models by

establishing a meta-layer (vide infra) that permits local

model building and global consumption at multiple front-

ends, including MOE, Marvin, Knime and Pipeline Pilot.

This means that any model can easily be switched from a

local to a global model and vice versa. This setup allows

the combination of model predictions with the results from

other tools, such as automated docking engines. For per-

formance reasons we have moved away from workflow

software such as Knime and Pipeline Pilot for in silico

model building, in favor of a Python-based model building

framework that is optimized for speed. It enables chemists

to generate prediction results using Marvin [35] or MOE as

the front-end within a few seconds of drawing or modify-

ing a molecule. This allows predictive models to be inte-

grated into the synthesis planning in an interactive way.

Table 1 summarizes in silico models used productively

at BI. Similar to what has been reported for other phar-

maceutical research efforts [36], we focus on predicting

end points for which a sizable number of data points are

available. We employ commonly-used machine learning

methodologies such as random forests and support vector

machines to train regression and classification models.

Improving the predictive models for the parameters that are

most relevant for human dose predictions has become a

recent focus, with emphasis on in vitro clearance, volume

of distribution, and plasma protein binding models. In

addition, we are building target potency and efficacy

models based on data automatically extracted from our

compound database, and are combining them with models

and data from the literature [37].

We are currently working on integrating the growing

number of predictive models into the decision workflows of

project teams, both for making synthesis decisions and for

advancing compounds towards in depth profiling. One

element is the use of in silico models, in parallel with the

actual experimental assay, to advance compounds imme-

diately onto the next level of a screening cascade, thereby

reducing the time for learning cycles. Another element is

the exploration of early human dose predictions as a

holistic alternative to multi-parameter optimization mea-

sures, as a means of simplifying the decision making cri-

teria for the chemists.

While these predictive models are very often black-box

models that are difficult to interpret, we have recently

enabled more illustrative ways of mining the wealth of in-

house data to support SAR analysis and compound design

by analyzing matched molecular pair MMP transforma-

tions [42–44]. Within the context of a specific project,

target-related analyses are supported by displaying mat-

ched molecular series for each individual structural class.

To support the improvement of optimization parameters,

such as solubility or metabolic stability, we have provided

statistical analyses of all molecular transformations in our

corporate database and their effect on the respective

parameter. These analyses have been made available to

medicinal chemists who can then apply favorable in silico

transformations to ongoing design campaigns. Recently,

we have extended the MMP methodology to peptides [45].

A central hub for integrating calculation engines
into medicinal chemistry tools: Computational
Chemistry Framework

The provision of powerful computational tools to an

extended user community requires CADD and IT expertise

to ensure that the workflows and applications implemented

are robust and scientifically validated. Success depends on

the seamless and user-friendly integration of these tools

into the desktop applications that are used by medicinal

chemists in their daily work for drawing molecules or

performing SAR analyses, such as Marvin, Spotfire [46] or

Fig. 2 Influence of different confidence measures on the prediction

accuracy of test compounds for a predictive human liver microsomal

stability model. An ensemble agreement rate for 50 models used as

confidence measure (shown in red) generates much higher prediction

accuracies for a given fraction of compounds than a k-nearest

neighbor (kNN) confidence measure does (shown in blue)
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D360 [47]. These applications are not part of modeling

tools such as MOE, chemoinformatics packages, or the

workflow tools (e.g. PipelinePilot or KNIME) that are

normally used in the realm of CADD. Also, CPU-intensive

workflows cannot be executed on standard PCs, requiring

complex hardware infrastructure instead such as HPC

clusters or clouds. To bridge the gap between the medicinal

chemistry and computational chemistry software tool

worlds we have developed a meta layer called the Com-

putational Chemistry Framework (CCFW), which allows

flexible connection of the front ends used by medicinal

chemists with the computational chemistry calculation

engines in the backend (Fig. 3). Rather than implementing

a single, fully integrated system, the CCFW has been

designed as a middle layer between these two worlds,

allowing automated CADD tasks to be wrapped in web

services, using defined parameters and standardized I/O file

exchange formats. The CCFW and its backend services are

completely client independent. Selected frontends can be

independently enabled to trigger the CCFW services by

using APIs or plugins. As a result, the CCFW services such

as property calculators can be called from within MOE,

Marvin or other clients without the need to develop and

maintain multiple backend services for the same purpose.

Since the CCFW calls and results are standardized, any

amendments, bug fixes or upgrades of the backend services

do not require further modification at the frontend. The

concept of integrating the frontend and backend compo-

nents in a modular way ensures high flexibility for devel-

oping and maintaining the CCFW backend services. In

addition to the provision of automated services to the

medicinal chemistry community, the CCFW also offers the

Table 1 In silico models in production at BI

Category Model Number of compounds

in training set

Comments*

Absorption Caco-Efflux (PEAB,

PEBA, efflux ratio)

19,000 Regression models; out-of-bag RMS errors for pPEAB, pPEBA, and

p(PEAB/PEBA): 0.49, 0.33, 0.43; Pearson r2: 0.72, 0.68, 0.67.

Multiclass models: out-of-bag mean accuracy for PEAB and efflux

0.85 and 0.83, respectively

MDCK efflux 5000 Multiclass model; out-of-bag mean accuracy 0.85

Distribution Volume of distribution

(rat and human)

8000 (rat); 670 (human

from literature [38])

Rat VDss model: Regression model for logVDss; out-of-bag RMS:

0.34; Pearson r2: 0.59

Human VDss: regression model for logVDss; out-of-bag RMS: 0.42;

Pearson r2: 0.57

Human and rat plasma

protein binding

6000 Multiclass models: out-of-bag mean accuracies 0.80 (human) and

0.82 (rat)

Metabolism Microsomal stability

(rat, mouse and

human)

28,000–93,000 Multiclass models, out-of-bag mean accuracy 0.80 for human, rat and

mouse

CYP450 inhibition

(3A4, 2D6, 2C8, 2C9,

2C19)

12,000–32,000 Multiclass models, out-of-bag mean accuracy 0.83 for all isoenzymes

except 3A4 (0.87)

In vivo CL (rat) 6000 Multiclass model, out-of-bag mean accuracy 0.76

Toxicity Ames mutagenicity Ab initio method based on

nitrenium ion stability

[28]

Accuracy 85 %, sensitivity 91 %, specificity 72 %

Phospholipidosis Ploemen [39] and Cronin

[40] models

Two class model: sensitivity 0.79, specificity 0.80, PPV 0.74, NPV

0.84

hERG inhibition 9000 Multiclass model, out-of-bag mean accuracy 0.82

Structural safety alerts Collection of

substructures

No statistics available

Physicochemical

properties

Solubility at different

pH values

74,000 Multiclass models, out-of-bag mean accuracies between 0.84 and

0.88

logP 10,000 kNN regression model: r2: 0.69, RMSE: 0.79

pKa MoKa2.6.4 [41] trained

with in-house data

Independent test set: 87 % within 1 log unit

* All multiclass models are 3-class models. Out-of-bag accuracies are obtained by calculating the prediction accuracies for all training set

compounds not used in a bootstrap sample and then averaging over all classes and samples
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opportunity to integrate automated and standardized ser-

vices in analyses that are conducted by CADD scientists,

thereby increasing the efficiency.

The CADD scientists are responsible for developing the

CCFW services in close cooperation with IT and the

medicinal chemists. Typically used backend engines are

command-line based services operated by scripting tools

(BASH, PYTHON), or workflow protocols (PipelinePilot,

KNIME) that can be directly invoked from within the

CCFW.

BI global development, maintenance,
and application of CADD technology

Virtual screening (VS) is a key technique for hit finding at

BI. Fast and robust ligand- and structure-based VS work-

flows enable rapid execution of tailored initial hit finding or

iterative follow-up VS campaigns. Ligand-based VS and

analoging workflows employing multiple complementary

similarity search methods and data fusion [48] have been

successful in multiple hit finding projects. VS workflows

and compound decks can be flexibly adapted to available

assays (biophysical or biochemical, throughput) in a pro-

ject, which is essential for facilitating swift screening deck

compilation for the diverse early drug discovery target

portfolio at BI.

However, VS is typically restricted to the chemical

space defined by the in-house and commercially available

compound databases screened [49–52]. Therefore, a focus

over the past 10 years has been to expand into the vast

virtual chemical space accessible via combinatorial

chemistry. To achieve this expansion we have created a

global platform called the BI Comprehensive Library of

Accessible and Innovative Molecules (BICLAIM) [53]. It

consists of putative library cores and reagents that we

extract computationally from our corporate compound

databases—chemical space that we know or assume is

accessible by mining electronic lab notebooks, as well as

commercial sources. The current version of BICLAIM

contains almost 90,000 cores and tens of thousands of

reagents spanning a combinatorial chemistry space of more

than 1017 compounds. In addition to maintaining and

growing BICLAIM, we have been developing search

methods that allow us to mine this compound space using

various computational techniques to prioritize combinato-

rial libraries for synthesis. These libraries have the

advantage of a reduced synthesis risk that counter-balances

the higher risk associated with making these de novo

compounds without proof of activity against the intended

target. We have demonstrated that combining the power of

large numbers of de novo compounds from libraries with

the uncertainties of virtual screening [50] is an effective

way of finding attractive hits.

Several 2D and 3D workflows have been developed at

BI to search the BICLAIM space. If at least one template

ligand with validated activity is known, 2D FeatureTree

[54] searches followed by ROCS [55] 3D matches are

carried out. Several examples have been reported where

novel chemical matter has been identified using this

approach, including GPR119 agonists [56] and CDK2

inhibitors [57].

In addition, direct 3D searches of the BICLAIM space

have been enabled using the PharmShapeCC software that

allows 3D pharmacophore and shape complementarity

searches in the entire BICLAIM space [23]. Examples of

finding novel MMP13 inhibitors, CCR1 antagonists,

CXCR5 antagonists [23] and RORC inverse agonists [58]

have been published. More recently, we have enabled 3D

searching in partially enumerated BICLAIM subspaces

using ROCS. BICLAIM is maintained as a global platform

for virtual screening at BI with regular updates and access

to substructure searches from within PipelinePilot and

D360. After virtual screening results have been generated

using 2D and 3D tools, a final selection of library cores and

building blocks is made in collaboration between CADD

scientists, combinatorial chemistry experts, and medicinal

chemists.

BICLAIM is maintained and developed as a truly global

resource at BI with input from all research sites, not only

from CADD but also from the medicinal and combinatorial

chemistry groups. Other examples of in-house

Fig. 3 Computational Chemistry Framework (CCFW) as a bridge

between the backend CADD calculation engines and user frontends.

CCFW services can be invoked via client-independent web service

calls from various clients. Calculations in the backend are typically

performed via scripts (Python, shell) or pipelining tools
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developments that have been made accessible across sites

are the de novo design program BiBuilder [24] which has,

for example, been applied to identifying a novel CB2

agonist [59], and a Python-based model building frame-

work which was developed at one site and has been

adopted as a global platform for predictive modeling.

Workflow scripts have also been exchanged on various

occasions (Pipeline Pilot and Knime).

Concluding remarks and outlook

There is currently an increased focus in pharmaceutical

research towards enabling project teams to make earlier

decisions in drug discovery projects governing where

CADD typically invests time and resources at BI. In recent

years, advances in computer power, flexibility in creating

intricate workflows and the seamless access to CADD

software tools connected through a meta-layer (such as the

CCFW at BI) to multiple front-ends have allowed chemists

easy access to fairly complex calculation engines and

computational services. Even more importantly, the

response times to queries made against such calculation

service layers (e.g., property and model predictions) has

significantly decreased to the point where the interactive

use of modeling results has become feasible for both

medicinal and computational chemists alike. As a conse-

quence, the usage of novel predictive models in the context

of compound profiling has increased significantly, and

often guides subsequent decisions as to whether or not

chemical matter should be progressed in a drug discovery

project. The ease of access to computational tools has been

changing the way in which CADD scientists and medicinal

chemists interact in project teams. An increasing number of

automatable CADD-related tasks are becoming amenable

to medicinal chemists, without compromising the quality of

modeling outcomes. An added benefit of medicinal che-

mists conducting automatable CADD tasks is that it frees

up time for the CADD scientist to invest in the develop-

ment of more sophisticated technology, which can then be

applied to project advancement and additional design ideas

in new ways, or to address aspects that traditionally may

not have been within scope of CADD. A unique technology

developed and broadly practiced at BI is the use of large

scale combinatorial chemistry combined with virtual

screening to identify hits and leads early in drug discovery

projects.

As pointed out recently by scientists from Bayer [36],

computational design plays a much smaller role in the

pharmaceutical industry than in other industries. However,

given the challenges for the pharma industry, which result

in an ever increasing need for speed, efficiency and a

higher share of unprecedented targets in the portfolio, we

believe that CADD has the potential to influence the way in

which drug design and discovery is pursued. The impact of

CADD will continue to depend on translating CADD

results into insights, along with tangible and reliable rec-

ommendations to medicinal chemists as to what compound

should be made next. A continued investment into devel-

oping more accurate and robust predictive methods is

necessary to increase the CADD impact. This will need to

be supported by an increased availability of experimental

data. Public data (e.g., ChEMBL [60]) are already being

integrated seamlessly into in-house data sources [61]. In

addition, the increased realization by many pharmaceutical

companies that they need to share pre-competitive data

[62] means that new opportunities for building predictive

models with higher accuracy and wider applicability will

be opened. We also expect that the computing resources

used for CADD work will become a commodity. The

increased availability of cloud computing will encourage

the development of more accurate, albeit computationally-

intensive, methods allowing their application on a much

larger scale than is currently being carried out. Collabo-

rations with academic groups will continue to play a key

role in strengthening the portfolio of tools and the explo-

ration of new methodologies, supplemented by crowd

sourcing initiatives which provide easy access to a wealth

of scientific talent for solving specific problems on

demand. Modern drug discovery aims to tackle unprece-

dented targets that pose significant challenges to CADD.

These targets, such as protein–protein interactions or RNA

binding, usually have low druggability, and often require

the invention of chemical matter and design modalities

beyond the established small-molecule domain. There is

clearly a growing need to expand the applicability domain

of the CADD technology portfolio into these areas. With a

computational infrastructure such as the CCFW, strong

external scientific networks and the consistent execution/

implementation of the three CADD scientist roles (as

described in this paper) these challenges can be overcome.
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