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Abstract Drug-induced liver injury (DILI) is one of the

major safety concerns in drug development. Although

various toxicological studies assessing DILI risk have

been developed, these methods were not sufficient in

predicting DILI in humans. Thus, developing new tools

and approaches to better predict DILI risk in humans has

become an important and urgent task. In this study, we

aimed to develop a computational model for assessment

of the DILI risk with using a larger scale human dataset

and Naı̈ve Bayes classifier. The established Naı̈ve Bayes

prediction model was evaluated by 5-fold cross valida-

tion and an external test set. For the training set, the

overall prediction accuracy of the 5-fold cross validation

was 94.0 %. The sensitivity, specificity, positive pre-

dictive value and negative predictive value were 97.1,

89.2, 93.5 and 95.1 %, respectively. The test set with the

concordance of 72.6 %, sensitivity of 72.5 %, specificity

of 72.7 %, positive predictive value of 80.4 %, negative

predictive value of 63.2 %. Furthermore, some important

molecular descriptors related to DILI risk and some

toxic/non-toxic fragments were identified. Thus, we hope

the prediction model established here would be

employed for the assessment of human DILI risk, and the

obtained molecular descriptors and substructures should

be taken into consideration in the design of new candi-

date compounds to help medicinal chemists rationally

select the chemicals with the best prospects to be

effective and safe.
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Introduction

Drug-induced liver injury (DILI) contributes to about

5–10 % adverse drug events [1] and is an important reason

why drugs fail during clinical trials and are withdrawn

from the market post-approval [2–4]. For example, more

than 700 drugs recently have been found to be associated

with liver injury, with over 50 drugs have been withdrawn

from the global market in the past 50 years due to serious

hepatic adverse effects [5–7]. Moreover, a number of

marketed drugs have been labeled with‘‘black box’’ hepa-

totoxicity warnings. Presently, various preclinical testing

strategies have been developed to assess the DILI risk,

including in vivo toxicity studies [8–10] and in vitro assays

[11–13]. However, these current experimental approaches

for assessing the DILI are very expensive, time consuming,

and even the results show poor correlation to human

observed effects. Thus, developing new tools and approa-

ches to better predict DILI risk in humans has become an

important and urgent task. Computational methods have a

number of advantages such as being cheaper and faster to
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generate results, and great efforts have been focused on the

development of in silico approaches for DILI prediction.

Presently, various computational prediction approaches

for assessing DILI risk have been reported [14, 15], and

which can be roughly categorized as knowledge-based

models and machine learning methods [16–25]. For

example, Greene et al. [16] created the Derek for Windows

method with 23 structure alerts, which was test with 626

Pfizer compounds with 56 % overall accuracy, 46 % sen-

sitivity and 73 % specificity. Ekins et al. [17] developed a

Bayesian model with several simple descriptors and

ECFC_6 fingerprint, which gave concordance of 57–59 %

for training set, and 60 % for external test set. Fourches

et al. [18] constructed a support vector machine (SVM)

prediction model based on 2D fragments and dragon

molecular descriptors, which was evaluated by cross-vali-

dation method with the concordance of 62–68 %, and

external test set containing 18 agents with concordance of

78 %. Liew et al. [19] presented an ensemble model [SVM,

k-Nearest Neighbors (kNN)] used 1087 compounds. The

model was tested with 120 compounds with an accuracy of

75 %. Recently, Chen et al. [20] performed a classification

model of DILI by using decision forest and Molds chem-

ical descriptors, which displayed 70 % for the training set,

and 62–69 % for the test sets. Xu et al. [21] developed

DILI prediction models using deep learning architectures,

and the best model gave 86.9 % accuracy for the external

validation set. Furthermore, it was worth mentioning that

Matthews et al. [22–24] and Mulliner et al. [25] developed

computational prediction models based on the different

pathologies of DILI, and these established prediction

models can be used for the estimation of the mechanism of

action of hepatotoxicity. Obviously, the predictive capac-

ities of previous reported models for DILI prediction were

unsatisfactory (lower than 70 %). In addition, most of

previous developed classification models of DILI are based

on rat data. All of this suggests that creating and devel-

oping new computational method based on human derived

DILI data with an reasonable accuracy is important and

necessary. Thus, in this study, the Naı̈ve Bayes (NB)

classifier approach was considered to assess the DILI risk.

The Naı̈ve Bayes (NB) classification model based on the

Bayes’ theorem with the conditional independence

assumptions [26, 27], in which each variable can be inde-

pendently estimated as a one dimensional variable. Com-

pared with other machine learning methods, the Naı̈ve

Bayes (NB) method have the following advantages [28]:

(1) its ability for handling noisy data and safety with

respect to over-fitting; (2) the important features related to

activity will significantly influence the performance of

model, and the redundant and unimportant descriptors

cannot lead to over-fitting during learning; (3) the number

of active and inactive compounds used in the training set

need not to be balanced; (4) the conditional independence

assumption. Due to these advantages, the Naı̈ve Bayes

(NB) classifier has been widely applied for the prediction

of drug adverse effects, and displayed surprisingly well

[29, 30].

The goal of this investigation is to develop a novel

computer prediction model of DILI risk by using a larger

scale human dataset and Naı̈ve Bayes (NB) classifier, and

identify some important molecular descriptors and sub-

structures associated with DILI. The generated prediction

model will be validated by 5-fold cross validation and an

external test set. We hope the established computational

model should be employed for the prediction of DILI in

humans at early stage of drug development, and the

molecular descriptors and substructures associated with

DILI should be taken into consideration in the design of

new candidate compounds to help medicinal chemists

rationally select the chemicals with the best prospects to be

effective and safe.

Materials and methods

Dataset selection

Jennings et al. [31] reviewed comprehensive mechanisms

of different classes of hepatotoxins. The liver pathologies

were classified as two broad categories: cytotoxicity and

lipid disorders. Hepatotoxins induced mitochondrial

impairment, oxidative stress and apoptosis are classified as

the category of cytotoxicity, while steatosis, cholestasis,

and phospholipidosis are recognized as the category of

lipid dysregulation. The mechanisms of DILI are very

complicated and diverse, and even difficult to be eluci-

dated. Especially, some drug could cause severe liver

injury in humans but do not induce hepatotoxicity in ani-

mals. Thus, in this research, those reported to cause DILI in

humans according to the FDA-approved prescription drug

labels were extracted from the Chen et al. [3] and Zhu et al.

[32]. Chen et al. [3] used FDA-approved drug labeling to

generate a benchmark dataset with 287 drugs including 137

drugs of most concern, 85 of less concern and 65 with no

concern of causing DILI. Thus, the 137 drugs of most

concern were defined as DILI positives and the 65 drugs of

no concern were assigned to be DILI negatives. Further-

more, Zhu et al. [32] collected an calibration set, which

was approved by US and European toxicity registries. The

calibration set contained 177 DILI positives and 105 DILI

negatives. The two datasets were then integrated as one

dataset, and some duplicate agents were deleted. Finally,

420 agents, including 257 DILI positives and 163 DILI

negatives, remained. The structures of 420 compounds

were optimized using Discovery Studio (DS) 3.1 software
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(http://accelrys.com/products/discovery-studio/), and ran-

domly divided as training set (336 compounds, 80 % of the

data) and test set (84 compounds, 20 % of the data)

(Table 1).

Molecular descriptors

All the molecular descriptors were calculated by Discovery

Studio (DS) 3.1 software (http://accelrys.com/products/dis

covery-studio/). In this investigation, 201 molecular

descriptors were initially calculated, mainly including the

following classes: 1D descriptors, AlogP, molecular prop-

erties, molecular property counts, surface area and volume

and topological descriptors. Then, the initial features with

too many zero or same values were eliminated. Finally, 91

molecular descriptors were retained and used in the con-

struction of the prediction model.

ECFP_6 fingerprint descriptor

The extended connectivity fingerprints (ECFPs), a class of

topological fingerprints for molecular characterization, are

derived using a variant of the Morgan algorithm [33]. The

ECFPs are designed to capture molecular features relevant

to molecular activity, and recently have been applied to

substructure searching, drug activity predicting, similarity

searching, clustering, and virtual screening [34]. In this

study, the ECFP_6 fingerprints were used to analyze

the structural features of hepatotoxic/non-hepatotoxic

compounds.

Naı̈ve Bayes (NB) classifier

The Naı̈ve Bayes (NB) methods use knowledge of proba-

bility and statistics based on applying Bayes’ theorem

[26, 27]. The Bayes’ theorem is described as:

Pðc Fj Þ ¼ PðF cj ÞPðcÞ
PðFÞ ð1Þ

here the parameter c indicates the class variable (‘‘?’’,

positive class and ‘‘-’’, negative class.), F = (f1, f2, …, fn)

stands for the object and the (f1, f2, …, fn) represents the

feature variables (molecular descriptors) of a object. P(c) is

prior probability or marginal probability, P(F) is constant

for all classes, P(c|F) and P(F|c) denotes the posterior

probability and conditional probability, respectively.

In Naı̈ve Bayes (NB) classifier, all attributes (molecular

descriptors) are independent given the value of the class

variable, such as:

PðF cj Þ ¼ Pðf1; f2; . . .fn cj Þ ¼
Yn

i

Pðfi cÞj ð2Þ

Then, the Naı̈ve Bayes (NB) classifier was defined as:

fnbðFÞ ¼
Pðc ¼ þÞ
Pðc ¼ �Þ

Yn

i

Pðfi c ¼ þÞj
Pðfi c ¼ �Þj ð3Þ

In this investigation, the Naı̈ve Bayes (NB) classifiers

were developed by using Discovery Studio (DS) version

3.1 (http://accelrys.com/products/discovery-studio/). The

internal validation method for the training set was set as

5-fold cross validation. The ‘‘number of Bins’’ was chan-

ged from 10 to 2500 systematically in order to pick

appropriate bin sizes. Selection of the number of bins

appeared in the histogram, which was used to divide the

entire range of observed values for the variable into a series

of intervals, and then count how many values fall into each

interval [35]. The bin size critically influences the perfor-

mance of the Naı̈ve Bayes (NB) model. The ‘‘Learn

Options’’ was selected as Track Property Ranges, Validate

Models, Ignore uninformative Bins and Equipopulate Bins.

The FCFP_6 was picked as ‘‘Model Domain Fingerprint’’.

Statistical analysis

The following parameters were used to assess the predic-

tive performance of the classification models: the overall

prediction accuracy [Q (Eq. 4)]; Sensitivity [SE (Eq. 5)],

the prediction accuracy for the hepatotoxicants); Speci-

ficity, [SP (Eq. 6)], the prediction accuracy for the non-

hepatotoxicants); Positive predictive value [PPV (Eq. 7)];

Negative predictive value [NPV (Eq. 8)]

Q ¼ TPþ TN

TPþ TNþ FPþ FN
� 100% ð4Þ

SE ¼ TP

TPþ FN
� 100% ð5Þ

SP ¼ TN

TNþ FP
� 100% ð6Þ

PPV ¼ TP

TPþ FP
� 100% ð7Þ

NPV ¼ TN

TNþ FN
� 100% ð8Þ

where TP (true positives) is the hepatotoxicants that are

correctly identified; TN (true negatives) is the non-

Table 1 Training set and test set used

Training set Test set Sum

Hepatotoxicants 206 51 257

Non-hepatotoxicants 130 33 163

Total 336 84 420
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hepatotoxicants that are correctly recognized; FP (false

positives) is the non-hepatotoxicants that are wrongly

predicted as hepatotoxicants; FN (false negatives) is the

hepatotoxicants that are wrongly classified as non-hepato-

toxicants. In addition, the ROC (Receiver Operating

Characteristic) score is also widely used to measure the

discriminatory power of a classifier system. The value of

ROC score is between 1 and 0. The ROC score value of 1

represents the model has a perfect prediction performance,

and below 0.5 indicates the model has no discriminative

ability.

Results and discussion

Molecular important for the drug-induced liver

injury

The mechanisms of DILI are very complicated and diverse,

and even difficult to be elucidated. However, the properties

of compounds are closely related to their molecular struc-

tures. Thus, elimination of these redundant and unimpor-

tant descriptors, and identification of most relevant

molecular descriptors to the DILI prediction, is an

emphasis of this work.

The 91 molecular descriptors selected from 201 initial

descriptors together with ECFP_6 were employed for NB-

1 construction. The detailed prediction results of NB-1

were shown in Table 2. For the training set, the overall

accuracy (Q) was 91.1 %. The sensitivity (SE) and

specificity (SP) were 98.1 and 86.1 %, respectively. The

positive predictive value (PPV) was 91.8 %, the negative

predictive value (NPV) was 96.6 %. Furthermore, the

NB-1 was evaluated by external test set with the con-

cordance (Q) of 70.2 %, sensitivity (SE) of 70.6 %,

specificity (SP) of 69.7 %, positive predictive value (PPV)

of 78.3 %, negative predictive value (NPV) of 60.5 %. In

order to find the most relevant molecular descriptors to

the DILI prediction, the following strategy was applied:

(1) All of the selected 91 descriptors were deleted one by

one to construct the models. (2) The prediction perfor-

mance of the Naı̈ve Bayes (NB) classification model

improved or kept unchanged when one descriptor was

deleted from the initial molecular features, which indi-

cated the feature was redundant and unimportant for DILI

prediction. Otherwise, the prediction performance reduced

when one feature was removed, which represented the

descriptor was important for DILI prediction. (3) This

processes were repeated many times. Finally, 18

descriptors were identified as the most prominent features

for distinguishing DILI positive from DILI negative

compounds, such as ALogP, Apol, logD, molecular sol-

ubility, molecular weight, number of aromatic rings,

number of H acceptors, number of H donors, number of

rings, molecular fractional polar SASA, molecular frac-

tional polar surface area, molecular polar SASA, molec-

ular polar surface area, molecular SASA, molecular

SAVol, molecular surface area, Wiener and Zagreb. By

careful analysis of the selected 18 molecular descriptors,

we found which can be roughly classified as molecular

structure related descriptors (number of aromatic rings,

number of H acceptors, number of H donors and number

of rings), molecular properties related descriptors (ALogP,

Apol, logD, molecular solubility and molecular weight),

molecular surface area and volume related descriptors

(molecular fractional polar SASA, molecular fractional

polar surface area, molecular polar SASA, molecular

polar surface area, molecular SASA, molecular SAVol

and molecular surface area) and topological descriptors

(Wiener and Zagreb).

Table 2 The prediction results for the training set and test set. NB-1 (91 molecular descriptors ? ECFP_6); NB-2 (18 molecular descrip-

tors ? ECFP_6); NB-3 (17 molecular descriptors ? ECFP_6); NB-4 (18 molecular descriptors); NB-5 (ECFP_6 fingerprint)

Model name ROC score TP FN TN FP SE (%) SP (%) PPV (%) NPV (%) Q (%)

NB-1 Training 0.668 202 4 112 18 98.1 86.1 91.8 96.6 93.5

Test 0.797 36 15 23 10 70.6 69.7 78.3 60.5 70.2

NB-2 Training 0.714 200 6 116 14 97.1 89.2 93.5 95.1 94.0

Test 0.805 37 14 24 9 72.5 72.7 80.4 63.2 72.6

NB-3 Training 0.714 200 6 116 14 97.1 89.2 93.5 95.1 94.0

Test 0.798 37 14 21 12 72.5 63.6 75.5 58.3 69.0

NB-4 Training 0.678 194 12 118 12 94.2 90.8 94.2 90.7 92.9

Test 0.720 19 32 28 5 37.3 84.8 79.2 46.7 56.0

NB-5 Training 0.693 192 14 119 11 93.2 91.5 94.6 89.5 92.6

Test 0.782 42 9 20 13 82.4 60.6 76.4 70.0 73.8

892 J Comput Aided Mol Des (2016) 30:889–898

123



Establishment of Naı̈ve Bayes classification model

of drug-induced liver injury

Presently, various computational prediction methods of

DILI have been extensively reported. However, the pre-

diction performances of these reported models were

unsatisfactory, and the prediction accuracies usually lower

than 70 %. In this investigation, the Naı̈ve Bayes (NB)

classifier approach was selected to predict the DILI. The

Naı̈ve Bayes (NB) classification model of DILI was suc-

cessfully established based on the training set containing

206 hepatotoxicants and 130 non-hepatotoxicants, in which

18 molecular descriptors (ALogP, Apol, logD, molecular

solubility, molecular weight, number of aromatic rings,

number of H acceptors, number of H donors, number of

rings, molecular fractional polar SASA, molecular frac-

tional polar surface area, molecular polar SASA, molecular

polar surface area, molecular SASA, molecular SAVol,

molecular surface area, Wiener and Zagreb) together with

ECFP_6 fingerprint were used. The parameter of number of

Bins was defined as 2000. The 5-fold cross validated ROC

score for the model built with 18 molecular descriptors and

ECFP_6 was 0.714.

Evaluation of Naı̈ve Bayes classification model

of drug-induced liver injury

Generally, the internal cross validation method and exter-

nal validation set were widely applied to evaluate the

prediction capability of the classification models. In this

study, the internal 5-fold cross validation method for the

training set was performed to demonstrate the predictive

performance and stability of the established model, and the

external validation data set with 84 compounds was used to

assess the model’s predictive power. The detailed predic-

tion results of NB-2 were given in Table 2. As it can be

seen from the Table 2, among these 206 hepatotoxicants,

200 agents were correctly classified as true positives and 6

agents were wrongly defined as negatives. The sensitivity

(SE) was 97.1 %. Of these 130 non- hepatotoxicants, 116

agents were distinguished as true negatives and 14 agents

were wrongly recognized as positives. The specificity (SP)

was 89.2 %. The positive and negative predictive values

(PPV and NPV) were 93.5 and 95.1 %, respectively. The

concordance (Q) of the training set was 94.0 %. The above

results represented the Naı̈ve Bayes (NB) prediction model

of DILI (NB-2) generated in this investigation have better

and stable predictive performance.

In addition, the external validation data set with 84

compounds including 51 hepatotoxicants and 33 non-

hepatotoxicants was used to assess the model’s predictive

power. The detailed prediction results were displayed in

Table 2. For these 51 hepatotoxicants, 37 agents were

correctly predicted. The sensitive (SE) of the test set was

72.5 %. For these 33 non-hepatotoxicants, 24 were cor-

rectly identified as negatives. The specificity (SP) of the

test set was 72.7 %. The positive predictive value (PPV)

was 80.4 %, the negative predictive value (NPV) was

63.2 %. The overall accuracy (Q) and ROC score of the

test set were 72.6 % and 0.805, respectively. Obviously,

the prediction results of the test set were lower than that of

the training set, but the prediction model of the NB-2 could

successfully discriminate agents as positives or negatives

using some molecular descriptors and ECFP_6 fingerprints.

Moreover, random elimination of one descriptor from

the selected 18 descriptors, and using the remaining 17

descriptors combined with ECFP_6 to construct other

Naı̈ve Bayes (NB) model was also run. For example, the 17

descriptors together with ECFP_6 fingerprints were used to

build other Naı̈ve Bayes models (NB-3, where the

descriptor of molecular weight was deleted from the 18

descriptors). The detailed prediction results of the training

set and test set for NB-3 were presented in Table 2. The

ROC score in the training set and test set were 0.714 and

0.798, respectively. The sensitivity (SE), specificity (SP),

positive predictive value (PPV) and negative predictive

value (NPV) for the training set were 97.1, 89.2, 93.5 and

95.1 %, respectively. The concordance (Q) was 94.0 %.

The NB-3 was assessed by the test set with overall accu-

racy (Q) of 69.0 %, sensitivity (SE) of 72.5 %, specificity

(SP) of 63.6 %, positive predictive value (PPV) of 75.5 %,

and negative predictive value (NPV) of 58.3 %. Clearly,

among the NB-1, NB-2 and NB-3, the NB-2 performed

best. This illustrated that these selected 18 descriptors were

important for DILI prediction.

Analysis of the hepatotoxic/non-hepatotoxic

fragments produced by the ECFP_6 fingerprint

descriptors

Fingerprint descriptors have been used to capture molec-

ular features relevant to molecular activity. In order to

evaluate whether the ECFP_6 fingerprint descriptors are

important for the DILI prediction, the NB-4 was also

constructed, in which the ECFP_6 fingerprint descriptor

was removed, and only the 18 molecular descriptors were

applied. The detailed prediction results of NB-4 were listed

in Table 2. For the training set of NB-4, the sensitivity (SE)

was 94.2 %, the specificity (SP) was 90.8 %. The positive

and negative predictive values ((PPV and NPV) were 94.2

and 90.7 %, respectively. The overall accuracy (Q) was

92.9 %. For the test set, the sensitivity (SE) was 37.3 %,

the specificity (SP) was 84.8 %, the positive predictive

value (PPV) was 79.2 %, the negative predictive value

(NPV) was 46.7 %, and the overall accuracy (Q) was

56.0 %. The ROC score values in the training set and test
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set were 0.678 and 0.720, respectively. Obviously, the

prediction performance of NB-4, especially for the test set,

significantly reduced compared with that of NB-2. Fur-

thermore, in order to directly decide whether the ECFP_6

fingerprint descriptors are important for DILI prediction,

only ECFP_6 fingerprint descriptors without the 18 selec-

ted descriptors were used to construct the prediction model

(NB-5). The detailed prediction results of NB-5 were given

in Table 2. For the training set of NB-5, the sensitivity

(SE), specificity (SP), positive predictive value (PPV) and

negative predictive value (NPV) were 93.2, 91.5, 94.6 and

89.5 %, respectively. And the overall accuracy (Q) was

92.6 %. For the test set of NB-5, the overall accuracy

(Q) was 73.8 %. The sensitivity (SE), specificity (SP),

positive predictive value (PPV) and negative predictive

value (NPV) were 82.4, 60.6, 76.4 and 70.0 %, respec-

tively. The ROC scores of the training set and test set for

NB-5 were 0.693 and 0.782, respectively. Compared the

prediction accuracies and ROC scores given by NB-2, NB-

4 and NB-5, the results indicated the ECFP_6 fingerprints

played important role in the prediction of DILI.

Thus, in order to better understand the contribution of

particular structural features to DILI prediction, the

molecular fragments among the 257 hepatotoxic agents and

163 non-hepatotoxic compounds were produced by using

ECFP_6 fingerprints (Fig. 1). The top 20 good features

associated with hepatotoxicity displayed in Fig. 1a and the

top 20 bad features not associated with hepatotoxicity

presented in Fig. 1b. As it can be seen from Fig. 1a, each

panel shows the naming convention for each fragment, the

number of molecules that occur in hepatotoxic agents, and

the Bayesian score for the fragment. The Bayesian score is

a measure of how different this is from the hit rate as a

whole (the ratio that would be expected if the feature was

occurring randomly across the hepatotoxicants and non-

hepatotoxicants). The score takes the total number of

occurrences of the feature into account, ensuring more

weight is placed on those more frequent occurrences of the

feature, and little weight is placed on the feature with very

few occurrences. By analyzing the fingerprints generated in

hepatotoxic and non-hepatotoxic agents, we observed that

there was no common substructure shown in the hepato-

toxic compounds (Fig. 1a) and in the non-hepatotoxic

agents (Fig. 1b). Some fragments, such as these fragments

containing prop-1-en-2-ylbenzene (G1, G16), furan (G2),

N-methylacetamide (G3), trimethylamine groups (G4, G5,

G8), azetidine (G6, G18, G20), methyl acetate group (G7),

isoxazole (G10), sulfane (G11), Fluorine (G12) or Bromum

(G17) and pyridine (G15) group, only appeared in these

hepatotoxicants. In addition, the 2-methylbut-1-ene (G9,

G13, G14, G19) toxic groups occurred in these non-hepa-

totoxicants, but which appeared more often in the hepato-

toxic active compounds than in the inactive ones. In

addition, structural alerts (SAs) for hepatotoxicity were

also developed by other research groups. For example,

Hewitt et al. [36] displayed 16 structural alerts associated

with observed human hepatotoxicity, and investigated the

mechanism(s) of DILI. Comparing some representative

substructures displayed in Fig. 1a with SAs for hepato-

toxicity obtained by Hewitt et al. [36], we found some

fragments listed in Fig. 1a occurred in these 16 SAs. For

example, The prop-1-en-2-ylbenzene (G1) was the moiety

of Structural alert 1 (Tamoxifen-like antioestrogen), which

can interact with biological membranes, and disrupt many

processes within cells. The pyridine group (G15) was part

of the Structural alert 2 (Adenosine-based reverse tran-

scriptase inhibitors), which can induce liver injury through

mitochondrial dysfunction. The groups of G6, G18 and

G20 were the Structural alert 4 (b-lactam substructure),

which can induce minor liver injury characterized by liver

enzyme elevations. Moreover, it was worth mentioning that

some new hepatotoxic fragments, such as furan,

N-methylacetamide, trimethylamine, methyl acetate, isox-

azole, sulfane Fluorine or Bromum and 2-methylbut-1-ene,

were identified in this research, which should also be taken

into consideration in hepatotoxicity screening, chemical

risk assessment and drug design, and helping medicinal

chemists rationally select the chemicals with the best

prospects to be effective and safe.

Comparison with other prediction models of drug-

induced liver injury

Developing in silico approaches to predict DILI risk has

become a research focus in recent years. Presently, various

computational classification models have been developed

to assess the DILI risk, including Derek for Windows,

Bayesian model, SVM, Decision Forest and Deep Learning

Architectures. For comparison, the detailed classification

accuracies of these recently reported models were sum-

marized in Table 3. It is worth mentioning that direct

comparison of our results with previous studies was inap-

propriate, because of the application of different sets of

chemicals, number of molecular descriptors, and validation

methods. However, a simple comparison could provide

some basic information about the accuracy of various

prediction methodologies. By carefully comparing the

prediction performance of these methods displayed in

Table 3, it was found that the prediction accuracies of the

training set for Naı̈ve Bayes (NB) prediction model

established in this investigation were significantly better

than that of other methods. Furthermore, the prediction

results of the test set obtained in this study were lower than

that of the Deep Learning Architectures, but better than

that of other methods. This suggests that the Naı̈ve Bayes

(NB) prediction model of DILI established here could give
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reasonable prediction accuracies. In addition, compared

with previous studies, the other advantages of this research

was that the 18 important molecular descriptors related to

DILI prediction and 20 toxic/non-toxic fragments were

identified, which could provide guidance for medicinal

chemists working in drug discovery and lead optimization,

and avoid the DILI occurrence in the later phase of drug

development.

G1: -219423964

17 out of 17 good

Bayesian Score: 0.440

G2: 1203316083

12 out of 12 good

Bayesian Score: 0.427

G3: 1298725959

12 out of 12 good

Bayesian Score: 0.427

G4: -1811420270

11 out of 11 good

Bayesian Score: 0.423

G5: 1065459030

8 out of 8 good

Bayesian Score: 0.408

G6: -957084426

8 out of 8 good

Bayesian Score: 0.408

G7: -1886208901

8 out of 8 good

Bayesian Score: 0.408

G8: 986972475

7 out of 7 good

Bayesian Score: 0.400

G9: 1863511924

7 out of 7 good

Bayesian Score: 0.400

G10: 1279696542

7 out of 7 good

Bayesian Score: 0.400

G11: 743770325

7 out of 7 good

Bayesian Score: 0.400

G12: -1952889961

7 out of 7 good

Bayesian Score: 0.400

G13: 733491677

7 out of 7 good

Bayesian Score: 0.400

G14: 1576255326

7 out of 7 good

Bayesian Score: 0.400

G15: 1165022651

7 out of 7 good

Bayesian Score: 0.400

G16: 136633704

6 out of 6 good

Bayesian Score: 0.390

G17: -302078100

6 out of 6 good

Bayesian Score: 0.390

G18: 618004534

6 out of 6 good

Bayesian Score: 0.390

G19: 767488533

6 out of 6 good

Bayesian Score: 0.390

G20: 1201166505

6 out of 6 good

Bayesian Score: 0.390

Fig. 1 Some molecular fragments that important for DILI were

produced by using the ECFP_6 fingerprint descriptors. a The top 20

hepatotoxic substructures generated as good features. Each panel

shows the naming convention for each fragment, the numbers of

molecules it is present in that are hepatotoxic agents, and the

Bayesian score for the fragment. b The top 20 non-hepatotoxic

substructures produced as bad features. Each panel shows the naming

convention for each fragment, the numbers of molecules it is present

in that are hepatotoxic compounds, and the Bayesian score for the

fragment. The dashed lines means conjugated double bond, asterisk

represents the site can be replaced by different atoms
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Conclusion

In this investigation, the prediction model of DILI has been

successfully developed by using a larger scale human

dataset and Naı̈ve Bayes classifier. The established Naı̈ve

Bayes prediction model was evaluated by 5-fold cross

validation and an external test set. For the training set, the

sensitivity, specificity, positive predictive value and

negative predictive value were 97.1, 89.2, 93.5 and 95.1 %,

respectively. The overall prediction accuracy was 94.0 %.

The test set with the concordance of 72.6 %, sensitivity of

72.5 %, specificity of 72.7 %, positive predictive value of

80.4 %, negative predictive value of 63.2 %. Furthermore,

18 important molecular descriptors related to DILI and

some toxic/non-toxic fragments were identified. Thus, we

hope the prediction model established here would be

B1: 1058566827

0 out of 7 good

Bayesian Score: -1.680

B2: 861683259

0 out of 6 good

Bayesian Score: -1.556

B3: -857508404

0 out of 6 good

Bayesian Score: -1.556

B4: 285917105

1 out of 12 good

Bayesian Score: -1.445

B5: -649025576

0 out of 5 good

Bayesian Score: -1.415

B6: -1677262354

0 out of 5 good

Bayesian Score: -1.415

B7: -2096103886

0 out of 5 good

Bayesian Score: -1.415

B8: 338129045

0 out of 5 good

Bayesian Score: -1.415

B9: 497161752

0 out of 5 good

Bayesian Score: -1.415

B10: 1751294072

0 out of 5 good

Bayesian Score: -1.415

B11: 767157085

1 out of 11 good

Bayesian Score: -1.368

B12: 1520428319

0 out of 4 good

Bayesian Score: -1.251

B13: -2064087090

0 out of 4 good

Bayesian Score: -1.251

B14: 1877164577

0 out of 4 good

Bayesian Score: -1.251

B15: 778899417

0 out of 4 good

Bayesian Score: -1.251

B16: -1917828182

0 out of 4 good

Bayesian Score: -1.251

B17: -1109360070

0 out of 4 good

Bayesian Score: -1.251

B18: 1205543293

0 out of 4 good

Bayesian Score: -1.251

B19: -1307543419

0 out of 4 good

Bayesian Score: -1.251

B20: 1743565986

0 out of 4 good

Bayesian Score: -1.251

Fig. 1 continued
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employed for the assessment of DILI, and the molecular

descriptors and fragments should be taken into considera-

tion in the design of new candidate compounds to produce

safer and more effective drugs, and finally reduce DILI

occurrence in later stages of drug development. The pre-

diction model (NB-2) was supplied in the supplementary

material.
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