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Abstract Structure-based drug design (SBDD) has

matured within the last two decades as a valuable tool for

the optimization of low molecular weight lead compounds

to highly potent drugs. The key step in SBDD requires

knowledge of the three-dimensional structure of the target-

ligand complex, which is usually determined by X-ray

crystallography. In the absence of structural information

for the complex, SBDD relies on the generation of plau-

sible molecular docking models. However, molecular

docking protocols suffer from inaccuracies in the descrip-

tion of the interaction energies between the ligand and the

target molecule, and often fail in the prediction of the

correct binding mode. In this context, the appropriate

selection of the most accurate docking protocol is abso-

lutely relevant for the final molecular docking result, even

if addressing this point is absolutely not a trivial task. D3R

Grand Challenge 2015 has represented a precious oppor-

tunity to test the performance of DockBench, an integrate

informatics platform to automatically compare RMDS-

based molecular docking performances of different dock-

ing/scoring methods. The overall performance resulted in

the blind prediction are encouraging in particular for the

pose prediction task, in which several complex were pre-

dicted with a sufficient accuracy for medicinal chemistry

purposes.

Keywords DockBench � D3R Grand Challenge 2015 �
Blind prediction �Molecular docking � Docking benchmark

Introduction

Molecular docking is widely adopted SBDD approach and

its impact is clearly demonstrated by the plethora of soft-

ware developed until now. In the Click2Drug directory [1]

more than 50 software are listed, while more than 60 are

catalogued on Wikipedia [2]. Considering that several

docking algorithms can be coupled to different scoring

functions, the number of different docking/scoring com-

binations is extremely vast.

The primary issue all docking programs try to address

is what combination of orientation and conformation

(pose) is the most favorable relative to all the other

combinations sampled. When applied to screening, the

process also requires a comparison of the best pose (or top

best poses) of a given ligand with those of the other

ligands such that a final ranking (or ordering) can be

obtained. However, molecular docking protocols suffer

from inaccuracies in the description of the interaction

energies between the ligand and the target molecule, and

often fail in the prediction of the correct binding mode. In

this context, the appropriate selection of the most accurate

docking protocol is absolutely relevant for the final

molecular docking performance, even if addressing this

point is absolutely not a trivial task for several reasons:

(a) each docking protocol has its peculiar input and output
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file formats, making their managing really tedious when

different software are used; (b) input docking parameters

can be very different among diverse programs strongly

limiting their use in parallel; (c) more and more fre-

quently it is possible that a molecular target was crys-

tallized in more than one form, and it is then necessary to

determine which of these is the most suitable for the

docking procedure, in particular, when applied to a virtual

screening study; and d) last but not least, the fundamental

role played by water molecules during the molecular

docking simulations.

To overcome these critical issues, we recently devel-

oped a tool to support the molecular modeler in identi-

fying the most accurate protocol by an automated and

simultaneous comparison of 17 docking/scoring combi-

nations using a self-docking benchmark procedure [3]. In

particular, DockBench is an integrate informatics plat-

form to automatically compare RMDS-based molecular

docking performances of different docking/scoring

methods. An intuitive graphical analysis can help dock-

ing users, including non-expert ones, to identify the best

docking/scoring combination to perform a docking-based

virtual screening campaign. In this contest, D3R Grand

Challenge 2015 has represented a precious opportunity to

test the performance of DockBench tool in a blind

exercise and using high quality ligand–protein complex

structures. In particular, D3R Grand Challenge 2015 was

organized allowing participants to compete, in a two-

stage process, in the prediction of ligand pose and ligand

ranking using two very well known therapeutic targets:

heat shock protein 90 (Hsp90) and Mitogen activated

protein kinase kinase kinase kinase 4 (MAP4K4). Hsp90

is a chaperone protein which has been deeply investi-

gated over the past decades for its crucial role in cancer

cells [4], and MAP4K4 is a serine/threonine kinase that

has emerged as such a potential therapeutic target for

several disorders, in particular for metabolic and car-

diovascular diseases [5].

Considering the peculiarity of the DockBench tool in

facilitating the prediction of the ligand poses, we decided

to concentrate our efforts in determining the best docking

method able to reproduce the most accurate pose geome-

tries. The results obtained in the D3R Grand Challenge

2015 (GC2015) revealed a promising capability of our

pipeline in pose prediction task. In particular, the mean

RMSD obtained in the Hsp90-complexes was 0.86 Å,

while for MAP4K4-complexes the mean RMSD showed

less accurate value (3.34 Å). The complete pipeline of

DockBench used during the two-stage process of the D3R

Grand Challenge 2015 GC2015 and a retrospective anal-

ysis of its performance will be described in the present

study.

Experimental section

Overview of the workflow

The key concept of the workflow adopted in the GC2015

was the identification of the best protocol available in our

laboratory in reproducing the crystallographic poses of

selected ligands. In detail, given the target and a set of

blind ligands, the workflow was articulated into four steps:

(1) Collection of a training set of complexes containing

the target from the protein data bank;

(2) Comparing the performance in a self-docking pro-

cedure of 17 different docking protocol on the

training set;

(3) Selection of one or more suitable protocols accord-

ing the RMSD;

(4) Evaluation of the similarity of the blind set and the

training set of ligands. If significant similarity was

found, it drove the selection of the protein

conformation;

(5) Docking of the blind ligands;

(6) Selection of the poses using scoring procedures and

visual inspection for ambiguous conformations.

In the ranking predictions the protocol was mostly

derived from the pose prediction workflow with a further

implementation of rescoring procedures.

The procedure of each pose and rank prediction follows

all the points depicted above, but tailoring few of them

according the set of blind ligands and the protein target

(detailed workflow in Figs. 1, 5) and is commented along

the results and discussions.

Hardware

All computational studies were performed on a 200 cores

cluster based on Ubuntu operating system (distribution

14.04, 64 bit) under the network file system (NFS) service.

MD simulations were carried out by using Acemd [6] on a

GPU cluster of 20 NVIDIA GTX graphics cards.

Ligands preparation

All ligands were prepared following an in-house pipeline

previously reported [7]. Briefly, Corina 3.4 was used to

generate three-dimensional structures, as well as to neu-

tralize and deprive them of potential counterions [8]. For

each compound, the most favorable ionic state was selected

by using the ‘‘Protonate’’ tool implemented in MOE suite

and based on Generalized Born electrostatics model [9].

MOE was also used to generate the possible tautomeric
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states, to energy minimize, and to assign the partial charges

of each candidate using MMFF94x force field [10].

Preparation of ligand–protein complexes

The complexes provided by the organizers as well as those

retrieved from the Protein Data Bank (PDB) [11] were

subjected to the Structure Preparation and ‘‘Protonate-3D’’

tools implemented in MOE2015.10 suite [9], including

water molecules if present.

Molecular docking

Molecular docking calculations were carried out using the

following software: AutoDock 4.2.5.1 [12], AutoDock

Vina1.1.2 [13], Glide 6.5 [14, 15], GOLD 5.2 [16], MOE

Fig. 1 Workflow for Posing and Scoring predictions designed for the

challenge on Hsp90. In blue panel is reported the procedure used in

the docking stage divided in four main tasks as reported in the

discussion section: Database selection, Docking Protocol Selection,

Docking Calculation, and Pose Selection. The Scoring Prediction

pipeline is schematized on the green panel. The Scoring Procedure

consists in a first ligand preparation step, then two different prediction

are sketched (Prediction S1-A and S1-B)
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2015.10 [17], PLANTS 1.2 [18], rDock [19]. DockBench

1.0 [3] was used to perform and analyze molecular docking

benchmarks. DockBench default parameters have been set

for all docking protocols. MOE 2015.10 was used for

docking rescoring procedure, using the following scoring

function: pKi, GBVI/WSA, Affinity dG [20].

Chemical similarity and docking analysis

In house bash or python scripts were used for determining

Tanimoto’s similarity using OpenBabel [21] and for cal-

culating root mean square deviations (RMSD) using

OpenEye [22], respectively. Visual inspection was per-

formed on MOE 2015.10 and Chimera UCSF [23].

ChEMBL database [24] was queried to obtain experimental

affinities using a substructure search tool as implemented

in MOE.

Molecular dynamics simulations

Ligand-Hsp90 complexes selected among docking poses

were prepared with AmberTool14 [25] for Molecular

Dynamics (MD) simulations as follows.

Each system was solvated with explicit waters (TIP3P

model) resulting in a box with boundaries at least 11Å far

from any atom of the complex. The simulation box was

neutralized with Na?/Cl- ions to a final concentration of

0.1 M. Consequently, the prepared systems were simulated

by using AMBER14 [26] Force Field [27] and periodic

boundary conditions. General Amber Force Field (GAFF)

[28] parameters were used for the ligands, along with

RESP partial charges [29], which were obtained with

Antechamber [25] by fitting electrostatic potential points

calculated with Gaussian [30].

The system equilibration was performed through a

stepwise procedure that begins with a conjugate-gradient

minimization of 300 steps in order to reduce the steric

clashes of the prepared system. The equilibration phase

was performed through two consecutive steps, with dif-

ferent ensembles and atom positional restrains. In the first

protocol, the MD simulation was performed in a NVE

ensemble for 100 ps, with a force constant of

1 kcal mol-1 Å-2 applied to all protein atoms in order to

allow the equilibration of the water molecules. Thereafter,

a MD simulation of 500 ps in the NPT ensemble was

performed by keeping the alpha-carbons of the protein

restrained with the same force magnitude of the previous

step. During this step, the temperature was maintained at

310 K by a Langevin thermostat and the pressure at 1 atm

by a Berendsen barostat. Subsequently, all MD simulations

were conducted in the NVT ensemble, maintaining the

temperature at 310 K.

In all MD simulations, the non-bonded long-range

Coulomb interactions were handled by using the particle

mesh Ewald summation method (PME) [31] with a cutoff

distance of 9 Å and a switching distance of 7.5 Å. All the

poses were simultaneously compared in a knockout tour-

nament framework.

Each MD simulation was carried out for 10 ns during

which a modified dynamic scoring function (DSF) [32] was

computed. This scoring is defined as the cumulative sum of

the ligand–protein interaction energy (IE): it includes

electrostatic (IEele) and van der Waals (IEvdw)

contributions.

The wIE are plotted against the simulation time and

linearly fitted to the collected data to obtain the slope

coefficient that provides an estimation of the strength of the

interaction and the stability of the binding mode.

Electrostatic energy fingerprints

Electrostatic interactions in MAP4K4-ligand complexes

were studied by calculating the Electrostatic Energy

Fingerprints (EEF). Amber99 partial charges were com-

puted for the proteins and PM3 partial charges were

computed for the ligands using MOE. Per residue electro-

static energy interactions were computed thanks to a in-

house SVL script used in MOE. Interactions of the residues

within 10 Å from each ligand were plotted in a heat map.

This graph, reporting on the X-axis the protein residues of

the binding site and on the Y-axis the ligands, attributes a

color to the strength of the interactions: in particular,

electrostatic energy diminishes going from red to blue.

Gnuplot4.5 [33] was used to draw the plots.

Results and discussion

D3R Grand Challenge 2015 was organized as a two-stage

process applied to Hsp90 and MAP4K4 datasets. In both

cases, stage 1 was subdivided in two tasks: the first con-

sisting of a ‘‘pose prediction’’ phase, and the second of a

‘‘ranking prediction’’ phase. Stage 2 had the same aim of

stage 1 ‘‘ranking prediction’’ phase, with, as an advantage,

the disclosure of the crystallographic structures object of

phase 1 ‘‘pose prediction’’ phase.

As anticipated in the Introduction, our computational

work was mainly devoted to ‘‘pose prediction’’ following

the mantra concept in SBDD that the identification/selec-

tion of the most accurate docking protocol is the key step in

the prediction of the correct binding mode. For this pur-

pose, we have compared the ability of different docking/

scoring combinations in reproducing crystallographic

poses, taking advantage of the DockBench software.
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Hsp90

Stage 1: Pose prediction phase

The challenge of Hsp90 Stage 1-‘‘Pose prediction’’ phase

was to predict the coordinates of six protein–ligand com-

plexes and to rank the affinities of 180 compounds, referred

to as ‘‘ligand test set’’ in this paper. The workflow used for

the pose prediction is reported in Fig. 1 (on the left), and it

is divided into four tasks: Hsp90 complexes selection,

selection of docking protocol, docking calculations and,

finally, best pose selection.

Hsp90 complexes selection Hsp90 is a well-known target

in medicinal chemistry which has been deeply investigated

in the last two decades by structural biology. At the time of

the challenge, we identified in the Protein Data Bank [11]

155 Hsp90-ligand complexes, as listed in Supplementary

Information. Two further complexes provided by the

organizers (PDB ID: 4YKR, 4YKY) were added to the

structures collected from the PDB. Due to the large amount

of structural information, we decided to reduce the number

of the crystallographic structures focusing our attention

only to those complexes in which the co-crystallized

ligands were structurally similar to those provided to us by

the organizers. The selection was carried out using a filter

based on Tanimoto’s similarity (FP2 fingerprints): in par-

ticular similarity was evaluated for each of the 6 ligands to

be docked against the 157 crystallographic ligands. We

selected the Hsp90 crystallographic complexes in which

the co-crystallized ligand showed a similarity index greater

than 0.5, resulting in 13 structures: 3R4 M [34], 2YE4 [35],

3B27 [36], 2JJC [37], 3R4 N [34], 3B26 [36], 3OW6 [38],

4LWG [39], 2WI4 [40], 2XDX [41], 3OWD [38], 4YKR

[42], 4YKY [43] (referred to as their PDB IB). Co-crys-

tallized ligands of these 13 complexes will be called ‘‘li-

gand training set’’ from here on out in this manuscript.

Crystallographic structures and ligand training set were

prepared for molecular docking study according to the

pipeline reported in the Experimental section.

Selection of docking protocol In the case of Hsp90 the

selection of the docking protocol has been carried out

taking into account the possible presence of water mole-

cules as mediators of interactions between the ligand and

the residues of the binding cavity. The criterion that has

been used for the selection of the water molecules is based

both on the assessment of their direct interaction with the

ligand and the protein, and of the similarity of their

B-factor with the average B-factor of the heavy atoms of

the backbone of the protein. A list of the water molecules

taken into account for each crystal structure is reported in

Table SI1.

The ligand training set was subjected to two benchmark

studies as reported in the workflow (Fig. 1): the first one, in

which each ligand of the training set has been self-docked

using 17 docking/scoring combinations in the absence of

water molecules, and the second one in which the same

ligands have been self-docked using 13 docking/scoring

combinations protocols taking into account the selected

water molecules.

In DockBench, to judge the performances of the dif-

ferent docking protocols, 20 poses were generated for each

ligand of the training set and the RMSD values between

predicted and crystallographic poses were calculated.

In order to evaluate the performances of the docking

protocols, the lowest (RMSDmin) and average (RMSDave)

RMSD values over the 20 poses, as well as the highest

number of conformations with a RMSD value lower than

the corresponding X-ray resolution (R), N(RMSD \ R), were

compared for all the docking protocols. For the specific

purpose of the D3R Grand Challenge 2015, we have

exploited DockBench ability in suggesting the most accu-

rate docking protocols, that are the protocols able to predict

the pose closest to the experimental one. For this reason,

we have focalized our attention on the docking protocols

showing lowest RMSDmin values. This resulted in different

docking protocols in relation to different crystal structures,

and sometimes in more than one successful docking pro-

tocol for the same crystal structure.

Interestingly, the results of DockBench indicated a sig-

nificant improvement in reproducing the experimental

crystallographic poses when the water molecules were

included in the docking procedure, as reported in Fig. 2a.

Indeed, including water molecules several protocols were

able to reproduce the experimental coordinates with RMSD

below 2.0 Å. Following these computational evidences, we

decided to include the same crystallographic water mole-

cules also during the docking simulations of the ligand test

set.

Finally, for each ligand of the test set we have selected

the crystallographic structure of Hsp90 in which the co-

crystallized ligand was structurally more similar to the

docked ligand.

Docking simulations and pose selection For each ligand

of the test set we have chosen the crystallographic struc-

tures of Hsp90 whose co-crystallized ligand had higher

Tanimoto similarity (calculated as FP2 fingerprints com-

parison) to it. In the case of compound 44 (a benzimidazol-

2-one), we have decided to dock it to two structures:

3OWD, selected on the basis of highest similarity, and

4YKR, the benzimidazol-2-one derivative bound structure

proposed by the challenge organizers. In the case of

compound 73, Tanimoto index was not sufficient to dis-

criminate structures, thus, besides evaluating chemical and
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structural similarity of the co-crystallized ligands, we have

chosen three protein structures showing different confor-

mations of loop 104–114 near the binding site.

Finally, we have selected the docking protocols with

best RMSDmin performance for those crystallographic

structures. The final report of the selected crystal structures

and the relative docking protocols for each ligand of the

test set is summarized in Table 1.

After the preliminary validation step using the ligand

training set, the Virtual Screening Tool of DockBench was

used to perform the ligand test set docking simulations

using the same set of parameters adopted in the validation

step. A summary of information used in the docking sim-

ulations of the ligand test set is collected in Table 1.

After docking, we selected one or more poses resulting

from each docking simulation, according to electrostatic

and van der Waals interaction energy evaluation and visual

inspection. Finally, we used Molecular Dynamics (MD)

simulation as post-docking tool to select a unique pose for

the challenge submission [29]. For each pose a 10 ns

simulation was performed and the dynamic scoring func-

tion (DSF) was evaluated. This scoring is computed along

the trajectory with the aim to obtain the slope coefficient as

an estimation of the binding strength and of the stability of

the complex.

Results As anticipated, the proposed workflow was

designed to produce a unique pose for each ligand of the

test set. The superposition of the six predicted complexes

on the corresponding crystallographic poses is reported on

Fig. 3. The DockBench performance generally showed

robust results (Table 2) with a mean RMSD of 0.86 Å

Fig. 2 Self-docking benchmark results obtained with DockBench.

Two different benchmark are shown: in a a benchmark carried out

including the most relevant water molecules, while in panel B the

benchmark was performed on the same pool of complexes but

removing all the crystallographic water molecules. For each panel two

heat map are reported: the minimum RMSD values (RMSDmin)

returned by the tested docking protocol (y-values) for the considered

X-ray structures (x-values) and the Average RMSD values (RMSDave)

for the 20 poses generated for each protocol considered. Values are

color coded, blue spots identify the best obtained results
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considering only the heavy atoms of each docked ligand.

Most notably, five complexes shown RMSD values under

the 0.61 Å absolutely representative of crystallographic

poses. Curiously, ligand Hsp90_44 showed a higher RMSD

value, 2.69 Å, mainly ascribable to the 3-pyridinesulfon-

amide moiety. This substituent in the crystal structure

points out to the bulk water and is characterized by high

B-factor values while in our prediction it is differently

Table 1 List of test set ligands

with relative docking protocols

and protein crystallographic

structures selected for docking

in the pose prediction task

Ligand Protein Docking algorithm Scoring function Pose Slope (DSF)

Hsp90_40 4YKR Gold Goldscore 1 230.14

Hsp90_44 3OWD Glide SP 1 -12.94

3OWD Gold Goldscore 2 -19.74; -19.81

4YKR Gold Goldscore 3 219.81; 222.57

4 -17.48

Hsp90_73 3B27 Gold PLP 1 -42.52

3B26 Gold Goldscore 2 -46.41; -29.07

2WI4 rDock Solv 3 236.71; 236.02

2WI4 rDock STD 4 -8.37

Hsp90_164 4YKY Gold ASP 1 -29.85

2 -37.86; -35.23

4YKY Gold Goldscore 3 248.70; 247.92

4 -27.94

Hsp90_175 4YKY Gold ASP 1 -32.53; -30.17

2 -30.25

4YKY Gold Goldscore 3 256.56; 254.96

4 -20.75

Hsp90_179 3B27 Gold PLP 1 219.85

2 -14.63

For each ligand the number of poses picked after docking and submitted to MD is reported, together with

the slope of the DSF computed along the MD trajectory and used as final score (when two slope values are

reported, the refer to the first and the second turn of the knockout tournament, respectively). In bold are

indicated the poses selected on the basis of DSF slope and finally submitted to the challenge

Fig. 3 Superposition of the

predicted poses (light blue) on

the experimental ones (tan).

RMSD values were calculated

on the heavy atoms
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oriented establishing a pi stacking interaction with the

benzimidazol-2-one scaffold (as shown in Fig. 4). Despite

the shift of the 3-pyridinesulfonamide moiety, the key

interactions of this scaffold are conserved as well as the

orientation of the N-substituted benzimidazol-2-one por-

tion as confirmed by the good RMSD (0.62 Å) calculated

considering only this portion of the molecule.

Stage 1: ranking prediction step

The aim of Hsp90 Stage 1-‘‘Ranking prediction’’ phase was

to rank the affinities of 180 compounds, referred to as

‘‘ligand test set’’ in this paper. The workflow used for the

ranking prediction is reported in Fig. 1 (on the right).

Scoring workflow As already anticipated in the Intro-

duction, docking programs are usually successful in gen-

erating multiple poses that include binding modes similar

to the crystallographically determined bound structure

whereas scoring functions are much less successful at

correctly ranking the ‘‘bioactive’’ binding mode. Aware of

the current limitations of the scoring functions, however,

we wanted to compare two ranking methodologies that

represent on the one hand the most accurate ranking

strategy available in our lab (S1-A) and the other the less

expensive in terms of computational time (S1-B) (Fig. 1).

This comparison was intriguing for us to establish the

possible benefit-cost ratio of these two alternative

strategies.

In the first pipeline (S1-A), we clustered the library of

180 compounds according to Tanimoto’s similarity

exploiting the Fingerprint Database Clustering tool of

MOE: briefly, Tanimoto’s similarity was computed for all

Table 2 Summary of the results of all scoring and docking prediction

Receipt-ID Pred. name Target/stage Scoring prediction

Num. ligands s err (Kendall) s (Kendall) q err (Spearman) q (Spearman)

564e3304a7724 S1-A Hsp90 Stage1 180 0.052 0.11 0.08 0.16

564e330569871 S1-B Hsp90 Stage1 180 0.054 0.16 0.08 0.23

56afca8517dc5 S2-A Hsp90 Stage2 180 0.05 0.21 0.07 0.3

56afca9a3644d S2-B Hsp90 Stage2 180 0.05 0.24 0.07 0.35

56afca7f6927b S2-C Hsp90 - Stage2 180 0.056 0.12 0.08 0.18

5671ef9fdd7a3 MAP4K4 Stage1 18 0.15 0.32 0.2 0.46

56afc9e2ae8c8 MAP4K4 Stage2 18 0.203 -0.02 0.26 0.01

Pose prediction

Num. Poses RMSD (mean pose 1) RMSD (mean all poses) RMSD (mean best pose)

564e43759677e Hsp90 Stage1 5a 0.5 0.5 0.5

5671f1dac24a1 MAP4K4 Stage1 30 3.34 3.34 3.34

The values reported correspond to those provided by the organizers. The Values of RMSD are indicated in angstrom (Å)
a The final evaluation of Grand Challenge 2015 considers only 5 ligands; in the discussion the we included also the ligand Hsp90_44, resulting in

a mean RMSD for 6 ligand of 0.86 Å

Fig. 4 Comparison of the predicted pose (light blue) and the

experimentally derived complexes. The crystallographic ligand is

colored according the B-factor in a light-to-dark pink palette

corresponding to low-to-high values. While the benzimidazol-2-one

scaffold is in nicely reproduced 0.62 Å the 3-pyridinesulfonamide

moiety is placed out from the binding pocket is not well predicted

resulting in a RMSD of 2.69 Å for the whole molecule. The binding

mode of the portion establishing the key interaction is not affected by

the different orientation. This observation is in agreement with the

higher B-factor values of the 3-pyridinesulfonamide moiety

(dark pink)
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the 180 compounds against all of them, and each cluster

was composed by molecules which were similar to the

same set of molecules. Each cluster was screened by

structural similarity (evaluated on the basis of common

scaffold search, guided by user’s chemical sensibility and

experience) against the 13 ligands of the training set used

in the previous benchmark. We selected the protein cor-

responding to the co-crystallized ligand with highest sim-

ilarity to each cluster. The PDB ID of the 13 protein–ligand

complexes subjected to DockBench were: 3R4 M, 2YE4,

3B27, 2JJC, 3R4 N, 3B26, 3OW6, 4LWG, 2WI4, 2XDX,

3OWD, 4YKR, AND 4YKY. After merging some of the

clusters according to structural similarity of compounds

scaffolds (evaluated by user’s chemical sensitivity and

experience), we identified 4 clusters (Table SI2) corre-

sponding to 4 different protein–ligand complexes: 3OWD

(2,3-dihydro-1H-benzimidazol-5-yl-methylsulfonamide

scaffold), 4YKY (benzophenone scaffold), 4YKR (1,3-di-

hydro-2H-benzimidazol-2-one scaffold), and 3B27 (2-

amino-1,3,5-triazine scaffold) as detailed in SI. Differently

to the pose prediction challenge, here we selected the

docking protocol for the four complexes using, in addition

to DockBench results (RMSDmin and RMSDave), also the

Spearman’s and Kendall’s correlations to evaluate the

ability of the protocol to rank the near native pose at the top

positions of the ranking list. Briefly, each protocol showing

RMSDmin and RMSDave below 1 Å and 4 Å (Fig. 2),

respectively were then compared according Spearman’s

and Kendall’s coefficients (score vs RMSD). The final

selection is reported in Table 3. We performed the docking

calculation using the Virtual Screening Platform imple-

mented in DockBenck using the same parameters adopted

in the previous benchmark and the first pose (best score)

for each ligand was selected. Finally, to have a homoge-

neous scoring method, different scoring functions were

evaluated for the rescoring procedure. Briefly, we picked a

subset of compounds from ChEMBL with known activity

(true positive and true negative) for each cluster by a

substructure search. Only for cluster2 and cluster3 we

identified a sufficient number of ligands, 14 and 17

respectively (Table SI3), to have a raw indication of the

classification ability of the tested scoring functions. For

those clusters the Spearman and Kendall coefficient were

calculated to identify the most performant scoring function

(GBVI/WSA dG). The 180 compounds were finally ranked

on the basis of the GBVI/WSA dG value of the selected

pose.

In the ‘‘less than one hour approach’’ (S1-B), we

selected Glide-sp, according to the metrics resulted by the

benchmark without water molecules on the protein PDB ID

3OWD (RMSDmin: 0.67 Å), chosen on the basis of its

wider binding pocket, suitable, at least in principle, to

accommodate different classes of compounds. The

screening was performed using Glide-sp from the Dock-

Benck Virtual Screening platform and for each ligand the

best pose (lowest pseudo-energy) was selected. Glide score

was used to rank the 180 compounds.

Scoring results As expected, both scoring strategies S1-A

and S1-B showed their ineffectiveness in the ability to

correctly rank ligands in terms of their binding affinities

and, also, in discriminating between true positive and true

negative active compounds. In fact, as reported in Table 2

their ranking performances measured by the Kendall cor-

relation are 0.11 and 0.16 considering S1-A and S1-B

ranking, respectively. These performances suggest that the

apparently more accurate S1-A ranking strategy is not

superior in terms of ranking accuracy respect the fast S1-B

method.

Stage 2: ranking prediction step

The stage 2 of the D3R Grand Challenge 2015 was char-

acterized by the release, from the organizers, of the Hsp90

crystallographic structures used as test set in the pose

prediction phase of stage 1. As in the stage 1, also here it

was compared the two previously ranking methodologies

(S1-A and S1-B) with the aim to rank the same 180 ligands

analyzed in the stage 1 but taking into account the addi-

tional available crystallographic information.

Scoring workflow The applied workflow in stage 2

retraced the pipeline described for stage 1, and reported in

Fig. 1, with few exceptions. In fact, the stage 2 of the D3R

Grand Challenge 2015 was characterized by the release,

from the organizers, of the Hsp90 crystallographic struc-

tures used as test set in the stage 1. Consequently, we re-

performed the docking benchmark study of stage 1 using

Hsp90 crystallographic structures (PDB ID: 2XDX,

4YKW, 4YKY, 4YKQ, 2YE4, 4YKT, 3R4 N, 2JJC, 2WI4,

3B26, 4YKZ, 3OW6, 3B27, 3OWD, 4YKR, 4YKU,

4YKX, 4LWG, 3R4 M). As previously described, also in

this case all docking simulations have been carried out

Table 3 Combination of docking protocol, the PDB ID of protein

conformation used for each cluster identify in the rank prediction

stage 1 (Hsp90)

Cluster Population Protein Protocol q; s

1 44 4YKR Glide-sp 0.83; 0.63

2 17 3OWD Glide-sp 0.68; 0.47

3 62 3B27 rDock-std 0.73; 0.51

4 57 4YKY Gold-chemscore 0.75; 0,56

The size of the cluster is indicated for each protocol (population). The

Spearman’s and Kendall’s coefficients are reported for the selected

protocols (RMSD vs score)
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including the more crucial water molecules (Table SI1).

The new benchmark was also interesting to retrospectively

analyze the ability of the docking/scoring combinations in

reproducing the new crystallographic poses and, therefore,

to evaluate the goodness of our protocol selection in the

stage 1. The results of the new benchmark are reported in

Figure SI1 (panel A). Interestingly, the protocols selected

in the stage 1 showed low RMSDmin also in the self-

docking exercise confirming, again, the goodness in the

identification of the docking protocol.

Moreover, the ranking prediction (S2-A) also retraced

the S1-A pipeline. Again, we clustered the 180 ligands

according Tanimoto’s similarity to the ligands co-crystal-

lized as included in the benchmark (in presence of the most

relevant water). In this way we obtained 7 clusters as listed

in SI (Table SI4). For each of them, we carried out the

docking calculation selecting the protocol according the

RMSDmin and RMSDave performances but also considering

the ability in discriminating the near native conformation

within the family of conformations generated in the

benchmark. To highlight this, we used the Spearman index

correlating the RMSD versus the score. The resulting

combination of cluster, protein and protocol is detailed in

Table 4.

Then, we extracted the best scoring pose for each ligand

according to the scoring method proper of the protocol.

Finally, to be able to rank ligands conformations originated

from different docking protocols, we sorted all the best

conformations by using a rescoring procedure with MOE-

pKi function.

As previously mentioned, the second ranking submis-

sion (S2-B) is strictly link to the first. It was designed to

highlight the effect in considering the Spearman’s corre-

lation in the protocol selection.

In more detail, all steps of this pipeline were exactly the

same of the prediction S2-A except in the selection of the

protocol that in this case was merely based on the

RMSDmin and RMSDave performances obtained in the

benchmark. In Table 4 is reported which protocol was

assigned for each clusters.

The third and last submission in the stage 2 (S2-C) was

based on the submission S1-B in stage 1 and follow the

same philosophy: simplest and fastest. The workflow

adopted was exactly the same of stage 1. Briefly, we per-

formed a new benchmark on the 19 complexes (13 com-

plexes already known at stage 1 plus the new 6 unveil

complexes) removing all the water molecules. Also in this

case the benchmark outputs indicated Glide-sp, as the

protocol more suitable in generate the near native confor-

mations (Figure SI1, panel B). We decided to use the same

protein conformation used in S1-B (PDB ID: 30WD),

which is characterized by a wider binding pocket able in

principle to host different classes of compounds. The

screening was carried out using the Virtual Screening tool

of DockBenck selection for each ligand its more

stable pose.

Scoring results Unexpectedly, the scoring performances

of the stage 2 have been significantly different from those

observed in phase 1. The three approaches appreciably

differ in terms of ranking and classification capability

(Table 2). The more articulated methods (S2-A and S2-B)

outperformed the basic approach (S2-C); in the Kendall

rank correlation the three predictions S2-A, S2-B, and, S2-

C scored 0.24, 0.21, and, 0.12 respectively. Whereas the

score of S2-C was expected due to the fact that is has been

performed with the same methodology of in stage 1, the

score of S2-A is doubled. The introduction of a more

suitable protein conformation has improved the perfor-

mance; however, the value is still far from a desirable

value. Also considering the Spearmen’s rank correlation,

the S2-A and S2-B outperformed S2-C with a coefficient of

0.30, 0.35, and 0.18 respectively. From the performance

comparison of S2-A and S2-B is interesting to note that the

use of the Spearman’s correlation in the protocol selection

has slightly improved the quality in the rank classification

as partially expected.

MAP4K4

Stage 1: pose prediction step

The challenge on MAP4K4 Stage 1-‘‘Pose prediction’’ step

was to predict the coordinates of 30 protein–ligand com-

plexes and to rank the affinity of 18 of these 30 compounds

referred, also in these case, as ‘‘ligand test set’’. The

workflow used for the pose prediction is reported in Fig. 5

(on the left), and it is divided again into four tasks:

MAP4K4 complexes selection, selection of docking pro-

tocol, docking calculations and, finally, best pose selection.

Table 4 Combination of docking protocol and PDB ID of protein

conformation used for each cluster identify in the rank prediction

stage 2 (Hsp90)

Cluster Population Protein S2-A protocol S2-B protocol

1 31 4YKU rDock-std Gold-goldscore

2 11 4LWG Gold-chemscore Plants-chemplp

3 7 3B26 Gold-asp rDock-std

4 21 4YKZ rDock-std Gold-goldscore

5 63 4YKR Gold-asp Gold-goldscore

6 13 3R4 N Gold-plp Gold-goldscore

7 34 4YKW rDock-std Gold-plp

The size of the cluster is indicated for each protocol (population). The

S2-A and S2-B differ only for the protocol selected
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MAP4K4 complexes selection Similar to what was done

in stage 1 for Hsp90, we retrieved all eight ligand-

MAP4K4 complexes present in the PDB (PDB ID: 4OBO

[44], 4OBP [44], 4OBQ [44], 4RVT [45], 4U43 [46], 4U44

[46], 4U45 [46], and 4ZK5 [47]) in which the co-crystal-

lized ligand will be referred again as ‘‘ligand training set’’.

Crystallographic structures and ligand training set were

prepared for molecular docking study according to the

pipeline reported in the Experimental section.

Selection of docking protocol All the 8 known complexes

were submitted to a self docking benchmark within

DockBench using all the 17 different docking protocols

available in the tool. Unlike what has been observed for

Fig. 5 Workflow for posing and scoring predictions designed for the

challenge on MAP4K4. In blue panel is reported the procedure used

in the docking stage divided in four main tasks as reported in the

discussion section: Database selection, Docking Protocol Selection,

Docking Calculation, and Pose Selection. The Scoring Prediction

pipeline is schematized on the green panel. The Scoring Procedure

consists in three tasks strictly correlated to the posing challenge: a

first ligand preparation step, docking calculation and finally the re-

scoring and pose selection
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Hsp90, in this case have not been highlighted water

molecules that may play a crucial role in the recognition

crystallized ligands. As reported in Fig. 6a, several proto-

cols showed good results with RMSDmin values below 2 Å.

In particular, Gold and Plants software were able to

reproduce the crystal pose in the majority of cases except

when Gold was coupled with chemscore function. Fol-

lowing these preliminary information, we selected ‘‘Gold-

goldscore’’ and ‘‘Plants-plp’’ as best docking/scoring

combinations.

Unfortunately, in this case the chemical variability of

the 30 ligands of the test set didn’t give us the opportunity

to cluster them according to chemical similarity to the

ligands of the training set, as in the case of Hsp90.

Therefore, we adopted a different strategy to select

MAP4K4 structures for docking: in particular, we took into

consideration the interaction network of co-crystallized

ligands in the PDB complexes, and selected those struc-

tures that conserved the same pattern for the docked poses

of the test ligands. We used EEF to estimate the residues

mainly involved in electrostatic interactions with the

ligands.

Docking calculation and best pose selection The EEF of

the MAP4K4 complexes suggested E106 and C108 as key

residues in ligand binding; in fact, those residues are

involved in strong electrostatic interactions in almost all

ligand of the training set (Fig. 6b).

Fig. 6 a Self-docking

Benchmark results obtained

with DockBench on 8

complexes containing

MAP4K4. The minimum

RMSD values (RMSDmin)

returned by the tested docking

protocol (y-values) for the

considered X-ray structures (x-

values) for the 20 poses

generated for each protocol

considered. Values are color

coded, blue spots identify the

best obtained results.

b Electrostatic Energy

Fingerprints representing per-

residue electrostatic

contribution to interaction

energy. This term was

calculated for the eight training

set complexes subjected to the

benchmark. The interaction

strength is coded in the heatmap

using a red to blue palette going

from a highly positive to a

deeply negative potential. The

calculation was performed for

the most relevant residues for

the binding. The blue bars

corresponding to E106 and

C108 highlight the relevance of

this residues
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From this, we decided to pick the structure with lowest

crystallographic resolution (PDB ID 4OBO) presenting the

P-loop in a ‘‘closed’’ conformation. Among all docking/

scoring combinations, Gold-goldscore was selected as

docking protocol due to its good performance in repro-

ducing the 4OBO ligand pose, as indicated by the corre-

sponding RMSDmin value in Fig. 6. The Virtual Screening

Tool of DockBench was used to dock the 30 ligands of the

test set. Using this strategy, it was possible to select a pose

showing interactions with E106 or C108 for the following

ligands: MAP01, MAP02, MAP03, MAP04, MAP08,

MAP09, MAP14, MAP15, MAP16, MAP18, MAP19,

MAP20, MAP21, MAP23, MAP26, MAP27, MAP28,

MAP32 (Figure SI2).

For the remaining ligands of the test set, alternative

selection strategies have been used in the selection of both

MAP4K4 crystallographic structures and docking/scoring

protocols. The first important alternative was to change

the protein structure in which the P-loop was in an

‘‘open’’ conformation and the crystallographic structure

coded as 4U44 was selected as the best compromise

between its crystallographic resolution and its DockBench

performance.

Moreover, Plants-plp combination was selected as

docking/scoring protocol adopted for the 12 remaining

ligands (see Fig. 6) and acceptable poses interacting with

either E106 or C108 were selected for MAP05, MAP06,

MAP07, MAP11, MAP22, MAP25, MAP29, MAP30,

MAP31as shown in Figure SI3. At the end, were only three

exceptions: MAP12, MAP13 and MAP17. Since those

ligands are voluminous, for these three ligands we chose

the MAP4K4 crystallographic structure coded as 4ZK5,

which performed well in the benchmark and whose co-

crystallized ligand is the bulkiest among the training set

(Figure SI4). In this specific case, we carried out the

docking simulation using Gold-goldscore combination.

Unfortunately, even with these changes, we were not able

to find ligand poses directly interacting with E106 and

C108 and, consequently, we decided to select the best

poses by visual inspection.

Results The superposition of the 30 predicted complexes

on the corresponding X-ray crystal structures is reported in

Fig. 7. In general, the proposed workflow has shown

encouraging results: the pose of several ligands were

appropriately predicted but, understandably, there are a

certain number of exceptions. In particular, 14 ligands were

predicted with a RMSD below 2 Å and notably 11 of them

below 1.5 Å. These values fall below the resolution of the

crystal structures, which range from 1.59 to 3.04 Å. 4

ligands were in the range between 2 and 3 Å, whereas 12

showed a RMSD bigger than 3 Å. However, four ligands

were poorly predicted (with an RMSD values [8Å). In

particular, the poses of the three ligands containing the

dehydro-oxepin ring were completely wrong. The poor

predictions are mainly due to the erroneous pose selection

performed by visual inspection. In fact, a retrospective

analysis of the docking result revealed the presence of a

native like poses in the ensemble of the generated con-

formations. Not surprisingly, a subset of small ligands with

molecular weight lower than 300 Da (MAP04, MAP20,

MAP22, MAP26, MAP29, MAP30, MAP31) resulted in

inaccurate poses confirming the difficulties of docking

protocols with fragments in particular when docked in wide

binding side and in absence of a clear shape complemen-

tarity between the ligand and the docking site. In addition,

the experimental structure of four of them revealed the

presence of molecules of water stabilizing their confor-

mation (MAP04, MAP20, MAP22, MAP29).

Stage 1 ranking prediction step

The aim of MAP4K4 Stage 1-‘‘Ranking prediction’’ phase

was to rank the affinities of 18 of the 30 compounds docked

in the previous phase. The workflow used for the ranking

prediction is reported in Fig. 5 (on the right).

Scoring workflow The selected poses for MAP01,

MAP02, MAP03, MAP04, MAP05, MAP06, MAP07,

MAP08, MAP09, MAP11, MAP12, MAP13, MAP14,

MAP15, MAP16, MAP17, MAP18, and MAP19 were

rescored with MOE using GBVI/WSA method, in order to

have a homogeneous scoring method.

Scoring results Also in this case and as expected, the

scoring strategy showed its ineffectiveness in the ability to

correctly rank ligands in terms of their binding affinities

(Table 2). Pearson and Kendall coefficients values (0.46

and 0.32, respectively) show a modest positive correlation

between affinities and GBVI/WSA scores.

Stage 2 ranking prediction step

Also in this case, the stage 2 of the D3R Grand Challenge

2015 was characterized by the release, from the organizers,

of the MAP4K4 crystallographic structures used as test set

in the pose prediction phase of stage 1. As in the ranking

prediction phase of stage 1, the aim of this stage was the

ranking of the same 18 ligands but taking into account the

additional available crystallographic information.

Scoring workflow With the release of the new 30

MAP4K4 crystallographic structures, we re-performed to

DockBench analysis (see Figure SI5). Also in this case, for

each of the 18 compounds which were to be analyzed we

selected the pose corresponding to the best value of
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Fig. 7 Superposition of the predicted poses (light blue) on the experimental ones (tan). RMSD values were calculated on the heavy atoms
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RMSDmin obtained in the benchmark (see Table 5).

Finally, the complexes were rescored, and sorted, using

MOE dock_pKi scoring function.

Scoring stage results Also in this case, as expected, the

ranking performance in the second stage was even less

accurate than that obtained in the first stage. As reported in

Table 2, Spearman’s rank coefficient (0.01) showed

absence of correlation between affinities and dock_pKi

scores, and, even worse, the Kendall coefficient (-0.02)

showed a tendency to negative correlation.

Conclusions and consideration

Our sincere feeling is that D3R Grand Challenge repre-

sented an important moment of scientific and method-

ological reflection regarding the real robustness of docking/

scoring methodologies currently available to our scientific

community. Molecular docking is certainly one of the most

popular and used tools in computational medicinal chem-

istry and beyond. For this reason, we believe that our

community must pay particular attention to point out what

are the intrinsic limitations of this tool and to appropriately

describe the best practice for its correct use.

In this contest, we could evaluate the predictive ability

of a docking selection tool recently developed in our lab-

oratory and called DockBench. Considering the peculiarity

of the DockBench tool in facilitating the prediction of the

ligand poses, we decided to concentrate our efforts in

determining the best docking method able to reproduce the

most accurate pose geometries.

The take home message learned from the GC2015 is that

an accurate selection of both the docking protocol and

protein conformation may lead in remarkable improvement

of the prediction. In addition, the differences emerged in

the accuracy between the two targets reveal two interesting

points. First, when more data is already available as in the

case of Hsp90 of which a notable number of complexes are

available in the PDB, lead to better results if the similarity

of between the ligand is taken into account. In particular, is

not always straightforward the definition of similarity in

this context and the selection of which kind of similarity

can be the more appropriated (e.g. fingerprint similarity,

shape similarity, substructure matching, etc.). The second

point is that the role of the water molecule that improved

the quality of the ligand-Hsp90 prediction. The significance

of this two points are convincing us to introduce these

aspects in our software also considering that the automa-

tion of these tasks into the docking pipeline would reduce

the time needed to the user.

Even if the overall performance of DockBench is

encouraging, from this assessment have emerged still del-

icate issues which limit the performance of docking/scor-

ing algorithms and, consequently, their positive impact in

the design of new drugs. Some of these are briefly sum-

marized below:

(a) with the increasing number of docking programs

(docking/scoring combinations), it becomes progres-

sively more complex and risky to determine a priori

which of these will be more accurate in reproducing

a realistic poses of a ligand in its binding cavity;

(b) With the increasing number of crystal structures

available in the PDB for a single protein, it becomes

increasingly hazardous to determine a priori which

crystallographic structure will be more appropriate

to use to obtain a realistic pose of a ligand in its

binding cavity;

(c) Nowadays, it is clear the crucial role of the water

molecules, eventually present in the binding cavity,

in determining the performance of the docking

algorithms;

(d) Scoring functions are very often useless in realisti-

cally ranking a set of ligands.

As this D3R Grand Challenge has demonstrated, each

docking run can be considered a singularity in a mathe-

matical sense, or rather, a point in which a function is

undefined. In fact, considering the degree of theoretical

simplification of the problem we are dealing with docking

and the large number of variables that define the problem

itself, it is extremely difficult to determine a priori the

degree of accuracy of the solution of our problem (realistic

pose).

To paraphrase Albert Einstein, our take-home message

may be summarized as follows: ‘‘Docking should be made

as simple as possible, but not simpler.’’
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