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Abstract We present the performance of blind predictions

of water—cyclohexane distribution coefficients for 53

drug-like compounds in the SAMPL5 challenge by three

methods currently in use within our group. Two of them

utilize QMPFF3 and ARROW, polarizable force-fields of

varying complexity, and the third uses the General Amber

Force-Field (GAFF). The polarizable FF’s are imple-

mented in an in-house MD package, Arbalest. We find that

when we had time to parametrize the functional groups

with care (batch 0), the polarizable force-fields outper-

formed the non-polarizable one. Conversely, on the full set

of 53 compounds, GAFF performed better than both

QMPFF3 and ARROW. We also describe the torsion-re-

strain method we used to improve sampling of molecular

conformational space and thus the overall accuracy of

prediction. The SAMPL5 challenge highlighted several

drawbacks of our force-fields, such as our significant sys-

tematic over-estimation of hydrophobic interactions,

specifically for alkanes and aromatic rings.

Keywords QMPFF3 � ARROW � Polarizable force fields �
Free energies � SAMPL5 � GAFF

Introduction

The prevailing opinion of the computational community is

that polarizable force-fields [1–19] are a necessary direc-

tion in the development of molecular modeling [20–23]. At

the same time, pairwise non-polarizable force-fields

[24–31], the old workhorses of the field, still offer the best

and most consistent performance. The advantage is cer-

tainly due to the large disparity in development and testing

time, but likely also to one or more fundamental short-

comings. As InterX Inc. is developing several polarizable

FF’s [8], the distribution coefficient component of

SAMPL5 was a terrific opportunity to gauge our progress.

We would like to thank the organizers (and the partici-

pants) of the challenge for a fabulous and extremely useful

cooperative scientific experiment.

Previous four SAMPL challenges since 2008

requested blind prediction of experimental hydration

free energies [32–35]. While this test is critical for

validation of force-fields and molecular simulation

methodologies in water, describing ligands’ interaction

with alkanes is an equally important test of molecular

modeling. SAMPL5 [36] expanded the hydration chal-

lenge by asking participants to blindly predict distri-

bution coefficients (difference in free energy of

solvation) between cyclohexane and water for 53 drug-

like molecules [37]. Distribution coefficients are not

only an excellent metric of the capability and accuracy

of modeling, they are also valuable in themselves as

they are associated with important pharmacological

properties, e.g. drug uptake in lipid bilayers.
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Intermolecular potentials (QMPFF3
and ARROW)

Because the main goal of our participation was to compare

the various force-fields currently employed by our group,

we shall start this report by briefly describing them. A

detailed description of the Quantum Mechanical Polariz-

able Force field (QMPFF3) including the functional form

has been provided in various articles [6–8, 38]. The

Accurate Representation of Angstrom World (ARROW)

variant of QMPFF3 will be fully described in a future

publication.

The total energy consists of four components: Electro-

statics, Exchange, Dispersion and Induction (henceforth

denoted as ES, EX, DS, and IND). The nuclei are repre-

sented by point charges. The ES and EX electron–electron

interactions are multipolar up to L = 2 (quadrupole) and

are represented by interaction of diffuse clouds. The mul-

tipolar expansion is limited to the reference frame provided

by the bond(s). The ES penetration effect is modelled by

cloud–cloud penetration, and the EX interaction is pro-

portional to cloud–cloud overlap which is exponentially

decreasing with distance between atoms. DS is modeled by

Tang-Toennies functions of power R-6 and R-8 terms and

is damped. Electrostatic induction is represented by a shift

of diffuse dipoles and includes an exchange correction; and

the internal energetic cost of polarization is modeled by an

an-harmonic anisotropic spring. The 1–4 interactions are

accounted for in full strength. The functional forms of

bonded interactions are identical to those in the Merck

Molecular Force Field (MMFF94) [39].

The ARROW variant carries a slightly more complex

functional form than QMPFF3; namely a more nuanced

description of multipolar atomic shapes, virtual bonds for

terminal atoms, and a charge delocalization interaction

[40]. In parametrization, ARROW relies on different

quantum mechanical framework (largely DFT-SAPT

[41–43] because of its natural decomposition of energies

that corresponds to our ES, EX, DS, IND partitioning and

its implementation in MOLPRO [44]), and has an expan-

ded parameter set. Figure 1 visualizes the superior repre-

sentation by ARROW of the electrostatic component of

energy compared with non-polarizable force-fields for

1,3,5-Triazine.

The determination of force field parameters is still in

flux and will be fully described in a future publication as

well; we will limit ourselves to a few general comments

here. Our guiding philosophy is to derive the force field

fully from ab initio calculations, which is advantageous

when describing SAMPL5 drug-like molecules for which

very little to no experimental data exists. We used a variety

of different QM data to fit the non-bonded interactions:

monomer properties (e.g. electrostatic potential maps

(ESP) see e.g. Figure 1), dipoles, quadrupoles, polariz-

ability tensors and interaction of molecules with charges.

We also employed a large collection of homogeneous

dimers, a smaller set of heterogeneous dimers, and a still

smaller set of multimers.

For SAMPL5 we partitioned the candidate molecules

into roughly 50 fragments of different functional groups

using a procedure generously described as ‘human intelli-

gence’; a fuller investigation of transferability and sepa-

rability of functional groups is planned for the near future.

In the interest of speed and time we substituted propane for

cyclohexane in QM calculations; the consequences of this

are under investigation. Most of the training dimers were

generated from fragment-water and fragment-propane MD

simulations at normal conditions (T = 298 K, P = 1 atm).

The resulting conformations were then pruned by cluster-

ing close relatives, leaving approximately one to two

hundred dimers in each collection. To better fit the repul-

sive wall of the potential, we took * 30 % of closest MD

dimers and contracted them towards each other, thus

making an additional 4 dimers per each closest dimer. For

all clustered fragment—water H2O and fragment—propane

C3H8 systems we calculated the energy and its components

via DFT-SAPT at aug-cc-pVTZ and aug-cc-pVQZ level

and extrapolated the dispersion interaction to the Complete

Basis Set (CBS) limit [45]. Our total interaction energy at

CBS level therefore consists of all interaction parts at aug-

cc-pVQZ level plus dispersion at estimated CBS level. In

addition to extrapolation to CBS level we corrected our

total CBS energy by the difference between CCSD(T)/aug-

cc-pVDZ and DFT-SAPT/aug-cc-pVDZ to provide better

QM accuracy.

The bonded parameters were benchmarked at the df-

MP2/aTZ level in MOLPRO [44] using step-wise dis-

placements from equilibrium for bond-stretch, angle-bend,

stretch-bend and dihedrals.

Simulation details

The partition coefficients were estimated from the differ-

ence in solvation free energies of the solute in the neutral

state in water and cyclohexane at infinite dilution. For

species that may undergo ionization in aqueous phase, we

applied a pKa correction:

logP ¼ �DGsolvation � DGhydration

2:303RT
ð1Þ

logD ¼ logP� log 1 þ 10pH�pKa
� �

ð2Þ

where log D is the distribution coefficient, DGsolvation is the

free energy of solvation of molecule in cyclohexane,

978 J Comput Aided Mol Des (2016) 30:977–988

123



DGhydration is the free energy of solvation of molecule in

water; both units in kcal/mol. R is the Universal Gas

constant in kcal/mol/K and T is temperature = 298 K. The

pKa values were determined from publicly available

website: https://epoch.uky.edu/ace/public/pKa.jsp. We do

not expect accuracy of this pKa estimator be better than 1

pKa units.

Before running simulations we analyzed potential tau-

tomers in water solution for all SAMPL molecules with

B3LYP/atz method with COSMO implicit solvent dielec-

tric constant e = 80. All analyzed tautomers are presented

in supplementary information Table S3. We found only 1

tautomer for SAMPL50 molecule that has a structure dif-

ferent that organizers suggested (see Fig. S2), and used this

tautomeric version for this molecule. A priori we were not

able to judge the accuracy of experimental data (i.e. water

dragging effects, dimerization of solute in solvents, etc.)

therefore we assume them to be negligible.

Solute, water, and cyclohexane were described by the

polarizable non-bonded parameters and valence parameters

of the QMPFF3 and ARROW force-fields described in the

previous section, as well as those of the General Amber

Force-Field. For QMPFF3 submissions we have had some

parameters ready before SAMPL assessment, which in turn

was based but not equal to published parameters [7]. In

addition, during SAMPL assessment for QMPFF3 we

derived a special set of parameters for bromine, cyano

group, sulfone derivatives, thiophene, oxazoles, etc. For

ARROW parameters we have parameterized a significant

portion of most frequently occurring functional groups

(such as aliphatic, aromatic carbons, ethers, esters, aro-

matic nitrogen, etc.), but was not able to prepare

parameters for all of functional groups. Because ARROW

is the superset of QMPFF3 we have put QMPFF3 distri-

bution coefficients instead of missing ARROW numbers,

that is contribute to approximately to 30 % of ARROW

submission.

Because our polarizable runs were rather short (500 ps)

we did not expect an adequate sampling of the conforma-

tional states of the solute. To compensate we chose the

most energetically favorable structures obtained from the

much longer 50 ns of isothermal-isobaric ensemble simu-

lations at 298 K and 1 atm in cyclohexane using Gener-

alized Amber Force Field (GAFF) (parameters made

available from the SAMPL5 website) as the starting

structures for the SAMPL5 molecules. We placed each

minimum energy configuration in a solvated box with a

single solute molecule in each solvent. We constructed the

unit box to be at least 40 Å per side, which required at least

2124 molecules of water, and 352 of cyclohexane. For

water we ran isothermal-isobaric ensemble (NPT) molec-

ular dynamics simulations, with temperature control pro-

vided by a six-chain 0.5 ps relaxation time Nose–Hoover

thermostat [46, 47] at T = 298 K, and pressure control by

a Berendsen thermostat [48] at 1 atm reference pressure

with a time constant for relaxation of 0.5 ps and com-

pressibility set at 0.45 GPa-1. For two largest SAMPL5

molecules—83 and 92—we used a larger simulation cell of

45 9 45 9 45 Å3 to avoid interactions with solute in

periodic boundary regions. Cyclohexane simulations were

identical to water, except the compressibility of cyclo-

hexane was set to 0.114 GPa-1 which resulted in a liquid

density of 0.75 g/cc, in good agreement with experimental

density of 0.77 g/cc. For computational efficiency all

Fig. 1 An illustration of the ARROW Electrostatic Potential (ESP)

fitting for the 1,3,5-triazine molecule, that is part of SAMPL5

molecule 27. (Left) QM (MP2/aqz) ESP map (center) difference

between GAFF (based on AM1-BCC charges) and QM ESP maps

(right) difference between ARROW and QM ESP maps. 1,3,5-

Triazine is a neutral molecule without a net dipole moment, but it has

a quadrupole moment with main components in QM [- 1.75, -1.75,

3.5]�0.1 Å2 q. The GAFF representation has an almost opposite

quadrupole moment [1.54, 1.54, -3.08]�0.1 Å2 q. Introduction of

explicit quadrupoles in ARROW permits a reproduction of the ESP

map with almost no error. X,Y-axes on plots are in Angstroms, color

bar units are in kcal/mol/q. All maps are plotted at 2 van derWaals

radii surface
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interactions were truncated by a group-based cutoff at 13

Å. We used in-house tools (Arbalest code suite) and vari-

ous Octave/Matlab scripts to setup the initial configuration

and subsequent post-processing of generated data. The

difference in free energy between the two states of a system

was obtained via the coupling parameter approach of

thermodynamic integration. The solute was gradually

annihilated through 10 intermediate lambda states, and the

interactions were switched off closely following the

mutation protocol for protein–ligand complexes [49]. We

simulated each solvated system separately at each lambda

value by (1) first minimizing the system in Arbalest using

the steepest descent algorithm, (2) running a 500 ps MD

production phase at each lambda value using a Berendsen

barostat and Nose–Hoover thermostat with relaxation times

of 0.5 ps and 1 ps, respectively. We typically discarded the

first 50 ps of simulation to achieve convergent equilibra-

tion. In cases where convergence was suspect longer sim-

ulation 1 ns were employed, it was done particularly for the

following molecules: 7, 13, 17, 21, 46, 58, 63, 65, 83, 84,

88, 92. We used cubic spline interpolation for smooth

integration of dH/dL values to obtain the final solvation

energy (and hence the predicted partition coefficients)

using Eq. 1. The statistical errors (SEM) of the run was

determined not by multiple runs, but by analysis of cor-

relation times, such description found in the supplemental

information of the cited article [49].

Accounting for torsional flexibility in Log D

calculations for GAFF-TR model

In addition to QMPFF3 and ARROW based calculations

(Table 1) we ran a baseline set of calculations with GAFF

using GROMACS [50]. Most of the drug-like compounds

in SAMPL5 set contain multiple rotatable bonds, fre-

quently with high torsional energy barriers, therefore

making the equilibration of torsional degrees of freedom in

TI solvation free energy calculations slow. Calculations

with non-polarizable GAFF force field are almost 2 orders

of magnitude faster than those with QMPFF3 and ARROW

that allowed us to employ better convergence techniques

and help to choose better initial geometries for more

expensive calculations with polarizable force fields.

We performed log D calculations of SAMPL5 mole-

cules with GAFF using starting geometries given by the

organizers (denoted ‘‘init geom’’ in Table 2). We also ran

calculations starting with the ‘‘most probable’’ ligand

conformations in cyclohexane solvent (denoted ‘‘opt

geom’’ in Table 2). The ‘‘most probable’’ ligand confor-

mations were found as follows: (1) Torsional values H0
i

with highest probability density were determined from long

(50 ns) MD simulations of ligands in cyclohexane (2) MD

snapshots of ligands with smallest RMSD of torsions from

H0
i values were selected as the ‘‘most probable’’ confor-

mations. Calculations with initial starting geometries

showed large deviations in computed log D values from

calculations started with most probable conformations for

some of the compounds e.g. SAMPL5_017 compound

(which have an internal hydrogen bond in the optimal

geometry) and SAMPL5_020 compound (which has a

flipped HNCN torsion in the optimal geometry compared

to the initial geometry).

To ensure adequate sampling of the torsional degrees of

freedom for GAFF calculations we also employed the

following methodology. Thermodynamic integration cal-

culations of solvation free energies of test molecules in

water and cyclohexane were performed with applied tor-

sional restraints with a functional form:

UðhiÞ ¼
Kðhi � h0

i � DÞ2 hi [ h0
i þ D

0 h0
i � D� hi � h0

i þ D
Kðhi � h0

i � DÞ2 hi\h0
i � D

8
<

:
ð3Þ

where hi i-th torsional angle of the molecule, h0
i —re-

strained value of the i-th torsion (the most probable tor-

sional value in MD simulations of the ligand in

cyclohexane). A rather rigid torsional force constant

K = 200 kJ/mol/rad2 ensures that the torsional angle hi
stays within interval of 2D around h0

i value (D = 30 deg).

16 k points were used in solvation free energy TI calcu-

lations (first 6 k points were used to switch off coulomb

interactions and 10 k points to switch off VdW interac-

tions). For each k-state we had run 500 ps trajectories. As

torsional angles of the ligands were restrained in a rela-

tively narrow range of values with no significant torsional

barriers in these intervals 500 ps trajectory were deemed

sufficient for convergence.

However, to compute free energy of transfer of the

molecule from water to cyclohexane we need to account

for the free energy cost of applying restraints (3) in water

and cyclohexane:

DGwat!cxn ¼ DGunrestr!restr
wat þ DGrestr

wat!cxn � DGunrestr!restr
cxn

ð4Þ

Here DGrestr
wat!cxn ¼ DGrestr

wat!vac � DGrestr
cxn!vac is the ‘‘re-

strained’’ free energy of transfer of the molecule from

water to cyclohexane, computed as difference of de-sol-

vation free energies of the molecule from water

DGrestr
wat!vac

� �
and from cyclohexane (DGrestr

cxn!vac) using

thermodynamic integration method with torsional restraints

(3) applied.

We obtained the free energy cost of applying restraints

in water DGunrestr!restr
wat and in cyclohexane DGunrestr!restr

cxn

by two methods:
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Table 1 The free energy of solvation in cyclohexane and free energy

of hydration in water for the 53 SAMPL5 molecules in kcal/mol as

predicted by QMPFF3-pKa and ARROW-pKa. The distribution

coefficient of the molecules calculated between cyclohexane and

water includes the corrections for pKa for certain molecules based on

Eq. 2

Molecule Cyclohexane Cyclohexane Water Water

QMPFF3-pKa ARROW-pKa QMPFF3-pKa ARROW-pKa QMPFF3-pKa ARROW-pKa Experiment

DG

(kcal/mol)

DG

(kcal/mol)

DG

(kcal/mol)

DG

(kcal/mol)

log D (corrected) log D

(corrected)

log D

SAMPL5_002 -10.7 -11.1 -3.0 -1.4 5.7 7.1 1.4

SAMPL5_003 -8.6 -8.6 -0.7 -0.7 5.8 5.8 1.9

SAMPL5_004 -13.4 -13.6 -9.0 -5.3 3.2 6.2 2.2

SAMPL5_005 -12.3 -12.3 -19.9 -19.9 -5.6 -5.6 -0.86

SAMPL5_006 -9.7 -9.7 -8.7 -8.7 0.7 0.7 -1.02

SAMPL5_007 -6.9 -8.8 -3.5 0.0 2.5 6.5 1.4

SAMPL5_010 -10.1 -9.5 -9.8 -9.1 -2.4 -2.3 -1.7

SAMPL5_011 -10.9 -10.9 -6.2 -5.65 -0.5 -0.0 -2.96

SAMPL5_013 -13.9 -13.9 -13.2 -13.2 0.5 0.5 -1.5

SAMPL5_015 -10.3 -9.0 -10.6 -8.4 -3.7 -3.0 -2.2

SAMPL5_017 -14.5 -14.9 -8.5 -1.5 4.4 9.8 2.5

SAMPL5_019 -14.4 -15.1 -5.3 -0.7 6.7 10.7 1.2

SAMPL5_020 -10.8 -12.4 -7.00 -9.5 2.8 2.2 1.6

SAMPL5_021 -12.9 -12.9 -18.4 -18.4 -4.0 -4.0 1.2

SAMPL5_024 -15.0 -15.3 -9.9 -7.8 3.8 5.5 1

SAMPL5_026 -8.7 -8.0 -9.2 -2.8 -2.8 1.4 -2.6

SAMPL5_027 -9.8 -9.6 -6.3 -2.4 2.6 5.3 -1.87

SAMPL5_033 -13.2 -13.8 -5.9 -5.8 5.4 5.9 1.8

SAMPL5_037 -11.1 -11.1 -12.1 -12.1 -1.8 -1.8 -1.5

SAMPL5_042 -10.9 -10.9 -13.52 -13.5 -1.9 -1.9 -1.1

SAMPL5_044 -12.1 -12.1 -11.0 -12.1 0.8 0.0 1

SAMPL5_045 -8.8 -10.6 -11.0 -15.5 -1.6 -3.6 -2.1

SAMPL5_046 -14.0 -14.4 -13.5 -10.1 0.3 3.2 0.2

SAMPL5_047 -10.9 -11.6 -16.5 -10.5 -4.1 0.8 -0.4

SAMPL5_048 -14.5 -15.7 -17.6 -19.8 -2.3 -3.0 0.9

SAMPL5_049 -9.4 -9.1 -14.4 -11.6 -3.7 -1.8 1.3

SAMPL5_050 -9.5 -9.5 -1.0 -1.0 6.3 6.3 -3.2

SAMPL5_055 -7.4 -6.9 -9.8 -9.3 -1.7 -1.8 -1.5

SAMPL5_056 -8.9 -9.6 -7.3 -8.6 1.2 0.8 -2.5

SAMPL5_058 -10.6 -10.6 -9.6 -9.6 0.8 0.8 0.8

SAMPL5_059 -8.6 -8.6 -6.9 -6.9 1.3 1.3 -1.3

SAMPL5_060 -9.6 -8.6 -12.1 -12.9 -5.3 -6.5 -3.9

SAMPL5_061 -9.0 -9.5 -6.1 -3.7 1.5 3.6 -1.45

SAMPL5_063 -8.4 -10.0 -11.7 -16.5 -5.0 -7.3 -3

SAMPL5_065 -22.5 -23.5 -24.4 -17.9 -1.9 3.6 0.7

SAMPL5_067 -11.1 -10.7 -12.3 -7.0 -3.2 0.5 -1.3

SAMPL5_068 -15.7 -15.7 -8.4 -8.4 5.44 5.4 1.4

SAMPL5_069 -13.9 -13.7 -17.2 -9.6 -3.0 2.5 -1.3

SAMPL5_070 -12.3 -11.2 1.5 -1.6 7.7 4.6 1.6

SAMPL5_071 -11.9 -13.0 -15.6 -7.7 -2.8 3.9 -0.1

SAMPL5_072 -10.9 -10.4 -0.5 -2.6 6.1 4.3 0.6

SAMPL5_074 -10.3 -10.3 -19.0 -19.0 -6.5 -6.5 -1.9

SAMPL5_075 -11.4 -11.9 -9.1 -6.3 -0.6 1.8 -2.8

SAMPL5_080 -6.5 -6.5 -9.6 -9.6 -2.3 -2.3 -2.2
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(1) running long (50 ns) unrestrained MD trajectories of

the ligand in water and cyclohexane

DGunrestr!restr
wat � DGunrestr!restr

cxn ¼ RT � ln Prestrwat=Prestrcxnð Þ
ð5Þ

where Prestrwat and Prestrcxn – probabilities of all torsions of

the ligand to be in the ‘‘restrained’’ space

(h0
i � D� hi � h0

i þ D) in the unrestrained MD calcula-

tions in water and cyclohexane correspondingly. Prestrwat

and Prestrcxn were computed from the ratio of MD snapshots

having all torsions satisfying (h0
i � D� hi � h0

i þ D)

condition.

(2) computing free energy profiles of torsional degrees

of freedom using WHAM/Umbrella Sampling. Umbrella

sampling simulations (100 ps per umbrella) were run with

harmonic restraints applied to individual torsions with a

harmonic constant of 100 kcal/rad*rad and equilibrium

positions of restraining potential separated by 3 degrees for

neighboring umbrellas. Torsional free energy profiles

G(Hi) were obtained applying WHAM technique to tor-

sional distributions obtained in Umbrella simulations.

Corrections for torsional space restraining were computed

using (5) with Prestrwat and Prestrcxn computed from torsional

free energy profiles:

Prestr wat=cxn ¼
Y

i

r exp �G Hið Þ=RT
� �

h0
i �D�hi�h0

i þD
� �

r exp �G Hið Þ=RT
� �

�180�hi�180ð Þ

ð6Þ

For majority of the ligands restraining corrections

DGunrestr!restr
wat � DGunrestr!restr

cxn computed by two methods

were close. In our submitted GAFF Log D results we chose

restraining correction method dependent on the ligand

structure. Method 1 based on long molecular dynamics was

considered more accurate for most of the compounds as it

takes into account correlation in the dynamics of different

torsions in the molecule. Method 2 based on WHAM/

Umbrella sampling calculations [51, 52] was assumed

more accurate for ligands with very large torsional barriers

(such as SAMPLE_048 compound) that were not sampled

during 50 ns MD simulations.

The technique described here improved theoretical

predictions for distributions coefficients when compared to

unrestricted calculations. We will use the GAFF-TR

shorthand for this method.

Results

Validation

Prior to running the SAMPL5 partition challenge mole-

cules we tested the existing version of the simpler polar-

izable FF, QMPFF3 [7, 8] on how well it predicts the

partition coefficient for neutral amino-acid analogues:

methane, propane, isobutane, methylimidazole, methylin-

dole, p-cresol, toluene, ethanol, methanol, acetamide,

propionamide, butylamide, acetic acid, propionic acid,

methanethiol and methyl-ethylsulfide. The results are

shown in Fig. 2, along with the corresponding data for

GROMOS96 [53] and OPLS-AA [54] in comparison to

experiment [55]. QMPFF3 performance here is very sat-

isfactory (mean absolute error (MAE) of the deviation from

experimental values equaling to 1.08) especially consid-

ering that the FF contains practically no adjustments to

experimental data. For OPLS-AA, the MAE of 0.82 is the

lowest in comparison to the other two force fields. While

good, Fig. 2 also suggests that QMPFF3 parameters have a

Table 1 continued

Molecule Cyclohexane Cyclohexane Water Water

QMPFF3-pKa ARROW-pKa QMPFF3-pKa ARROW-pKa QMPFF3-pKa ARROW-pKa Experiment

DG

(kcal/mol)

DG

(kcal/mol)

DG

(kcal/mol)

DG

(kcal/mol)

log D (corrected) log D

(corrected)

log D

SAMPL5_081 -10.5 -10.9 -17.6 -17.4 -7.5 -7.1 -2.2

SAMPL5_082 -15.0 -14.8 -2.7 -1.8 7.6 8.1 2.5

SAMPL5_083 -24.7 -24.7 -30.8 -30.8 -5.2 -5.2 -1.9

SAMPL5_084 -13.0 -13.9 -5.0 -9.6 5.2 2.5 0

SAMPL5_085 -9.1 -9.1 -11.7 -11.7 -1.9 -1.9 -2.2

SAMPL5_086 -14.2 -15.2 -3.5 -7.7 6.3 3.9 0.7

SAMPL5_088 -11.0 -12.1 -8.2 -9.5 2.0 2.0 -1.9

SAMPL5_090 -15.0 -15.0 -4.5 -8.6 7.7 4.6 0.8

SAMPL5_092 -20.0 -20.0 -18.6 -18.6 1.0 1.0 -0.4
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systematic tendency to be overly hydrophobic, especially

for alkyl side chains. The origin of this systematic shift is

not clear to us at the time of this writing. In an attempt to

devise an ad-hoc fix for the SAMPL5 challenge, we sub-

mitted additional sets of predictions which include

hydrophobic correction for alkane groups with 0.37 logD

units per CH2 groups and 2.28 logD units per phenyl group

(submission numbers 58 and 65 with pKa correction and

without, correspondingly, see Table 3). Experimental data

shows that our hydrophobic correction did not improve

overall result. We did not validate ARROW parameters

alongside QMPFF3 as they were not yet available.

Blind prediction

Moving on to the blind prediction, the overall results for all

three of our approaches (Fig. 3, shown along with the

overall winner, COSMO-RS [56]) look significantly worse

than the validation in Fig. 2. The predictions are more

scattered and show a systematic error over the whole set.

Because our methods are still in development, the

amount of work we ended up doing was likely significantly

more than that of the average participant of SAMPL. We

had to produce several needed parameter types for

QMPFF3, the full set of parameters for ARROW, as well as

many other tasks. Consequently, we spent the most time

and care on batch 0 as it was put forth as a small but

representative subset of the total challenge. The predictions

of our three methods along with COSMO-RS for this

representative and required set of 13 compounds are in

Fig. 3. For QMPFF3-pKa, ARROW-pKa and GAFF-TR

the MAEs are 1.94, 2.17 and 1.85 respectively; and the

Kendall’s s for the methods are 0.857, 0.875, 0.828 (See

Table 3). The purpose is, of course, the journey, yet we are

not satisfied with the results.

Moving on from absolute performance, we were curious

to gauge how our methods compare to each other and also

to those of other participants. The predicted values’ range

is almost double that of the experimental ones, which

Fig. 2 QMPFF3 prediction of cyclohexane-water partition coeffi-

cient for neutral amino-acid analogues. Also shown are the predic-

tions for OPLS-AA and GROMOS 96 force-fields. The correlation

coefficient R for QMPFF3, OPLS-AA, and GROMOS95 FF are 0.97,

0.96, and 0.88 respectively

Table 3 The error metrics for

all our submission compared to

objectively best method

COSMO-RS

Method Submission number Batch 0 Total set

MAE RMSD R s MAE RMSD R s

QMPFF3 22 2.24 3.20 0.81 0.68 3.12 3.89 0.47 0.29

ARROW 30 2.69 3.55 0.82 0.72 3.67 4.33 0.52 0.39

QMPFF3-pKa 45 1.93 2.65 0.88 0.74 2.89 3.56 0.58 0.38

ARROW-pKa 6 2.28 3.16 0.86 0.78 3.36 3.98 0.61 0.46

ARROW-HB 65 2.20 2.72 0.53 0.50 3.46 4.40 0.35 0.24

ARROW-HB-pKa 58 2.69 3.02 0.59 0.53 3.82 4.79 0.44 0.30

GAFF-TR 19 1.85 2.34 0.79 0.67 2.32 2.71 0.75 0.54

COSMO-RS 16 1.12 1.64 0.90 0.81 1.66 2.12 0.84 0.73

Fig. 3 Comparison of our predictions for water-cyclohexane distri-

bution coefficient based on the QMPFF3-pKa, ARROW-pKa, and

GAFF-TR to experiment for 13 (Batch 0) SAMPL5 molecules. Also

shown for comparison are the predictions for COSMO-RS. The

correlation coefficient R for QMPFF3-pKa, ARROW-pKa, GAFF-TR

and COSMO-RS are 0.88, 0.86, 0.79, and 0.9 respectively
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suggests a systematic (slope) error; released results show

that others’ MD methods suffer from the same bias as well.

Whenever this occurs we prefer to consider relational

measures such as Kendall’s s rather than only the absolute

ones, such as AUE or MAE. Different errors metrics for

batch 0 and total set is summarized in Table 3. Based on s,

the ARROW-pKa submission is better than QMPFF3-pKa

which, in turn, is better than GAFF-TR. Additionally, the

ARROW-pKa submission is the best MD-based prediction

method in this set if judged by Kendall’s s; only QM-based

methods do better.

For the full set of 53 molecules the picture is roughly

similar but worse (Fig. 4). The numbers are MAE of 3.35,

2.88 and 2.32 again, respectively for ARROW-pKa,

QMPFF3-pKa and GAFF-TR, so the order of performance

is now reversed. (See Fig. 3; Tables 1, 3). Of note is the

fact that QM methods, specifically COSMO-RS, performed

noticeably better than the next best Force-Field challenger

(us) both in batch 0 and in the overall set. Comparison of

our performance in batch 0 and total set by error metrics

(Table 3) shows that QMPFF3 and ARROW performance

batch 0 is statistically better than on total set. All log D

values for our QMPFF3 and ARROW submissions with

and without pKa corrections and with empirical

hydrophobic corrections with their statistical errors are

presented in Table S1.

Finally, our torsional restraint technique for GAFF

performed really well. Torsional restraints calculations

improved LogD predictions significantly: computed MAE

value for GAFF-TR model is 2.32 vs 2.75 for unrestrained

calculations using initial starting geometries and 2.52 for

unrestrained calculations using optimal starting geometries.

The full results of all GAFF logD calculations are pre-

sented in Table 2. Detailed comparison with all GAFF

related submissions are presented on Fig. S1 and Table S2.

Some GAFF calculation have special peculiarities such as

United Atom model for cyclohexane or ELBA water

model. The closest analogue of our GAFF-TR calculation

is column 10 in Table S2 which is neutral GAFF, pre-

sumably, without pKa corrections. While it has a slightly

better RMSD 2.61 vs 2.71, GAFF-TR does better on

overall correlation coefficient R 0.75 vs 0.65 and Kendall’s

s 0.54 vs 0.49.

Conclusion

One of the great things about having a firm deadline is that

it illuminates exactly where your team and your methods

are. The FF parameters, the tools to obtain them, and the

MD code we used are all relatively new and we were

writing/finalizing some of these during the challenge. After

the SAMPL5 challenge, we uncovered errors in our dH/dL

calculation that were responsible for a part of our sys-

tematic hydrophobic shift, but not for all of it. The

ARROW functional form development was accelerated

specifically for the challenge and was implemented during

the competition. Additionally, we were running and

checking QM benchmarks for several new atom types that

the SAMPL5 molecules required. The workflow lessons for

us are that we became really short of time; that our

parametrization procedures need to be much more auto-

matic than they are now; and that while major code addi-

tions benefit from deadlines, they also suffer from them.

Scientifically, we drew several conclusions from the

SAMPL5 challenge. First, in absolute terms, we see that

our methods are not yet where we wish them to be. Some

of the areas of improvement were clearly shown by the

challenge: we need a better description of alkanes, better

sampling, the latter both with brute force (longer simula-

tion times) and with clever techniques (meta-dynamics and

restraints), and more automated parametrization workflow.

There are certainly other directions which we have not

digested and formulated yet.

Our second goal was to see whether our polarizable FF’s

show a systematic improvement over a non-polarizable FF

(GAFF). On this goal the evidence is inconclusive. In batch

0 the performance was in the desired order: ARROW-

pKa[QMPFF3-pKa[GAFF-TR. However, on the full

set GAFF-TR, outperformed both polarizable FF’s. We

would like to say that this was due to the extra attention we

devoted to Batch 0 compounds, but we cannot be certain.

Some of the remaining 40 molecules may simply be more

challenging. It is also possible that some of them may need

better sampling than the 500 ps we used for QMPFF3-pKa

and ARROW-pKa, while for GAFF-TR we used torsional

Fig. 4 Comparison of our predictions for water-cyclohexane distri-

bution coefficient based on the QMPFF3-pKa, ARROW-pKa, and

GAFF-TR to experiment for all 53 SAMPL5 molecules. Also shown

for comparison are the predictions for COSMO-RS. The correlation

coefficient R for QMPFF3-pKa, ARROW-pKa, GAFF-TR and

COSMO-RS are 0.58, 0.60, 0.75, and 0.84 respectively
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space corrections to logD that improved the agreement

with experiment.

Our third aim was to compare our techniques to those of

other groups’. Based on the Kendall’s s metric, in batch 0,

our most complex FF, ARROW, placed first among all MD

FF-based methods. Furthermore, all three of our FF

methods and some of their variants were at top of the

rankings for batch 0. This is very satisfying. On the full set

our performance was significantly worse, with exception of

GAFF-TR which placed a respectable second amongst

MD-FF methods. Again, the authors of the COSMO-RS

technique [56] deserve much praise for their clearly supe-

rior entry.

Fourth, we are very pleased by the utility of torsional

restraints. As mentioned above, the computed MAE value

for GAFF-TR model is 2.32 vs 2.75 for unrestrained cal-

culations using initial starting geometries and 2.52 for

unrestrained calculations using optimal starting geometries,

a very significant improvement. Of note are also the rela-

tively short simulation times permitted by this technique.

Essentially GAFF-TR used the least computational time of

all submitted MD methods yet performed better than

advanced force field calculations. This approach will be

useful to other groups attempting similar calculations.

Participating in the SAMPL5 distribution coefficient

challenge was incredibly useful for our group. We are

happy to see that our force-fields perform relatively well;

but we also see clearly that we have much room for

improvements in both the models and in the workflow.
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