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Abstract The computation of distribution coefficients

between polar and apolar phases requires both an accurate

characterization of transfer free energies between phases and

proper accounting of ionization and protomerization. We pre-

sent a protocol for accurately predicting partition coefficients

between two immiscible phases, and then apply it to 53 drug-

like molecules in the SAMPL5 blind prediction challenge. Our

results combine implicit solventQMcalculationswith classical

MD simulations using the non-Boltzmann Bennett free energy

estimator. The OLYP/DZP/SMD method yields predictions

that have a small deviation from experiment (RMSD = 2.3 log

D units), relative to other participants in the challenge. Our free

energy corrections basedonQMprotomer andpKa calculations

increase the correlation between predicted and experimental

distribution coefficients, for all methods used. Unfortunately,

these corrections are overly hydrophilic, and fail to account for

additional effects such as aggregation, water dragging and the

presence of polar impurities in the apolar phase.We show that,

although expensive,QM-NBBfree energy calculations offer an

accurate and robustmethod that is superior to standardMMand

QM techniques alone.

Keywords Free energy � Partition coefficients �
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Introduction

The relative balance between hydrophilic and hydrophobic

non-bonded molecular interactions is of central importance

to the fields of chemistry [15], biophysics [70] and phar-

macology [47]. Within the field of pharmacology, accurate

characterization of these physiochemical properties is

critical, as they affect all aspects of the drug design pro-

cess, such as: availability [47], potency [75] and toxicity

[48]. Tuning the hydrophobicity of a ligand affects its

ability to diffuse across cellular membranes, alters its

ability to bind to targets and impacts its clearance

properties.

One way of rigorously quantifying a ligand’s

hydrophilicity is the free energy required to transfer a

molecule from a bulk apolar environment (k), e.g. octanol

or hexane, to a bulk aqueous environment, DGk!aq, in the

limit of infinite dilution. In the pharmaceutical sciences,

this transfer free energy is often cast as a partition coeffi-

cient, Pk, the ratio of concentrations of the solute in the two

immiscible phases, which is trivially related to the transfer

free energy, where kB is the Boltzmann constant and T is

the absolute temperature. Because of this, it is frequently

expressed as a common logarithm (logPk).
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Pk ¼
½A�k
½A�aq

ð1Þ

DGk!aq ¼ kBT lnð10Þ logPk ð2Þ

Since many drug molecules contain ionizable groups

that may exist in multiple protomeric states under physio-

logical pH conditions, the reality is often more complicated

than the two-state model implied by partition coefficients.

Solute aggregation, and the water dragging effect [18, 19]

can also lead to non-negligible populations of solute

molecules in ‘‘other’’ states. To account for these devia-

tions from ideal behavior, we can combine the definition of

a partition coefficient with a looser definition of relevant

solute states. By including protonation, tautomerization,

multimerization, etc., we obtain the definition of a distri-

bution coefficient, Dk (Eq. 3).

Dk ¼
P

i ci½A�k;iP
j cj½A�aq;j

ð3Þ

The summation is over all states i and j in the apolar and

aqueous environments, respectively. Equation 3 introduced

the activity coefficient, c, to account for further, subtler

deviations from ideal behavior, however in this work we

will ignore this effect, and assume c � 1.

While distribution coefficients are reliably and quickly

characterized experimentally, [13, 46, 61] analogous phy-

sics-based computational predictions are expensive, and

typically limited to neutral solutes [8, 32]. The accurate

characterization of ionizable solutes, and thus pKa values

remains a challenge. Most successful computational

approaches to pKa prediction involve significant fitting to

experimental data, [45, 77] or relative pKa calculations

[11]. Accurately modeling the precise experimental con-

ditions poses further challenges to the computational pre-

diction of distribution coefficients. For example, the

partitioning between aqueous and organic phases is

exquisitely sensitive to the water content of the organic

phase [1]. In experiments, both polar [29] and apolar [43]

solutes are known to aggregate in the interfacial region,

and thus deplete in the bulk phase.

Even without the complexities associated with predict-

ing distribution coefficients, accurate prediction of partition

coefficients still requires properly accounting for the

change of solute–solvent interactions between apolar and

polar phases. Previous SAMPL small molecule challenges

have emphasized the calculation of hydration free energies

for small molecules, [22, 55, 65] a not-dissimilar task from

our current charge. The lessons learned in this regard from

our previous work in SAMPL4, [40, 58] in which we

showed the effectiveness of using quantum mechanical

[39] based potential energy calculations in combination

with the non-Boltzmann Bennett (NBB) free energy

method [41], should be directly applicable in this current

challenge [2].

In this work we predict the partitioning between aqueous

and cyclohexane phases for 53 small drug-like molecules

in the SAMPL5 blind prediction challenge (Figs. 1, 2). We

use various computational techniques ranging from

molecular dynamics (MD) simulations to quantum

mechanical potential energy evaluations (QM), combining

the best aspects of these approaches via the NBB free

energy estimator. These QM-NBB calculations with

implicit solvent yield predictions with a root mean squared

deviation from experiment (RMSD) that ranks second

among the various entries. We also attempt to account for

deviations from non-ideal behavior using QM based pKa

and protomeric calculations. When these corrections are

applied to partition predictions, the resulting distribution

predictions are found to correlate more strongly with

experimental results, than those predictions made without

the corrections. The results of the underlying molecular

mechanics (MM) free energy simulations, as well as QM/

MM multi-scale free energy results are discussed in a

companion paper in the same issue [38]. The vast majority

of the data in this work were generated in a blind fashion,

before the conclusion of the SAMPL5 challenge, the

exceptions being the inclusion of additional protomeric

states of molecule 83 and additional dimerization states of

molecule 50. These additional results are discussed in the

body of this text, and do not appear in any tabulated results.

Methods

Free energy methods

We will first predict the partition coefficients, logPchex, by

calculating the transfer free energy from cyclohexane to

water, DGchex!aq ¼ DG�
aq � DG�

chex, for the reference states

of the molecules in the challenge, as they were provided by

D3R. Here, the ‘‘�’’ denotes the standard state of

1 mol L�1, and will be implied for the rest of this work.

The most straightforward approach for estimating the free

energy difference between a sampled state i and an

unsampled state j is by application of Zwanzig’s equation

[80]. This approach is used to obtain the free energy dif-

ference by the following

DGi!j ¼ �b�1 lnhexp½�bðUj � UiÞ�ii; ð4Þ

where b�1 ¼ kBT is the thermodynamic temperature, and

Ui is the potential energy of a configuration evaluated using

the indicated Hamiltonian, and the angular brackets indicate

an ensemble average over state i. In principle this approach

can be used to obtain a free energy value from an expensive
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Fig. 1 Chemical structures of the molecules did not deviate significantly from their reference states (\0:01 kcal mol�1)
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QM based potential energy surface, using an ensemble

generated using a cheaper MM based force field. This

strategy is preferable to obtaining a free energy directly

from ab initio MD, which would be prohibitively expen-

sive. The accuracy of this approach is strictly limited by the

similarity between the QM and the MM potential energy

surfaces, as well as by the system size. Because of the

presence of numeric instabilities in this method, alternative

approaches are often preferable [5, 12, 17, 20, 23, 26,

30, 31, 33, 42, 54, 56, 60, 62, 63].

By drawing configurations from both states i and j, one

can obtain the minimum variance estimate between these

states by applying Bennett’s Acceptance Ratio (BAR) [6].

DGi!j ¼ �b�1 ln
hf ðb½Ui � Uj þ C�Þij
hf ðb½Uj � Ui � C�Þii

� �

þ C ð5Þ

where f is the Fermi function

f ðxÞ ¼ 1

1þ expðxÞ ð6Þ

Fig. 2 Chemical structures of the molecules that were determined to have multiple protomeric states
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and C is a constant. An iterative solution is obtained, such

that the ratio in Eq. 5 converges to unity. BAR is very

commonly applied to studying free energy changes in

chemical processes. More recently, a multistate variant has

been derived [64], and it should be adopted when simul-

taneously considering the free energy differences between

more than two states, such as in a chain of states during an

alchemical transformation process. One strict disadvantage

of using BAR is that it requires configurations to be drawn

from both states i and j. This can make direct application of

BAR to QM based calculation too computationally

demanding.

Similar to the Zwanzig equation, we can use the non-

Boltzmann Bennett method to estimate the free energy of

an unsampled state i by using configurations drawn from a

sampled state i0. This is accomplished by biasing the

sampled states i0 and j0 using the potential energy differ-

ence between i and i0 by the following function.

Vb
i ¼ Ui0 � Ui: ð7Þ

The correct ensemble averages in the unsampled states i

and j are then recovered from the biased states by applying

Torrie and Valleau’s relationship [71] to calculate the

unbiased ensemble average, hXii, from configurations

taken from a biased state i0.

hXii ¼
X exp bVb

i

� �� �
i0

exp bVb
ið Þh ii0

ð8Þ

By combining Eqs. 5 and 8 one obtains the NBB equation,

allowing us to estimate the free energy difference between

two unsampled states i and j, that are typically too

expensive to explicitly sample.

DGi!j ¼ �b�1 ln

�
hf ðb½Ui � Uj þ C�Þ expðbVb

j Þij0 hexpðbVb
i Þii0

hf ðb½Uj � Ui � C�Þ expðbVb
i Þii0 hexpðbVb

j Þij0

 !

þ C

ð9Þ

MD simulation

All MD simulations were carried out using the PERT

module [10] of the CHARMM simulation package [9, 10]

and the CHARMM General Force Field (CGenFF) for

organic molecules. [73] The aqueous phase was modeled

with 1906 TIP3P water molecules [34] and six pairs of

sodium and chlorine ions, to approximately reproduce the

ionic strength of the reported experimental conditions (pH

7.4, 136 mM NaCl, 2.6 mM KCl, 7 mM Na3PO4,

1.46 mM KH2PO4, 0.27 M DMSO and 0.18 M acetoni-

trile). The cubic simulation boxes were pre-equilibrated

with 0.5 ns of constant pressure dynamics, resulting in unit

cells with edges varying between 38.55 and 38.75 Å in

length. The apolar phase was modeled with 337 cyclo-

hexane molecules and cubic box sizes with edges varying

from 39.93 to 40.18 Å in length. Long range electrostatics

were represented using smooth particle mesh Ewald sum-

mation [14], while Lennard–Jones interactions used a

switching window at 10 Å, before being truncated at 12 Å.

A Nosé-Hoover thermostat [28] maintained the canonical

ensemble during the 0.5 ns equilibration runs, and during

the 5 ns production runs. All simulations used a 1 fs

timestep and SHAKE constraints on all hydrogen valence

terms. Geometric configurations were saved every 1000

steps for later analysis and post-processing.

Transfer free energies were calculated by turning off all

non-bonded solute interactions, both in the cyclohexane and

the aqueous phases. This alchemical mutation was carried

out in five steps. In step 1, the charges on the cyclohexane

phase solute were decremented to zero over six states

(k ¼ 0:00; 0:25; 0:50; 0:75; 0:90 and 1.00). We refer to this

process as ‘‘uncharging’’. In step 2, we decremented the

Lennard-Jones interactions in the gas phase over 24

equidistant states (k ¼ 0; 1=23; . . .; 22=23; 1). We refer to

this process as ‘‘vanishing’’. For molecules 65, 83 and 92 an

additional state at k ¼ 0:022 was used to achieve conver-

gence as these are the largest and most flexible molecules.

In step 3, we transfer the non-interacting ligand, Aðn;£Þ,
from the cyclohexane to the aqueous phase. The free energy

of this process is equivalent to zero. Step 4 and step 5

negate the vanishing process and uncharging processes,

respectively, in the aqueous phase, using the same

alchemical scheme employed in the cyclohexane phase.

The alchemical scheme is summarized in Eq. 10,

A
ðþ;LJÞ
chex !DG1

A
ðn;LJÞ
chex !DG2

A
ðn;£Þ
chex !DG3

Aðn;£Þ
aq !DG4

Aðn;LJÞ
aq !DG5

Aðþ;LJÞ
aq ;

ð10Þ

where ‘‘?’’ denotes the fully-charged states, and ‘‘n’’

denotes uncharged states.

To enhance sampling, k-Hamiltonian Replica Exchange

[67, 68] was used to attempt exchanges between neigh-

boring k-states every 1000 steps. Because these k-states are
already required for the underlying BAR free energy cal-

culation, multiplexing the alchemical states together via

replica exchange provides accelerated convergence, for

marginal cost. Soft-core potentials were used to avoid the

endpoint problem [7, 76].

QM calculations

All QM calculations in this work were performed using

Gaussian 09 [21]. Transfer free energies were calculated

by using a standard QM optimization approach. To cal-

culate QM based partition coefficients, We used an
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‘‘adiabatic’’ protocol at the M06-2X/6-31?G(d) level of

theory [78, 79] with the SMD implicit solvent [50, 51, 59].

In this scheme, geometry optimizations are carried out in

both the cyclohexane and aqueous phases. Next, the Hes-

sian matrices are computed for both phases, and are used to

compute the thermal corrections (to 298.15 K) for each

molecule in the harmonic limit. Finally, a single point

calculation (SPC) was computed on the static geometries

using a larger (6-311??G(d,p)) basis set, in both phases,

to attempt to further improve the computed transfer free

energies, and to explore the efficacy of the 6-311??G(d,p)

basis set. All QM optimizations were performed with

‘‘Tight’’ wave function and geometry convergence criteria

and by using‘‘UltraFine’’ numerical quadrature as required

by M06-2X.

Due to the large size of molecule 83, QM optimizations

on this ligand instead used the cheaper BLYP/6-

31G(d) [4, 44, 53] method in conjunction with the SMD

implicit solvent We estimated the transfer free energy as

the difference of vertical solvation free energies from the

gas phase into the appropriate bulk phase. Specifically, this

was calculated as the hydration free energy less the sol-

vation free energy in cyclohexane. The default options for

wavefunction and geometric convergence, as well as

default numerical quadrature were also used to speed up

the calculations. Harmonic entropy contributions were

ignored, as the frequency calculations were too expensive.

Some of our previous work [37] has indicated the effec-

tiveness of the BLYP functional for HFE predictions,

despite its simplicity (and significantly reduced cost) with

respect to M06-2X.

QM-NBB calculations

We also estimated the transfer free energies using NBB

combined with two different QM methods: M06-2X/6-

31?G(d) and OLYP/DZP1 [16, 25, 27, 44, 53]. In this

approach, configurations are drawn from the explicit sol-

vent MD calculations, the explicit solvent is removed and

energies are computed using single point QM calculations

with the SMD implicit solvent. Because the solvent degrees

of freedom are treated implicitly, there now exists suffi-

cient overlap, with NBB biasing, to connect the cyclo-

hexane state to the aqueous state directly. In this case 4N

QM calculations are required, where N is the number of

configurations drawn from the two chemical states, and the

NBB equation simplifies to the following.

Vb
i ¼ Ui;MM � Ui;QM ð11Þ

DGchex!aq
QM ¼C þ b�1 ln

�
hf ðb½Uchex;QM � Uaq;QM þ C�Þ expðbVb

aqÞiaq;MMhexpðbVb
chexÞichex;MM

hf ðb½Uaq;QM � Uchex;QM � C�Þ expðbVb
chexÞichex;MMhexpðbVb

aqÞiaq;MM

 !

ð12Þ

While this approach requires a large number of single

point QM calculations, 4� 5000 per molecule in this

study, these costs can be mitigated by the use of looser

wave function convergence criteria and coarser numerical

quadrature than was was used for the analogous QM

optimization calculations. This increased performance ca.

fivefold and incurred a loss of \0:005 kcal mol�1 in

precision. These calculations also have the advantage of

being ‘‘embarrassingly’’ parallel, allowing us to efficiently

use any and all available computer resources, especially

older marginal hardware with poor networking capabilities.

Protomer and pKa corrections

Because the goal of the SAMPL5 challenge is to predict the

distribution coefficients between cyclohexane and water,

rather than the partition coefficients, we must incorporate

contributions from states that significantly deviate from the

neutral reference structures. Using QM based pKa calcu-

lations [11, 49], we will account for populations of the

acidic and basic ligands in their conjugate forms (DGpKa
).

Our corrections will also address the presence of protomers

(DGtaut). While our submissions did not include corrections

for the effects of dimerization (DGdimer) or water dragging

(DGlsolv) [18, 19], we will demonstrate that ignoring these

phenomena may diminish the accuracy of distribution

predictions as well.

Our pKa calculations used both an ‘‘absolute’’ and a ‘‘rel-

ative’’ protocol [11, 49]. In the absolute protocol we use the

usual thermocycle (Fig. 3) to obtain an expression for the free

energy of deprotonating AHþ, in the aqueous phase. Values

for GðAHþ
aqÞ and GðAaqÞ are obtained directly from the QM

calculations. The value of GðHþ
gasÞ is analytic [52], while

DGsolvðHþÞ is experimentally determined [69]. A final factor

of RT lnð24:46Þ is also included to account for change of

standard state from 1 atm L�1, denoted ‘‘�’’, in the gas phase
to 1 mol L�1 in the aqueous phase. Physically, this term

corresponds to the loss of entropy when compressing an ideal

gas from 1 to 24.46 atm (1 M), and is 1.89 kcal mol�1 at

AH+
gas Agas + H+

gas

AH+
aq Aaq + H+

aq

ΔG◦
gas(AH+)

ΔG∗
solv(AH+) ΔG∗

solv(A) ΔG∗
solv(H+)

ΔG∗
aq(AH+)

Fig. 3 The thermodynamic cycle used for absolute pKa calculations

in this work

1 This is the version of Dunning’s DZP basis set that appears in the

Psi4 quantum chemistry package [72].
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Table 1 Predicted values for partition coefficients using the various QM methods presented in this work, in units of log P, as they were submitted

to the challenge

Submission 27 18 21 02 Expt. [61]

M06-2X/ M06-2X/ M06-2X/ OLYP/

6-31?G(d) 6-31?G(d) 6-31?G(d) DZP

Molecule Vertical Adiabatic NBB NBB

02 -0.34 -1.25 -1.36 -0.43 1.5 ± 0.3

03 1.80 1.19 -0.16 1.41 1.9 ± 0.6

04 2.69 1.91 2.24 3.10 2.2 ± 0.3

05 -0.20 -0.29 -2.49 -0.79 -0.9 ± 0.7

06 -2.68 -2.46 -3.94 -1.85 -1.0 ± 0.7

07 1.37 0.92 1.22 1.96 1.4 ± 0.3

10 -3.74 -3.86 -4.45 -3.07 -1.7 ± 0.6

11 2.13 0.53 -1.47 -0.09 -3.0 ± 0.9

13 1.99 0.56 -0.19 1.35 -1.3 ± 0.6

15 -3.91 -4.31 -4.83 -3.35 -2.3 ± 0.3

17 3.67 2.82 1.41 2.44 2.6 ± 0.3

19 4.91 4.41 2.05 3.27 1.4 ± 0.7

20 1.15 0.83 -0.84 -0.16 1.7 ± 0.3

21 0.24 0.09 -0.73 -0.11 1.2 ± 0.3

24 2.34 0.83 0.56 1.64 1.0 ± 0.4

26 -1.25 -1.49 -2.23 -1.62 -2.6 ± 0.3

27 0.70 -0.28 0.37 1.02 -1.9 ± 0.8

33 3.84 3.51 2.16 3.17 1.8 ± 0.3

37 -5.80 -6.56 -7.68 -6.08 -1.5 ± 0.3

42 -0.30 -0.92 -1.77 -0.84 -1.1 ± 0.2

44 -0.34 -1.37 -3.60 -2.42 1.1 ± 0.4

45 -2.30 -2.79 -3.93 -2.88 -2.1 ± 0.3

46 0.21 -0.42 -1.85 -0.99 0.2 ± 0.3

47 -0.12 -0.90 -1.46 -0.57 -0.4 ± 0.2

48 0.21 0.25 -2.53 -1.12 1.0 ± 0.3

49 1.30 0.53 -0.74 -0.08 1.3 ± 0.5

50 -1.71 -2.54 -5.70 -4.18 -3.4 ± 0.5

55 -3.65 -3.77 -4.23 -3.45 -1.5 ± 0.7

56 -2.41 -2.76 -2.25 -1.54 -2.5 ± 0.3

58 1.34 0.05 -0.15 0.98 0.8 ± 0.6

59 -1.12 -1.64 -1.46 -1.26 -1.3 ± 0.3

60 -2.65 -3.46 -3.69 -2.58 -3.9 ± 0.4

61 -3.64 -3.50 -3.95 -2.96 -1.5 ± 0.9

63 -6.84 -6.92 -8.22 -7.17 -3.1 ± 0.4

65 -4.89 -5.42 -5.30 -3.90 0.7 ± 0.3

67 1.13 1.06 -2.36 -0.18 -1.3 ± 0.3

68 0.55 -0.13 -1.25 0.11 1.4 ± 0.3

69 -2.08 -3.35 -4.73 -2.18 -1.2 ± 0.4

70 3.60 3.78 3.92 4.61 1.6 ± 0.3

71 -2.37 -3.86 -3.61 -1.98 -0.0 ± 0.4

72 1.92 2.62 1.90 2.18 0.6 ± 0.3

74 -7.03 -9.24 -10.52 -7.22 -1.9 ± 0.3

75 -1.53 -0.27 -1.97 -0.67 -2.8 ± 0.3

80 -0.26 -0.91 -0.89 0.37 -2.2 ± 0.3

81 -4.49 -4.35 -7.08 -6.21 -2.2 ± 0.3
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298.15 K. Errors from the QM calculation of hydrating the

charged ligand and uncertainties associated with the experi-

mental value of hydrating a free proton (DGsolvðHþÞ ¼
�265:9 kcal mol�1) [69], are thought to limit the accuracy of

the absolute scheme [11]. Once the quantity DGaq has been

obtained, it can be readily converted into a pKa value using

Eq. 13, where R ¼ kB=NA is the usual gas constant.

DGaq ¼ pKaRT lnð10Þ ð13Þ

Alternatively, relative pKa corrections may be preferable

(Eq. 14), as the two main sources of error stated above are

explicitly removed. The correctness of relative pKa calcu-

lations instead depends upon the choice of an appropriate

analog ligand, L, and the availability of reliable experi-

mental data, pKexp
a , obtained under conditions (tempera-

ture, concentration and ionic strength) mirroring those for

the system of interest. If any of these conditions are not

sufficiently met, the relative pKa calculations can vastly

underperform their absolute counterparts. For more infor-

mation about the specific analogs used in this work, please

see Table 3 and Figure S1.

pKrel
a ðAHþÞ ¼ pKexp

a ðLHþÞ
þ DG�

aqðAHþÞ � DG�
aqðLHþÞ

h i
= RT lnð10Þ½ �

ð14Þ

Both pKa schemes can be combined with either adiabatic

or vertical hydration free energy (HFE) calculations from

QM. The adiabatic scheme is as described above. In the the

vertical solvation scheme, gas phase optimized geometries

optimized at theM06-2X/6-31?G(d) level of theory are used

for a single point energy calculation in the aqueous phase at

the same level of theory in the SMD implicit solvent. This

approach neglects solvent relaxation effects during solvation

Table 1 continued

Submission 27 18 21 02 Expt. [61]

M06-2X/ M06-2X/ M06-2X/ OLYP/

6-31?G(d) 6-31?G(d) 6-31?G(d) DZP

Molecule Vertical Adiabatic NBB NBB

82 4.78 5.19 3.91 4.93 2.5 ± 0.3

83 -12.45 -12.45 13.30 -9.92 -2.0 ± 0.3

84 0.89 0.45 -1.46 0.31 -0.0 ± 0.3

85 -0.25 -0.92 -1.72 -0.36 -2.3 ± 0.3

86 2.46 2.04 0.75 0.89 0.7 ± 0.3

88 -2.33 -3.76 -3.76 -2.13 -1.9 ± 0.3

90 0.33 -0.43 -0.82 0.04 0.7 ± 0.2

92 -3.48 -4.06 -4.06 -4.06 -0.4 ± 0.3

RMSD 2.6 ± 0.4 2.7 ± 0.4 3.4 ± 0.6 2.3 ± 0.3

s 0.49 ± 0.08 0.47 ± 0.07 0.44 ± 0.08 0.48 ± 0.07

R 0.61 ± 0.08 0.60 ± 0.07 0.40 ± 0.20 0.63 ± 0.07

Several predictions appear in the table underlined. While these predictions were part of their respective submission, they were not generated

using the indicated method. These discrepancies are due to problems converging certain NBB or QM calculations (83), or other problems with

underlying MM simulation (88 and 92). Replacement values were taken from our pure QM submissions, or from BLYP/6-31G(d)/SMD vertical

solvation QM calculations in the case of 83. Distribution coefficients may be readily obtained by converting free energy corrections from Table 2

and adding them to values in this table

Fig. 4 Our partition estimations from MM BAR (submission 38)

plotted against experiment. We have applied our QM based free

energy corrections (adiabatic/absolute scheme, submission 10),

shifting the predicted values towards more hydrophilic values. These

corrections account for multiple protomeric states and for ligand

ionization due to the presence of protonizable groups. These

corrections substantially reduce the RMSD and increase the correla-

tion of these predictions with respect to experimentally determined

values
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process and may not be appropriate for some of the larger

more flexible molecules in the SAMPL5 data set. A simple

combination of these various approaches yields the four total

pKa correction schemes we used in our submissions. Once

we calculated the pKa values from our various approaches,

we obtained relative populations of conjugate pairs using the

Henderson–Hasselbalch equation at pH ¼ 7:4. These pop-

ulations are then converted into free energy corrections

(DGpKa
) from the neutral reference state.

Other corrections, such as DGtaut, can be obtained by

appropriately combining Eqs. 1 and 3. We then cast the

difference between QM calculated logPk and logDk values

as a free energy correction (Eq. 15) from the reference

transfer free energy, to a transfer free energy that has

additional states included to model the correction of

interest. This correction, originally derived from QM cal-

culations, may then be applied to a transfer free energy

obtained from any method of choice (Eq. 16).

logDQM ¼ logPQM þ DGcorr

kBT lnð10Þ ð15Þ

logPchex ¼ DGchex!aq þ DGcorr

� 	
=½kBT lnð10Þ� ð16Þ

Results and discussion

In this section, individual and collective descriptors, such

as RMSD, of partition and distribution coefficients will be

given in logarithmic units, which are dimensionless, and

thus will not be explicitly listed. These results can be

expressed as free energies using the conversion

1 log ¼ 1:36 kcal mol�1, at 25�C. When comparing pre-

dictions with an experiment, a ‘‘-’’ sign indicates that the

prediction is more hydrophilic than experiment, while a

‘‘?’’ indicates that our prediction is too hydrophobic.

Being one of the most popular and effective quantum

chemistry methods in use today, the M06-2X/6-31?G(d)/

SMD level of theory yielded logPchex predictions that

served as a good reference point by which we could

evaluate the accuracy and efficiency of the rest of our

submissions to the SAMPL5 challenge. When combined

with the vertical solvation protocol (the adiabatic protocol

performs similarly, submission 28), these predictions

agreed relatively well with experiment, sixth overall

(submission 27, RMSD = 2.58), but correlated poorly with

experiment (Kendall’s s ¼ 0:46). While we chose to

include both frequency and single point corrections with a

triple-f basis set, with our adiabatic protocol, neither of

these corrections changed the collective behavior of our

predictions significantly (Figure S2). The most significant

outlying result, by far, is for 83. We did not identify the

correct protomeric state for this molecule in either the

cyclohexane or aqueous phases. Using the incorrect pro-

tomer as the basis for our predictions, our value for

logPchexð83Þ is too hydrophilic by 12.45. The results from

these submissions are explicitly tabulated in Table 1.

After consulting with other participants at the D3R

meeting, and then identifying more stable protomers in

Fig. 5 Partition coefficient estimations from our QM-NBB OLYP/

DZP free energy calculations (left, submission 02). After application

of our free energy corrections (adiabatic/absolute scheme, the

resulting distribution coefficients correlate more strongly with

experiment, but are significantly too hydrophilic, and systematically

overestimate the hydrophilicity (right, submission 54)
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both phases, our predicted partition value is in much better

agreement with experiment, but is still far too hydrophilic

Dexp ¼ �7:11. The RMSD for this submission is also sig-

nificantly reduced to 2.25 units by using the proper tau-

tomers for 83, now ranking it amongst the best submissions

by RMSD. The correlation with experiment is still very

poor however, and is significantly worse than the result

obtained by the top performing COSMO-RS submission

(submission 16, RMSD ¼ 2:1	 0:2, s ¼ 0:73	 0:04)

[36, 35]. The extreme sensitivity of these results to the

inclusion of two additional protomers for a single molecule

in the data set, dramatically underscores the difficult nature

of these calculations.

While a detailed analysis of the results from the

underlying MM free energy simulations are discussed in a

companion paper to this work, [38] it is important to briefly

introduce and discuss them. Running the simulations using

reference states where all protonizable groups are neutral,

and protomers are incorrectly assigned for at least three

molecules (50, 56 and 83), yields extremely poor results.

The CGenFF fixed charge force field, in combination with

the BAR free energy estimator, provides partition predic-

tions that significantly deviate from experiment (submis-

sion 38, RMSD ¼ 5:6	 0:4, s ¼ 0:25	 0:08). Applying

our corrections based on absolute pKa calculations

(Table 3) and adiabatic solvation free energy calculations,

improves this result dramatically (Fig. 4), reducing the

deviation from experiment and increasing the correlation

(submission 10, RMSD ¼ 3:14, s ¼ 0:49).

The predicted partition coefficients (Table 1) using the

QM-NBB free energy estimator combined with the OLYP/

DZP level of theory had a relatively low deviation

from experiment (submission 02, RMSD ¼ 2:3	 0:3,

s ¼ 0:48	 0:07), ranking second by RMSD, but a rela-

tively mediocre correlation (Fig. 5). After applying our

free energy corrections based on absolute pKa calculations

and adiabatic solvation free energy, the resulting distribu-

tion coefficients deviate further from experiment, however

the correlation with experiment increases (submission 54,

RMSD ¼ 2:68, s ¼ 0:53). While we did not address

Table 2 The original free energy corrections from reference to

equilibrium conditions using the various solvation and pKa schemes,

as submitted to the SAMPL5 challenge

Molecule Analog Adiabatic Adiabatic Vertical Vertical

pKabs
a pKrel

a pKabs
a pKrel

a

04 L01 -0.0027 -0.3847 -0.0044 -0.3284

10 L02 -2.7875 -6.2984 -1.4855 -5.4582

11 L03 -3.9355 -5.7448 -8.3692 -5.6514

15 L04 -3.7814 -9.2797 -2.9715 -9.1309

17 L05 -0.0006 -0.0006 -0.4107 -0.4107

26 L06 -1.4138 -3.4527 -0.0296 -2.7488

27 – 0.0000 0.0000 0.0000 0.0000

37 L07 -0.0065 -0.0800 -0.0015 -0.0314

47 L08 -1.3858 0.0000 -0.3834 0.0000

48 L08 0.0000 0.0000 0.0000 0.0000

49 L08 -0.0002 0.0000 0.0000 0.0000

50 L05 -8.5884 -14.2726 -9.0355 -16.3250

56 L05 -3.9610 -6.5669 -4.7477 -6.9113

60 L03 -1.2984 -3.0039 -1.2355 -3.8497

61 L09 -0.0007 -0.0179 -0.0016 -0.0372

63 L10 -3.3279 -4.3205 -2.5632 -3.1222

65 L11 -0.1986 -0.7811 -0.0033 -0.0037

67 L12 -1.4434 -1.0910 -0.6303 -0.0509

69 L10 -0.1734 -0.6055 -1.1760 -0.5853

70 L13 -1.3071 -2.2183 -0.8740 -1.5455

71 – 0.0000 0.0000 0.0000 0.0000

72 L13 -0.6511 -1.4325 -0.1069 -0.3275

75 L12 -0.4576 -0.2757 -1.1267 -0.1414

81 L12 -1.1127 -0.7939 -1.5449 -0.2765

82 L12 -0.4290 -0.2561 -0.0602 -0.0030

84 L10 -2.7626 -3.7442 -0.3028 -0.5945

85 L14 -0.0777 -0.4561 -0.0513 -1.1204

86 L11 -1.2386 -2.3146 -0.0683 -0.0747

92 L15 -0.0001 -0.0880 -0.0027 -1.4623

The M06-2X/6-311??G(d,p)//6-31?G(d) level of theory was used

with the SMD implicit solvent. No attempts to correct for deviations

from reference states were made for molecule that do not appear in

this table. Free energy calculations are in kcal mol�1

Table 3 Chemical names and experimental pKa values for analog

molecules used in relative pKa calculation schemes

Molecule Chemical name pKexp
a Ref.

L01 4-Methylquinoline 5.67 [57]

L02 Aniline-3-carboxylic acid 3.07, 4.79 [57]

L03 Aniline-2-carboxylic acid 2.17, 4.85 [57]

L04 Sarcosine 2.21, 10.1 [57]

L05 Phenol 9.99 [57]

L06 Benzeneacetic acid 4.31 [57]

L07 Piperazine 9.73, 5.33 [57]

L08 Isoxazole -2.0 [57]

L09 Morpholine 8.50 [57]

L10 N-methylpiperidine 10.08 [24]

L11 Triethylamine 10.75 [57]

L12 Diisopropylamine 11.05 [57]

L13 N,N-dimethylethylamine 10.16 [57]

L14 Hydantoin 9.0a [3, 74]

L15 Imidazole 6.99 [57]

L16 2-Pyridone 11.65 [66]

All pKa measurements where taken at 25�C, except for L01, which
was taken at 20 �C
a An erroneous value of 9.16 from the secondary literature [74] was

used mistakenly in the pKa calculations

1096 J Comput Aided Mol Des (2016) 30:1087–1100

123



dimerization in our SAMPL5 submissions, our subsequent

analysis indicated that these effects can be substantial. For

example, molecule 50 will likely dimerize in the apolar

phase, significantly decreasing its lipophobicity. Similarly,

for molecule 74, the water dragging effect may diminish its

lipophobicity as well, as its many alcohol groups can

strongly coordinate a water molecule. Similarly the effect

of polar impurities in the apolar phase was not investigated

either. Our QM-NBB calculations using M06-2X did not

perform significantly differently from the analogous OLYP

calculations. This is an advantageous result from an effi-

ciency perspective, as OLYP is a pure functional, and does

not have a kinetic energy density term, nor a Hartree–Fock

exchange, making it significantly cheaper than M06-2X.

However, this result is also disappointing, because it closes

an obvious path for trivially improving the quality of par-

tition predictions by improving the quality of our QM

functional.

The quality of pKrel
a calculations (Table 2) is exquisitely

dependent upon the choice of analog molecule (Table 3). In

many cases, an obvious choice will present itself, and the

resulting pKrel
a calculation is likely to be more accurate

than its absolute analog. In other cases, choosing an

appropriate chemical analog will be difficult or impossible.

One example is the acidic phenolic hydrogen in 17. Phenol

is a poor choice of analog for this system, because this

proton is stabilized by an intramolecular hydrogen bond

with the neighboring basic heterocyclic nitrogen. By

directly comparing the pKrel
a and pKabs

a predictions (Fig. 6),

we may be able to blindly assess the quality of our free

energy corrections without any a priori knowledge of the

distribution coefficients.

Conclusions

The OLYP/DZP QM method with SMD implicit solvation

model performed very strongly relative to other submis-

sions when combined with the NBB free energy estimator

(submission 02). Overall, this submission ranked second by

RMSD, but had only a mediocre correlation as estimated

by Kendall’s s. While this particular combination of den-

sity functional and basis set is unusual, this protocol [58]

was designed using HFE data from the SAMPL4 challenge

[55] as a target. The cost of the QM-NBB approach is

relatively high relative to simple QM optimization, due to

the large number of configurations that must be evaluated

(
4� 5000) for each molecule. This cost is mitigated

somewhat by the embarrassingly parallel nature of these

energy evaluations.

The M06-2X/6-31?G(d) QM optimization calculations

with SMD implicit solvent also performed well, ranking

sixth overall by RMSD (submission 27). This submission

was made because the required QM calculations were a

strict subset of the calculations required for our pKa

predictions. The M06-2X and SMD approaches are

ubiquitous in the literature, [50, 59] and serves as a

good ‘‘control’’ to help us understand how our more

complicated and more expensive free energy methods

compare against other popular approaches. These

Fig. 6 Differences in free energy corrections calculated using the two

different pKa calculation schemes, both of the free energy corrections

in this figure used the adiabatic solvation protocol. When the two sets

of corrections strongly deviate, it may be a sign of poor analog

selection in the pKrel
a calculations
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predictions also had mediocre correlation as estimated by

Kendall’s s.
By including our pKa and protomeric corrections with

our partition predictions (specifically our corrections

based on adiabatic solvation free energies and an absolute

pKa scheme), our resulting distribution predictions

enjoyed increased correlation for all tested methods.

Unfortunately, in many of our best performing methods,

such as QM-NBB with OLYP/DZP, our corrections in-

creased our RMSD values. This occurred because our

logPchex predictions were already too hydrophilic relative

to experiment. Our corrections, as submitted to the

SAMPL5 challenge, exacerbated this problem, further

increasing the hydrophilicity of our predictions, because

our corrections summed over additional aqueous phase

states, further tipping the balance of our predictions

towards the hydrophilic.

Our pKa corrections indicated that some of our reference

states, under which our MD simulations were performed,

were very far from equilibrium. Molecule 83 for example,

has a protomer in the apolar phase that is ca. 10 kcal mol�1

from the state we modeled with MD. Differences this large,

cannot likely be corrected for using QM optimization cal-

culations on one configuration.

Our pKa corrections were performed using the QM

optimization protocol, which, while successful overall,

suffers from over representing the global minimum struc-

ture, as conformational entropy of neighboring low-lying

configurations is neglected. This effect should be particu-

larly troublesome for larger molecules that were very

common in this challenge, as well as for the many ionic

conjugates that were ubiquitous in this data set. The

accuracy of our pKa corrections could likely be improved

by using a NBB scheme here as well. This approach will be

the subject of follow up work.
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