
Blind prediction of cyclohexane–water distribution coefficients
from the SAMPL5 challenge

Caitlin C. Bannan1
• Kalistyn H. Burley2

• Michael Chiu3
• Michael R. Shirts4

•

Michael K. Gilson5
• David L. Mobley1,2

Received: 21 June 2016 / Accepted: 22 August 2016 / Published online: 27 September 2016

� Springer International Publishing Switzerland 2016

Abstract In the recent SAMPL5 challenge, participants

submitted predictions for cyclohexane/water distribution

coefficients for a set of 53 small molecules. Distribution

coefficients (log D) replace the hydration free energies that

were a central part of the past five SAMPL challenges. A

wide variety of computational methods were represented

by the 76 submissions from 18 participating groups. Here,

we analyze submissions by a variety of error metrics and

provide details for a number of reference calculations we

performed. As in the SAMPL4 challenge, we assessed the

ability of participants to evaluate not just their statistical

uncertainty, but their model uncertainty—how well they

can predict the magnitude of their model or force field error

for specific predictions. Unfortunately, this remains an area

where prediction and analysis need improvement. In

SAMPL4 the top performing submissions achieved a root-

mean-squared error (RMSE) around 1.5 kcal/mol. If we

anticipate accuracy in log D predictions to be similar to the

hydration free energy predictions in SAMPL4, the

expected error here would be around 1.54 log units. Only a

few submissions had an RMSE below 2.5 log units in their

predicted log D values. However, distribution coefficients

introduced complexities not present in past SAMPL chal-

lenges, including tautomer enumeration, that are likely to

be important in predicting biomolecular properties of

interest to drug discovery, therefore some decrease in

accuracy would be expected. Overall, the SAMPL5 dis-

tribution coefficient challenge provided great insight into

the importance of modeling a variety of physical effects.

We believe these types of measurements will be a

promising source of data for future blind challenges,

especially in view of the relatively straightforward nature

of the experiments and the level of insight provided.

Keywords SAMPL � Distribution coefficient � Blind
challenge � Free energy � Alchemical � Molecular

simulation

Introduction

This year’s Statistical Assessment of Modeling of Proteins

and Ligand (SAMPL) challenge focuses on prediction of

cyclohexane–water distribution coefficients. The inclusion

of distribution coefficients replaces the previous focus on

hydration free energies which was a fixture of the past five

challenges (SAMPL0-4) [1–7]. Due to a lack of ongoing

experimental work to generate new data, hydration free

energies are no longer a practical property to include in

blind challenges. It has become increasingly difficult to

find unpublished or obscure hydration free energies and

therefore impossible to design a challenge focusing on

target compounds, functional groups or chemical classes.

But this type of data is extremely valuable—the past
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SAMPL challenges have driven real improvements in a

variety of methods for calculating hydration free energies

[1]—so we sought to include a similar physical property in

SAMPL5. The organizers of SAMPL5 settled on cyclo-

hexane–water distribution coefficients, and thanks to a

partnership with Genentech, this led to a series of mea-

surements on drug-like compounds, discussed in detail in

this issue [8]. The experimental measurements are also

straightforward enough that future distribution coefficient

challenges can be deliberately designed to focus on issues

that merit attention to move the field forward.

Partition and distribution coefficients are important

physical properties [9, 10] which can provide a valuable

opportunity for testing computational methods and

molecular models. Distribution coefficients describe how

all forms of a solute distributes itself across two immiscible

solvents. In this case,

D ¼
P

i½Xi�cycP
i½Xi�aq

ð1Þ

where Xi represents a single protonation or tautomeric state

of the solute in one of the solvents, and the sum runs over all

protonation and tautomeric states [10]. Results are reported

as the logarithm of this ratio (logD). These are more com-

plicated than partition coefficients (logP), which measure

the concentration of the neutral solute in both solvents [9].

Specifically, if only one tautomer is relevant, logP is pro-

portional to the transfer free energy, and can be calculated

from solvation free energies [11–21]. In contrast, all relevant

charged and neutral forms of the solute will need to be

included to accurately calculate logD, which can be esti-

mated from a calculated logP and the relative populations of

protonation states and tautomers in each solvent. Thus,

accurate tautomer enumeration in both solvents may be an

important part of predicting logD, introducing new com-

plexities to the SAMPL challenge which were avoided in

previous hydration free energy challenges.

Here we give an overview of the analysis done for the

SAMPL5 challenge, including the compounds considered,

overall performance of submissions, and the metrics used

for analysis. We also include details for a set of reference

calculations we performed estimating logD as the cyclo-

hexane/water partition coefficient as well as a series of

follow-up studies focusing on the importance of tautomers

in estimating logD. Overall, we believe the outcome of the

present SAMPL5 challenge highlights the potential benefits

of this type of experimental data to improve computational

methods, force fields, sampling algorithms, and treatment

of protonation states and tautomers. Many of these issues

will be highly relevant for nominally more challenging

problems, such as prediction of protein–ligand binding

affinities.

Challenge logistics

SAMPL5 began on September 15, 2015 when the specifi-

cations and input files for the challenge were made avail-

able on the D3R website (http://drugdesigndata.org); these

are also provided in the supporting information, made

available on the University of California Dash (http://n2t.

net/ark:/b7280/d1988w). The challenge deadline was

February 2, 2016 and experimental results were provided to

participants not long after. As in past SAMPL challenges,

each group could submit multiple sets of predictions. There

was also the option for participants’ identities to remain

anonymous, although their results and method descriptions

would still be made available. A total of 76 prediction sets

from 18 participants or participating groups were submitted

and assigned a random 2 digit ID number, 01–76, that will

be used throughout this paper. Predictions were analyzed

and overview statistics, as well as individual analysis of

each submission by various error metrics (as detailed

below) were returned to each participant. The challenge

culminated with discussions of participants experiences

and results at the 1st D3R Workshop at the University of

California, San Diego March 9–11, 2016.

For the prediction of distribution coefficients in

SAMPL5, a total of 53 molecules were considered. They

were assigned an identifier in the form SAMPL5_XXX and

are pictured in Table 1. The 53 molecules were divided into

batches 0, 1, and 2 containing 13, 20, and 20 molecules

respectively. We wanted each batch to have a similar

dynamic range and for the molecules to increase in size

across batches, so on average the smallest molecules are in

batch 0 and the largest in batch 2. To ensure each batch had

adequate dynamic range, the molecular weight and esti-

mated octanol/water partition coefficient were computed

for each compound. These partition coefficients were

estimated with OpenEye’s logP calculator. Molecules

were then assigned to bins by estimated partition coeffi-

cient, and assigned to batches based on molecular weight.

Specifically, the smallest molecules from each partition

coefficient bin were added to batch 0, then batch 1, and the

rest of the molecules comprise batch 2.

Participants could submit partial sets of predictions as

long as they included full consecutive batches; that is, they

could submit batch 0, batches 0 and 1, or batches 0, 1, and

2. The idea was that all participants should attempt pre-

dictions on the full set if at all possible, but grouping into

batches would allow people with particularly demanding

methods (such as polarizable force fields or methods

requiring intensive quantum mechanics) to focus on

smaller compounds and still be evaluated. Eight submis-

sions from two participants included results for only batch

0, and an additional five submissions from two participants

928 J Comput Aided Mol Des (2016) 30:927–944

123

http://drugdesigndata.org
http://n2t.net/ark:/b7280/d1988w
http://n2t.net/ark:/b7280/d1988w


provided only batches 0 and 1. Here we focus on the results

for the complete set of molecules (batches 0, 1, and 2).

Separate analysis for data subsets is available in the sup-

porting information on Dash

Participants were asked to report a cyclohexane/water

distribution coefficient for each molecule. As discussed

above, distribution coefficients are the ratio of concentrations

for all forms of the solute in the cyclohexane and aqueous

layers, at a specified pH. In this case, experiments were done

with the water layer consisting of a buffered aqueous solution

at pH 7.4. We also required participants to provide two esti-

mates for uncertainty, a statistical uncertainty for their com-

putational method and a model uncertainty that estimates

agreement with experiment. The statistical uncertainty was

Table 1 A complete list of compounds used in the SAMPL5 challenge, sorted by batch

The average unsigned error (AUE), reported in log units in the format ‘‘SAMPL5 ID: AUE’’, was calculated with all submitted predictions for

that compound. The 2D images were generated using OpenEye OEDepict toolkit [22] using the provided SMILES strings
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intended to be the variation expected over repeated calcula-

tions of the same value. The model uncertainty, on the other

hand, was intended to provide an estimate of how well the

calculated value will agree with experiment. For example, in

a recent study we computed cyclohexane/water partition

coefficients using alchemical solvation free energy calcula-

tions in GROMACS where the statistical uncertainties were

around 0.05 log units, but the root mean squared error was

around 1.4 log units [23], so an appropriate estimated model

uncertainty would have been 1.4 log units. A careful analysis

of expected error could even yield model uncertainties which

would vary based on the anticipated difficulty or complexity

of a compound. Our interest in model uncertainties is in part

based on the realization that an important part of creating

predictive models is the ability to know when they will be

unreliable or fail. Thus, analysis of model uncertainties is an

important part of evaluating any model.

Analysis of submission performance

As in past SAMPL challenges, we considered a variety of

error metrics in analyzing all predictions submitted to

SAMPL5. Each error metric was calculated for all sub-

missions, by batch, and distributed to challenge partici-

pants before the workshop. Here we will focus primarily on

six error metrics: the root-mean-squared error (RMSE),

average unsigned error (AUE), average signed error (ASE),

Pearson’s R (R), Kendall’s tau (tau), and the ‘error slope’

explained in depth below. We also calculated the maxi-

mum absolute error and the percent of predictions with the

correct sign, but these are not included in the analysis here.

However, these metrics were provided to challenge par-

ticipants and are available in the supporting information on

Dash. The uncertainty in each metric was calculated as the

standard deviation over 1000 bootstrap trials, where each

trial consists of creating a ‘new’ dataset by sampling pairs

of (predicted, calculated) values from the original set, with

replacement. As described previously, this bootstrapping

technique also included variation in the experimental val-

ues based on their reported uncertainties [1].

As discussed above, an important factor influencing the

utility of a predictive tool is the ability of the tool to not only

provide predictions but to predict the accuracy of those

predictions—that is, how well the calculated values are

likely to agree with experiment—not just its statistical error.

To assess this, as in SAMPL4 [1], a quantile–quantile plot

(QQ Plot) was created for each prediction set [24]. QQ Plots

compare the fraction of a normal distribution within a

specified number of standard deviations to the distribution of

errors (calculated minus experiment) that are within that

number of model uncertainties. For example, consider the

number of predictions within one standard deviation of the

expected value; if the samples are drawn from a normal

distribution, then 0.68 of the values ought to fall within one

standard deviation, so the value on the x-axis is 0.68. The

value on the y-axis will represent the fraction of predictions

that are within one model uncertainty of the experimental

value. If the model uncertainty is accurate, then this also

ought to correspond to a value of 0.68. A linear regression

analysis helps summarize these results. The ‘error slope’ is

the slope of the line comparing the fraction of predictions

within a specified range of experiment to the expected

fraction from a normal distribution. An error slope of greater

than one indicates that the calculated values are within

uncertainty of experiment more often than expected, or in

other words the model uncertainty was overestimated. In

contrast, an error slope less than one suggests the model

uncertainty was underestimated.

We also attempted to identify any individual molecules

where most of the methods failed to accurately estimate the

distribution coefficient. To accomplish this, we analyzed

all predictions on a molecule-by-molecule basis via our

usual set of error metrics. Here we will primarily focus on

just average unsigned error for molecules, but all other

error metrics were provided to participants and are avail-

able in supporting information on Dash.

Reference calculations

We calculated distribution coefficients through a few dif-

ferent methods as a reference. K.H.B., a graduate student in

the Mobley group, performed a set of blind calculations

estimating the logD as a partition coefficient between

cyclohexane and water calculated from solvation free

energies. In addition, C.C.B. and D.L.M. performed post-

challenge analysis of protonation and tautomeric states and

used this to convert our calculated partition coefficients to

distribution coefficients. We considered a null hypothesis

where all molecules are assumed to distribute equally

between cyclohexane and water. Many fast structure-based

tools for octanol/water partition coefficients exist, and we

used one of those to estimate partition coefficients, both

with no correction for the fact that we are interested in

cyclohexane, and with a small adjustment for this as dis-

cussed below.

Calculating partition coefficients from solvation free

energies

We decided to estimate distribution coefficients via a logP

calculation, by assuming only a single neutral tautomer of

each solute, then calculating logP from a difference in

solvation free energies. Before the challenge, each mole-

cule was taken directly from the provided SMILES string.
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As demonstrated in the literature [11–21], partition coef-

ficients are directly proportional to the difference between

the solvation free energy for the solute into each solvent.

We use previously established and automated protocols

[23] to calculate the solvation free energy of each molecule

into water and cyclohexane. Then the calculated partition

coefficient was reported as an estimate for logD.

To calculate solvation free energies, we used automated

tools created by the Mobley lab. Molecular dynamics

simulations were performed in GROMACS [25–31] with

the General AMBER Force Field (GAFF) [32] with AM1-

BCC charges [33, 34]. The TIP3P water model [35] was

used for the aqueous phase. Topology and coordinate files

for the solvated boxes with 1 solute molecule and 500

cyclohexane or 1000 water molecules were built using our

Solvation Toolkit [23]. These files were then converted to

AMBER, DESMOND, and LAMMPS formats and pro-

vided to SAMPL5 participants as reference calculations.

The Solvation Toolkit takes advantage of many open

source Python modules and is available at https://github.

com/MobleyLab/SolvationToolkit. It converts SMILES

strings or IUPAC names of any mixture of small organic

compounds to parameterized molecules and builds topol-

ogy and coordinate files for a variety of simulation pack-

ages. All molecular dynamics parameters are identical to

previous studies [4, 23, 36]. The molecule is taken from the

solvated box to a non-interacting gas phase in 20 lambda

values. Solvation free energies are calculated with

Alchemical Analysis tool [37] using the multi-state Bennett

acceptance ratio to extract the free energy difference

between the beginning and end state. The partition coeffi-

cient was calculated as the difference between the cyclo-

hexane solvation free energy and the hydration free energy.

The statistical uncertainty was reported as the propagated

uncertainty from the solvation free energy calculations.

The model uncertainty was estimated to be the same for all

molecules and reported as the root-mean-squared error

from a recent study on calculating cyclohexane/water

partition coefficient, specifically 1.4 log units [23]. These

reference calculations were assigned submission ID 39 and

included in the error analysis performed on all submissions.

Simulation box size does not affect the calculated solvation

free energy

Hydration free energies were previously shown to be

independent of box size for box edges ranging from 2 to 9

nanometers, within calculated uncertainties [38]; however,

here, because cyclohexane is much less polar, we had some

concern that finite size effects could still be significant. To

explore this, we performed tests in which we varied the

simulation box size. Because more polar solutes are more

likely to have substantial long range interactions, we

calculated the dipole moment of each SAMPL5 molecule

using the position and charges on atoms in the mol2 files.

SAMPL5_024 had the largest dipole moment so it was

used as the solute for the box size investigation. The sol-

vation free energy calculations were set up as described

above, changing the number of cyclohexane molecules

from 100 to 500. Our calculations above are performed

with lattice-sum (PME) treatment of coulomb interactions.

It was the primary focus of this check and we included

duplicate calculations for the smaller box sizes where the

initial coordinate file was the same, but new velocities were

generated for the equilibrium phases. We also repeated the

solvation free energy calculations with reaction field cou-

lomb interactions assigning the dielectric coefficient for

cyclohexane, 2.0243 [39]. For both types of simulation, the

calculated solvation free energy fluctuated around an

average of 19.1 kcal/mol with no trend that would suggest

solvation free energy depends on box size (Fig. 1). There

are many other explanations for fluctuations in calculated

solvation free energies, including sampling, that might

account for the 0.48 kcal/mol range in the PME simula-

tions. Ultimately, we find that box edge lengths from 2.64

to 4.54 nm have no significant effect on the calculated

solvation free energies. This suggests that in the future,

smaller box sizes could be used for computational effi-

ciency. The input, results, molecular dynamics parameter

and coordinate files, and tables of solvation free energies

are available in the supporting information on Dash.

Consideration of tautomers after SAMPL5

To help understand how the results from our partition

coefficient calculations could have been improved, we

considered corrections for changes in the solutes’ proto-

nation or tautomeric states. Distribution coefficients differ

from partition coefficients in that they include all forms of

the solute in both solvents. A common way to convert

Fig. 1 Calculated solvation free energy for SAMPL5_024 is

independent of box size for PME and reaction field coulomb

interactions. Points are connected to help distinguish between the

two data sets

J Comput Aided Mol Des (2016) 30:927–944 931

123

https://github.com/MobleyLab/SolvationToolkit
https://github.com/MobleyLab/SolvationToolkit


between experimentally measured distribution coefficients

and partition coefficients is with pKa values for the solute

[40]. This is a simple correction using the Henderson–

Hasselbalch equation:

pH ¼ pKa þ log
½X�
½HX� ð2Þ

to relate the concentration of neutral species to the charged

species at a given pH. This correction assumes the solute

only has one other relevant protonation state and changes

for acidic and basic molecules. Zwitterions and other

neutral tautomers are not taken into account. The equation

used to calculate a distribution coefficient (logD) from a

partition coefficient (logP) for a basic solute (or X in Eq. 2)

is below

logD ¼ logP� logð1þ 10pKa�pHÞ ð3Þ

Alternatively for an acidic solute (or HX in Eq. 2) we

would instead use:

logD ¼ logP� logð1þ 10pH�pKaÞ ð4Þ

We use Schrödinger’s Epik tool [41–43] to estimate pKa

values for each molecule according to experimental con-

ditions. We then estimated logD using the equations

above, accounting for just one change in protonation state,

meaning each solute was taken to be either acidic or basic.

For acidic solutes, the smallest acidic pKa was used with

Eq. 4, oppositely for basic solutes the largest basic pKa was

used with Eq. 3 to estimate logD from logP.

Using pKa values only accounts for one change in

protonation, whereas a correct distribution coefficient

should include all relevant tautomers and protonation states

of the molecule in both solvents. To account for all other

tautomer states, we used Schrödinger’s LigPrep [44] to

enumerate tautomers for each molecule in the aqueous

solution. The results of the enumeration can include an

energetic ‘‘state penalty’’ calculated with Epik which

relates the population of that tautomer to all others. This

state penalty can be converted into log units and used as a

correction term to convert logP to logD:

logD ¼ logPþ�Estate penalty

kBT lnð10Þ ð5Þ

where kB is Boltzmann constant and T is temperature.

LigPrep can only perform the tautomer enumeration with

water or DMSO as a solvent, so we were unable to predict

tautomers in cyclohexane. Therefore both of these correc-

tions account for the protonation or tautomer states only in

the aqueous layer and assume the tautomer remains fixed in

cyclohexane as the one used in the initial simulation. In the

results section below, the corrections performed with pKa

and the corrections made with the the calculated state

penalty are referred to logDpKa
and logDstate penalty

respectively.

Estimating distribution coefficients with a fast,

structural based partition coefficient calculator

Many structure-based tools exist for octanol/water partition

coefficients; they are very fast and generally accurate.

However, these tools are all trained on empirical data,

meaning they are limited by the training data. We chose the

OpenEye tool OEXlogP [45, 46] as an example of such a

tool. Two post-prediction sets were prepared with the

OEXlogP tool. First, the predicted octanol/water partition

coefficient was considered an estimate for cyclohexane/

water distribution coefficient. In the second set, we used a

linear regression to correct for the bias between the cal-

culated XlogP values and a set of experimental cyclohex-

ane/water partition coefficients [9]. For the rest of this

paper we will refer to the octanol/water partition coefficient

set as X log Poct and the bias-corrected set as X log Pcorr.

Exploring the possibility of solvent mixing

Because no two solvents are perfectly immiscible, we

wanted to explore the effect that a small amount of water

present in cyclohexane would have on computed logD

values for one of the more polar solutes. The experimental

concentration of water in cyclohexane is 0.00047 mole

fraction [47]. The presence of water in the cyclohexane

phase has a possibility of affecting the transfer free energy,

especially for solutes with many polar functional groups.

Also, it has been suggested that particularly polar com-

pounds can pull water with them from the aqueous layer

into the organic solvent [9]; while this is a kinetic argument

and should not apply to equilibrium thermodynamic

properties like logD, the point is well taken—some solutes

have a particularly high affinity for water and may actually

impact the amount of water present in cyclohexane when

the solute is present at finite concentration. Thus, to

investigate this, we took one of the most polar com-

pounds—one for which we had particularly large errors

relative to experiment—SAMPL5_074, and performed two

additional sets of free energy calculations in cyclohexane.

Both sets of simulations had the single solute in 150

cyclohexane molecules, but varied in water content—the

first with seven water molecules present in cyclohexane,

and the second with only a single water molecule. The

input files for these simulations were also created with

Solvation Toolkit as described above and the same simu-

lation protocol was followed. These simulations were

conducted after the SAMPL submission deadline in order

to help us understand the role of water in such cases.

932 J Comput Aided Mol Des (2016) 30:927–944

123



The experiments were not done on completely pure

water and cyclohexane—particularly, experimental distri-

bution coefficients were measured with small amounts of

dimethyl sulfoxide (DMSO) and acetonitrile present in

solution. Therefore, we investigated the how acetonitrile

and DMSO would distribute in simulations. The experi-

mental concentrations reported for each solvent are

approximately 50, 50, 1, and 0.4 % by volume for cyclo-

hexane, water, DMSO, and acetonitrile respectively [8]. To

explore how the DMSO and acetonitrile distribute between

cyclohexane and water we performed a single simulation

with 130 cyclohexane, 780 water, four DMSO, and two

acetonitrile molecules, mirroring those concentrations.

Input topology and coordinate files were created with

Solvation Toolkit. The system was minimized and equili-

brated following our reference calculation procedure and

then a 5 ns constant pressure and temperature production

simulation was run. The trajectory from this simulation was

visualized with VMD [48] and a movie is available in the

supplementary information.

Results and discussion

A broad range of methods were used for the 76 submissions

predicting cyclohexane/water distribution coefficients for

the SAMPL5 challenge. Many of these predictions used

alchemical molecular dynamics simulations to estimate the

solvation free energy in explicit solvent using several

classes of force fields, including fixed-charge all-atom

force fields [49–53], all-atom/coarse-grained hybrid force

fields [54], and polarizable force fields [55]. One partici-

pant used Semi-Explicit Assembly, a type of implicit sol-

vent solvation free energy method applied to one or more

chosen solute conformations [56]. A variety of quantum

mechanics (QM) methods were also used including

QM/molecular mechanics (QM/MM) with explicit solvent

[52, 53], QM with non-Boltzmann Bennett free energy

calculations [52, 53], and QM energy calculations with a

single optimized molecular geometry [52, 57]. Two par-

ticipants used variations on the reference interaction-site

model (RISM), an integral equation approach, to predict

solvation free energies [58, 59]. One participant used QM

calculations to derive parameters to tune an empirical

model for activity coefficients and used these to estimate

distribution coefficients [60]. A few submissions used

empirically trained methods for calculating solvation free

energies [61, 62]. One particularly successful submission,

which will be discussed again below, employed the Con-

ductor-Like-Screening Model for Real Solvents (COSMO-

RS) [63].

SAMPL5 is the first SAMPL challenge to include dis-

tribution coefficients, but we can estimate how well we

expect submissions to do based on past SAMPL challenges

which included hydration free energies. Distribution coef-

ficients can be related to transfer free energy between

solvents, which allows us to estimate an expected perfor-

mance from root-mean-squared error (RMSE) in past

hydration free energy calculations. In SAMPL4 [1], the

average RMSE for the best half of submissions was about

1.5 kcal/mol which would correspond to a 1.54 log unit

error in a distribution coefficient if both solvation free

energies have comparable errors. Here, only five submis-

sions had an RMSE less than 2.5 log units in SAMPL5.

There are many reasons for this perceived change in

accuracy, such as a more complex set of molecules, the use

of cyclohexane as a solvent, and the complexity of esti-

mating tautomer populations, discussed in depth below.

Since this is the first challenge on predicting distribution

coefficients, it is likely that participants had not yet

developed good protocols to deal with many of these

challenges, meaning that somewhat less accuracy ought to

be expected. It took several challenges focused on hydra-

tion [1–7] before a range of methods could achieve the

success noted in SAMPL4.

As discussed above, we calculated root-mean-squared

error (RMSE), average unsigned error (AUE), average

signed error (ASE), Pearson’s R (R), Kendall’s tau (tau),

and the slope from the QQ plot (error slope) for each set of

predictions. These are reported for all submissions

(Table 2), but the rest of the analysis will focus only on

submissions that reported results for batches 0, 1, and 2.

For each submission, we also created a plot comparing the

predicted and experimental values. Some example plots are

provided (Fig. 2); these represent a typical submission, in

that these submissions were in the middle of the pack by

most error metrics. Comparison and QQ plots for every

submission are available in the supporting information on

Dash as well as error metric tables by batch rather than just

for the full set.

To help visualize all of the error metrics, the data was

compiled into a histogram where results are sorted from

best to worst for that metric (closest to 1 for error slope for

example). These metrics are split into measurements of

deviation from experiment (Fig. 3) and correlation with

experiment (Fig. 4) distinctions which helped in identifying

high performing groups. This analysis included only sub-

missions that included data for all molecules; the other

submissions were indicated in Table 2 and generally fall in

the middle of the pack on most metrics. In comparing

methods by all of the error metrics, it is important to keep

in mind the uncertainty in these error metrics. While Figs. 3

and 4 are ordered by method performance in some sense,

the reality is that there are many submissions that are not

significantly different from one another.
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Table 2 Error metrics were calculated for each set of predictions,

including root-mean-squared error (RMSE), average unsigned error

(AUE), average signed error (ASE), Kendall’s tau (tau), and

Pearson’s R (R). Error slope refers to the slope of data in a QQ

Plot. Indicated submissions included only batch 0a or batches 0 and 1b

ID ASE RMSE AUE tau R Err. slope

01b 2.3 ± 0.8 5.1 ± 0.5 4.3 ± 0.5 0.13 ± 0.13 0.20 ± 0.18 0.44 ± 0.09

02 -0.5 ± 0.3 2.3 ± 0.3 1.7 ± 0.2 0.48 ± 0.07 0.63 ± 0.07 0.69 ± 0.07

03b -7.6 ± 3.4 21.3 ± 2.6 15.9 ± 2.4 0.52 ± 0.10 0.59 ± 0.12 -0.00 ± 0.00

04a 1.6 ± 0.5 2.5 ± 0.6 1.9 ± 0.4 0.77 ± 0.12 0.87 ± 0.05 0.77 ± 0.13

05 -8.2 ± 0.4 8.7 ± 0.4 8.2 ± 0.4 0.29 ± 0.08 0.39 ± 0.11 0.21 ± 0.04

06 1.8 ± 0.5 4.0 ± 0.3 3.4 ± 0.3 0.46 ± 0.09 0.61 ± 0.10 0.58 ± 0.07

07 0.5 ± 0.5 3.3 ± 0.5 2.5 ± 0.3 0.34 ± 0.08 0.51 ± 0.11 0.33 ± 0.07

08 -1.7 ± 0.4 3.5 ± 0.5 2.5 ± 0.3 0.58 ± 0.06 0.70 ± 0.06 0.60 ± 0.07

09 -5.5 ± 0.4 6.3 ± 0.5 5.5 ± 0.4 0.29 ± 0.08 0.40 ± 0.10 0.26 ± 0.05

10 0.3 ± 0.4 3.1 ± 0.3 2.6 ± 0.3 0.51 ± 0.07 0.69 ± 0.08 0.79 ± 0.07

11 -4.4 ± 1.7 13.3 ± 2.5 6.9 ± 1.6 0.45 ± 0.09 0.53 ± 0.09 0.39 ± 0.07

12 -5.5 ± 2.5 19.4 ± 1.9 15.0 ± 1.7 0.37 ± 0.09 0.39 ± 0.12 -0.00 ± 0.00

13a -11.1 ± 5.0 21.0 ± 5.0 12.2 ± 4.8 0.56 ± 0.17 0.43 ± 0.22 0.59 ± 0.17

14 -0.7 ± 0.4 2.7 ± 0.4 2.0 ± 0.3 0.57 ± 0.06 0.72 ± 0.06 0.66 ± 0.08

15 -1.4 ± 0.4 3.3 ± 0.5 2.3 ± 0.3 0.57 ± 0.07 0.70 ± 0.06 0.61 ± 0.07

16 0.5 ± 0.3 2.1 ± 0.2 1.7 ± 0.2 0.73 ± 0.04 0.84 ± 0.03 0.46 ± 0.08

17 -4.2 ± 0.4 5.0 ± 0.5 4.2 ± 0.4 0.36 ± 0.08 0.51 ± 0.10 0.50 ± 0.06

18 -0.8 ± 0.4 2.7 ± 0.4 2.0 ± 0.3 0.47 ± 0.08 0.60 ± 0.07 0.62 ± 0.08

19 1.5 ± 0.3 2.7 ± 0.2 2.3 ± 0.2 0.54 ± 0.06 0.75 ± 0.06 0.83 ± 0.06

20 -2.3 ± 0.4 3.6 ± 0.5 2.7 ± 0.3 0.55 ± 0.07 0.70 ± 0.06 0.48 ± 0.07

21 -1.2 ± 0.4 3.4 ± 0.6 2.4 ± 0.3 0.44 ± 0.08 0.45 ± 0.16 0.58 ± 0.07

22 1.6 ± 0.5 3.9 ± 0.3 3.1 ± 0.3 0.29 ± 0.09 0.48 ± 0.11 0.68 ± 0.08

23 1.9 ± 0.5 4.0 ± 0.4 3.0 ± 0.4 0.42 ± 0.07 0.58 ± 0.07 0.78 ± 0.08

24a 2.3 ± 0.7 3.3 ± 0.8 2.5 ± 0.6 0.77 ± 0.13 0.88 ± 0.05 0.67 ± 0.15

25 0.0 ± 0.5 3.6 ± 0.4 2.9 ± 0.3 0.53 ± 0.07 0.70 ± 0.07 0.71 ± 0.07

26 2.3 ± 0.7 5.6 ± 0.4 4.6 ± 0.4 0.25 ± 0.08 0.37 ± 0.11 0.46 ± 0.07

27 -0.2 ± 0.4 2.6 ± 0.4 1.8 ± 0.2 0.49 ± 0.07 0.61 ± 0.08 0.66 ± 0.07

28 -2.3 ± 0.4 3.6 ± 0.5 2.7 ± 0.3 0.54 ± 0.07 0.69 ± 0.07 0.47 ± 0.07

29 -6.7 ± 0.4 7.2 ± 0.4 6.7 ± 0.4 0.33 ± 0.08 0.45 ± 0.11 0.28 ± 0.04

30 2.5 ± 0.5 4.3 ± 0.3 3.7 ± 0.3 0.39 ± 0.10 0.52 ± 0.12 0.53 ± 0.07

31 -1.0 ± 0.3 2.7 ± 0.3 2.0 ± 0.3 0.56 ± 0.07 0.72 ± 0.06 0.63 ± 0.08

32 2.5 ± 0.4 3.5 ± 0.2 3.1 ± 0.2 0.47 ± 0.07 0.64 ± 0.07 0.25 ± 0.06

33 -0.1 ± 0.5 3.4 ± 0.3 2.8 ± 0.3 0.53 ± 0.07 0.71 ± 0.07 0.73 ± 0.07

34 -1.3 ± 0.4 3.0 ± 0.4 2.2 ± 0.3 0.56 ± 0.06 0.69 ± 0.07 0.61 ± 0.07

35 0.5 ± 0.4 2.9 ± 0.3 2.2 ± 0.2 0.36 ± 0.08 0.54 ± 0.09 0.35 ± 0.07

36 1.1 ± 0.3 2.6 ± 0.2 2.1 ± 0.2 0.57 ± 0.07 0.75 ± 0.06 0.50 ± 0.07

37a -7.1 ± 4.9 19.6 ± 4.1 13.9 ± 3.7 0.59 ± 0.16 0.41 ± 0.22 -0.00 ± 0.00

38 0.8 ± 0.4 3.3 ± 0.3 2.7 ± 0.3 0.41 ± 0.08 0.58 ± 0.08 0.78 ± 0.07

39 1.6 ± 0.3 2.6 ± 0.2 2.1 ± 0.2 0.49 ± 0.08 0.65 ± 0.10 0.63 ± 0.08

40 0.4 ± 0.3 2.6 ± 0.3 1.9 ± 0.2 0.48 ± 0.07 0.61 ± 0.08 1.16 ± 0.05

41 0.3 ± 0.4 3.2 ± 0.3 2.7 ± 0.3 0.53 ± 0.07 0.69 ± 0.07 0.77 ± 0.07

42 4.6 ± 0.4 5.3 ± 0.4 4.6 ± 0.3 0.50 ± 0.08 0.61 ± 0.11 0.15 ± 0.05

43 -0.7 ± 0.4 3.0 ± 0.4 2.3 ± 0.3 0.51 ± 0.08 0.67 ± 0.08 0.94 ± 0.07

44 -0.6 ± 0.3 2.4 ± 0.3 1.8 ± 0.2 0.47 ± 0.07 0.63 ± 0.07 0.70 ± 0.07

45 0.9 ± 0.5 3.6 ± 0.3 2.9 ± 0.3 0.38 ± 0.08 0.58 ± 0.10 0.71 ± 0.07

46 -8.3 ± 0.5 9.1 ± 0.6 8.3 ± 0.5 0.23 ± 0.08 0.31 ± 0.10 0.14 ± 0.03

47 -1.3 ± 0.4 3.3 ± 0.5 2.2 ± 0.3 0.58 ± 0.06 0.71 ± 0.06 0.62 ± 0.08
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In the error slope analysis, the slopes are often sub-

stantially different from 1, indicating that participants

generally provided poor estimates of model uncertainty.

Only the top three submissions are within uncertainty of 1.

Sebastian Diaz-Rodriguez et al. from Miami University

used conservative estimates based on results in previous

calculations for solubility and hydration free energy for

submissions 53 and 60 [60]. Gerhard König et al. from

Max-Planck-Institut für Kohlenforschung provided no

explicit discussion of model uncertainty with submission

43 [53]. Only submission 40 significantly overestimated

their model uncertainty. All other submissions have an

error slope below one, indicating a significant underesti-

mation of the model uncertainty. This suggests that anal-

ysis and prediction of model uncertainty remains a key

frontier for predictive molecular simulations, and further

effort is needed in that area.

Top performing submissions

In order to determine which submissions performed the

best, we group error metrics into two categories. The first

category describes typical error relative to experiment,

and includes metrics RMSE and AUE. The second cate-

gory describes how well correlated the experimental

values are with the experimental values, and includes

Kendall s and Pearson R. Unlike past SAMPL challenges,

there does appear to be one submission which performs

best by all of these metrics, submission 16, and for most

metrics it is better by a statistically significant amount.

Next, we considered the top ten submissions for each of

these four metrics. There were only two submissions,

other than 16, which performed in the top ten for at least

three of these metrics, submissions 14 and 36. Predictions

from each of these submissions are compared to

Table 2 continued

ID ASE RMSE AUE tau R Err. slope

48 1.5 ± 0.4 3.0 ± 0.3 2.3 ± 0.3 0.38 ± 0.07 0.55 ± 0.08 0.42 ± 0.07

49 -1.1 ± 0.4 3.3 ± 0.4 2.6 ± 0.3 0.42 ± 0.07 0.58 ± 0.07 0.78 ± 0.07

50b -7.1 ± 2.7 16.6 ± 3.2 9.2 ± 2.4 0.60 ± 0.09 0.66 ± 0.08 0.38 ± 0.10

51 1.7 ± 0.7 5.2 ± 0.4 4.3 ± 0.4 0.31 ± 0.08 0.46 ± 0.11 0.46 ± 0.08

52a -3.5 ± 1.1 5.4 ± 0.6 4.8 ± 0.7 0.56 ± 0.14 0.59 ± 0.14 0.23 ± 0.10

53 0.5 ± 0.4 2.8 ± 0.3 2.2 ± 0.2 0.44 ± 0.09 0.58 ± 0.10 1.00 ± 0.06

54 -1.0 ± 0.3 2.7 ± 0.3 1.9 ± 0.2 0.56 ± 0.07 0.70 ± 0.06 0.65 ± 0.08

55b -11.6 ± 3.3 22.3 ± 3.0 13.7 ± 3.1 0.59 ± 0.09 0.61 ± 0.11 0.38 ± 0.09

56 -1.1 ± 0.4 3.3 ± 0.5 2.2 ± 0.3 0.57 ± 0.06 0.71 ± 0.06 0.67 ± 0.08

57 -10.2 ± 2.4 20.2 ± 2.3 12.6 ± 2.2 0.43 ± 0.09 0.42 ± 0.12 0.38 ± 0.07

58 -2.9 ± 0.5 4.8 ± 0.5 3.8 ± 0.4 0.30 ± 0.09 0.44 ± 0.11 0.55 ± 0.08

59a -4.2 ± 1.0 5.6 ± 0.6 5.2 ± 0.6 0.54 ± 0.15 0.55 ± 0.14 0.13 ± 0.07

60 0.2 ± 0.3 2.5 ± 0.4 1.9 ± 0.2 0.49 ± 0.08 0.60 ± 0.08 1.02 ± 0.06

61 -1.2 ± 0.5 3.4 ± 0.6 2.4 ± 0.3 0.44 ± 0.08 0.45 ± 0.16 0.53 ± 0.07

62 0.7 ± 0.5 3.5 ± 0.4 2.7 ± 0.3 0.27 ± 0.09 0.38 ± 0.12 0.73 ± 0.08

63 -4.5 ± 1.7 13.3 ± 2.5 6.9 ± 1.6 0.45 ± 0.09 0.52 ± 0.08 0.41 ± 0.07

64 1.3 ± 0.7 5.2 ± 0.4 4.4 ± 0.4 0.35 ± 0.08 0.51 ± 0.10 0.43 ± 0.07

65 -2.2 ± 0.5 4.4 ± 0.5 3.5 ± 0.4 0.24 ± 0.10 0.35 ± 0.12 0.61 ± 0.08

66 1.4 ± 0.7 5.4 ± 0.4 4.6 ± 0.4 0.34 ± 0.08 0.51 ± 0.10 0.41 ± 0.07

67a -5.0 ± 3.1 11.9 ± 4.5 6.2 ± 2.9 0.59 ± 0.17 0.58 ± 0.13 0.56 ± 0.17

68 2.5 ± 0.4 3.6 ± 0.3 3.1 ± 0.2 0.47 ± 0.07 0.64 ± 0.07 0.25 ± 0.06

69a -5.1 ± 2.9 11.9 ± 4.4 6.2 ± 2.8 0.59 ± 0.16 0.57 ± 0.12 0.59 ± 0.16

70b -7.0 ± 2.6 16.5 ± 3.2 9.2 ± 2.4 0.60 ± 0.09 0.67 ± 0.08 0.36 ± 0.10

71 -10.7 ± 0.4 11.2 ± 0.5 10.7 ± 0.4 0.22 ± 0.08 0.29 ± 0.11 0.16 ± 0.03

72 -2.6 ± 0.5 4.2 ± 0.6 3.0 ± 0.4 0.56 ± 0.06 0.70 ± 0.06 0.45 ± 0.07

73 0.3 ± 0.3 2.4 ± 0.3 1.8 ± 0.2 0.48 ± 0.08 0.64 ± 0.08 0.50 ± 0.08

74 -2.7 ± 0.4 4.2 ± 0.5 3.0 ± 0.4 0.56 ± 0.07 0.70 ± 0.06 0.44 ± 0.07

75 4.1 ± 0.4 5.1 ± 0.3 4.4 ± 0.3 0.23 ± 0.09 0.34 ± 0.12 0.29 ± 0.06

76 1.7 ± 0.7 5.3 ± 0.4 4.3 ± 0.4 0.32 ± 0.08 0.47 ± 0.10 0.47 ± 0.08

J Comput Aided Mol Des (2016) 30:927–944 935

123



experiment in Fig. 5. For submission 16, Andreas Klamt

et al. from COSMOlogic used COSMO-RS to compute a

partition coefficient for each solute from the difference in

chemical potentials for the solute in each solvent [63]. To

find distribution coefficients, calculations for the forma-

tion of different protonation states, zwitterions, and tau-

tomers were performed in COSMO-RS for relevant

molecules. For submission 14, Frank Pickard et al. from

the National Institute of Health calculated solvation free

energies from QM calculations with SMD implicit solvent

in Gaussian. Absolute pKa calculations were used to

account for additional ionization states [52]. For submis-

sion 36, Sherin Shanaka Paranhewage et al. from Okla-

homa State University estimated logD as a partition

coefficient, calculated from the difference in alchemical

solvation free energies where the solute was parameter-

ized with the dielectrically corrected general AMBER

force field, water was the dielectrically corrected H2O-DC

model, and cyclohexane was a specially optimized united-

atom model [49]. Further details for each of these

submissions can be found in this issue so only a brief

explanation of each method was provided here.

Comparisons to simple empirical models

One way of evaluating predictive models is to compare

them to a null hypothesis, or default result of some kind. In

the case of distribution coefficients, we chose a null

hypothesis where we assume all solute molecules distribute

equally between cyclohexane and water, corresponding to

log D ¼ 0, as suggested by Christopher Fennell [64]. We

performed all our standard error analyses discussed above

(RMSE, AUE, and Ave. Err) on this simple model as a

point of comparison (Table 3). The null hypothesis would

have been the top submission for both RMSE and AUE.

While this null hypothesis has no actual predictive power

and could not be used to rank compounds, the fact that it

performs better than any submission in terms of error

statistics is a challenge for the other methods. These results

may also provide commentary on the dataset, which

Fig. 2 Example plots created

for each set of predictions.

Submission 21 [53] and

submission 49 [62] were chosen

to try to represent average

submissions, those that were in

the middle by most error

metrics. Comparison plots show

how predicted distribution

coefficients compared to

experiment for both

submissions. QQ Plots show

how errors in the predictions

were distributed compared to

expectations given the model

uncertainty
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contains a reasonably large percentage of logD values that

are not that far off from zero (Fig. 6). Organizers had hoped

to ensure equal coverage of all logD values within the

assay range, but due to experimental time constraints this

was not possible. It is possible the null model would look

worse if the experimental results were more evenly dis-

persed across the entire dynamic range.

There are many structure-based and/or empirically

trained prediction methods for octanol/water partition

coefficients. To a first approximation, one might imagine

Fig. 3 Root-mean-squared error (RMSE), average error (AveErr),

and average unsigned error (AUE) for every SAMPL5 submission

covering all batches. The submissions on each plot are sorted from

best to worst by that metric. Due to the number of submissions, data

was split across the two panels, with a change in the y-axis scale

Fig. 4 Kendall’s tau, Pearson’s R, and the slope from a linear

regression analysis on the QQ Plot (‘error slope’) for every SAMPL5

submission covering all batches. The submissions on each plot are

sorted from best to worst by that metric. Due to the number of

submissions, data was split across the two panels, with a change in the

y-axis scale
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that cyclohexane/water partition coefficients would follow

similar trends to those in octanol/water. Therefore, we used

OEXlogP from OpenEye (X log Poct) to examine the pos-

sibility of estimating cyclohexane/water distribution coef-

ficients with such a tool. Next, we compared X log Poct

results for a set of compounds with experimental cyclo-

hexane/water partition coefficients [9]. A linear regression

was used to correct the X log Poct values with a slope of

0.7241 and a y-intercept of -1.0306 (X log Pcorr).

X log Poct would be in the top few submissions by tau and

R, but ranked in the middle for all other metrics (Table 3).

However, with a simple linear regression trained on

experimental cyclohexane/water partition coefficients,

X log Pcorr has a better RMSE and AUE than any

SAMPL5 submission. We do not wish to suggest that

regression-trained tools are the best mechanism for pre-

dicting distribution coefficients; rather, this indicates the

potential for cyclohexane/water distribution data to help

drive improvements in our physical models, as clearly there

are a range of physical effects here which are not yet well

described by our models.

Results of reference calculations

We performed a set of blind reference calculations (sub-

mission 39) for the SAMPL5 challenge, calculating logP

for the provided neutral tautomers of all solutes. Our pro-

tocol for these calculations was announced in advance, and

parameter and coordinate files for the calculations were

made available (as described above) in formats for a

variety of simulation packages. Participants were encour-

aged to perform their own set of reference calculations for

the full set, or at the very least several specified reference

compounds, using these files. This would allow differences

in performance to be traced back to methodological dif-

ferences rather than force field differences. Unfortunately,

no participants actually reported results of reference cal-

culations, so this type of analysis has thus far been

impossible. However, the results of our reference calcula-

tions are still helpful for understanding the challenges

facing SAMPL5 participants.

For our reference calculations, solvation free energies

were calculated using GROMACS with GAFF parameters

and AM1-BCC charges. Our reference calculations yielded

partition coefficients, determined from the difference in

solvation free energies without correcting for variation in

tautomers. These calculations were done blindly, and

analyzed as submission number 39, which was in the top

quarter of submissions by most error metrics (Table 2)

although, there is a slight bias favoring solvation in

cyclohexane, evidenced by the average error (1:6� 0:3).

Fig. 5 These plots compare predicted and experimental distribution coefficients for the top performing submissions (16, 36, and 14)

Fig. 6 The experimental distribution coefficients of the SAMPL5

challenge have a relatively small dynamic range, with most falling

within 2 log units of zero

Table 3 Null hypothesis corresponds to logD ¼ 0 for all molecules

Metric Null X log Poct X log Pcorr

AveErr 0.5 ± 0.2 2.8 ± 0.2 1.1 ± 0.2

RMSE 1.8 ± 0.1 3.1 ± 0.1 1.6 ± 0.1

AUE 1.6 ± 0.1 2.8 ± 0.2 1.3 ± 0.1

Tau N/A 0.62 ± 0.04 0.62 ± 0.04

R N/A 0.78 ± 0.04 0.78 ± 0.04

X log Poct is a calculation octanol/water partition coefficient for each

molecule and X log Pcorr includes a linear regression correction
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After the challenge we explored how including proto-

nation and deprotonation would have affected the initial

partition coefficient predictions. The first set of corrections

involved calculating the pKa for each molecule using

Schrödinger’s Epik tool [41–43]. Next, logD was calcu-

lated using the pKa and partition coefficient determined in

submission 39 using Eqs. 3 and 4 for basic and acidic

solutes, respectively. We assumed only one change in

protonation state occurred so only one pKa was used. This

does not account for zwitterions or alternate neutral tau-

tomers. This correction (labeled logDpKa
) showed a slight

improvement by most error metrics (Table 4) including a

decrease in the average error from 1:6� 0:3 to 0:7� 0:3

indicating less bias toward overly high concentration in

cyclohexane.

For the next set of corrections, we used Schrödinger’s

Ligprep tool [44] to enumerate tautomers and calculate a

state penalty or relative energy of each tautomer in an

aqueous buffer at pH 7.4. The state penalty was used to

correct the concentration in the aqueous layer, according to

Eq. 5. This correction (labeled logDstate penalty) results show

improvements from the original partition coefficient coef-

ficients for tau (0:49� 0:08 to 0:65� 0:06) and R

(0:6� 0:1 to 0:77� 0:06), but no significant change in

RMSE or AUE. It should be noted that no attempt was

made to estimate uncertainties in the newly calculated

logDpKa
or logDstate penalty although both of these correc-

tions would certainty have introduced uncertainty into the

estimate. Future exploration in tautomer estimation will

need to account for the uncertainty in those calculations.

Both of these correction methods only adjust the con-

centration in the aqueous layer; however, there may be

tautomer affects that would change the concentration in

cyclohexane as well. Outliers and molecules with particu-

larly significant changes in logD were indicated by number

in Fig. 7. SAMPL_050 for example, had an initial logP

value of 1:20� 0:04 which was decreased significantly to

�9:78 with the pKa correction and �10:70 with the state

penalty correction compared to the experimental value

�3:2� 0:6. SAMPL_060 and SAMPL_063 also changed

by more than 3 log units due to these corrections. These

state penalties allow us to account for other tautomers and

protonation states only in the aqueous phase. Without

tautomer enumeration in cyclohexane, we have to assume

that the tautomer used for solvation free energy calcula-

tions, prior to correction, is the dominant state of the solute

in the cyclohexane phase. If an alternate tautomer were

relevant in water and cyclohexane, we could obtain dra-

matically incorrect values with this approach, since our

state penalty will only recover alternate tautomer(s) in

water, but not cyclohexane. This appears to be one of the

reasons why these corrections seem to overshoot in the

Fig. 7 Plots showing our reference calculations compared to

experiment. Shown here is the results for submission 39 in SAMPL5,

with no tautomer correction (logP), distribution coefficient corrected

from calculated partition coefficient based on pKas (logDpKa
), and

distribution coefficient corrected from calculated partition coefficient

based on state penalties (logDstate penalty)

Table 4 Shown are the results for error analysis on our reference

calculations which estimated logD as a cyclohexane partition coef-

ficient (logP) and the correction to distributions coefficients by pKa

(logDpKa
) and by state penalty (logDstate penalty)

Metric logP logDpKa
logDstate penalty

AveErr 1.6 ± 0.3 0.7 ± 0.3 0.5 ± 0.4

RMSE 2.6 ± 0.2 2.4 ± 0.2 2.6 ± 0.3

AUE 2.1 ± 0.2 2.0 ± 0.2 2.1 ± 0.2

Tau 0.49 ± 0.08 0.65 ± 0.07 0.65 ± 0.06

R 0.6 ± 0.1 0.78 ± 0.07 0.77 ± 0.06

Included here are average error (AveErr), root-mean-squared error

(RMSE), average unsigned error (AUE), Kendall’s tau, and Pearson’s R

J Comput Aided Mol Des (2016) 30:927–944 939

123



cases listed above. A better solution would compute state

penalties in both water and cyclohexane, but we do not

currently have an adequate approach for doing so.

Even after correcting for tautomer enumeration in the

aqueous phase, there is a slight bias for cyclohexane in the

calculated distribution coefficients (Table 4; Fig. 7). There

are a variety of factors that could be contributing to this

slight bias. A recent study by the Mobley group calculated

partition coefficients for small molecules and found a slight

bias for alcohol compounds to over favor cyclohexane [23].

Possibly, this demonstrates a limitation in GAFF or ato-

mistic force fields in general to accurately predict the

behavior of solutes in polar and non-polar environments.

That same study found that for large, flexible compounds

insufficient conformational sampling can dramatically

affect the calculated partition coefficients [23]. Given the

number of large, flexible, and polyfunctional compounds in

SAMPL5, more investigation into each of these effects

along with improved tautomer enumeration and handling

(especially for the cyclohexane phase) will be required to

completely understand the slight bias seen here.

Examining individual molecules

With only 53 molecules, it is difficult to find any statisti-

cally significant trends in terms of functional groups which

are well- or poorly-predicted in general; compared to past

SAMPL challenges, this set of molecules is much more

complex. They are on average larger, more flexible, and

contain multiple functional groups per compound. For each

molecule, we organized a data set of predicted distribution

coefficients and compared them to the experimental values,

calculating the average unsigned error for each (Table 1).

There are only three molecules with an AUE less than 2.0

log units (SAMPL5_ 003, 045, and 059). While these three

molecules are relatively small, there were no trends in

AUE and molecular weight, as there was in SAMPL4

hydration free energy results [1]. We tried grouping

molecules by functional group, molecular mass, and esti-

mated number of tautomers to see if size, presence or

absence of particular functional groups, or number of

tautomers played a role in how difficult each compound

was in general. The only trend found in this process was

that all five carboxylic acids (SAMPL5_ 010, 011, 015,

026, and 060) are in the worst ten molecules by AUE and

RMSE. This could be due to poor treatment of the effects

of protonation state changes. Among the bottom com-

pounds, perhaps unsurprisingly, was SAMPL5_083 which

is a large macrocycle, and SAMPL5_050; both have many

neutral tautomeric forms. Most submissions had significant

errors in predicting SAMPL5_074, despite the fact that it is

relatively small, rigid, and has no other significant tau-

tomers. Below we will explore why some of these

molecules may have had distribution coefficients which

were particularly difficult to predict.

The provided SMILES strings may not be the most

populated tautomeric form of the molecule

From our tautomer enumeration and discussions with other

SAMPL5 participants [65] it became clear that accurately

estimating logD for molecules with many tautomers was

difficult. For example, we compared population corrections

we derived using Schrödinger’s LigPrep [44] with correc-

tions calculated by Pickard et al. [52, 66] and found sig-

nificant differences between them. If we could perfectly

calculate solvation free energies and tautomer populations

in both solvents, the starting tautomer should not affect the

final calculated distribution coefficient, but differing cor-

rections—such as these—will yield different results.

Additionally, whenever protonation state/tautomer popu-

lations are not estimated correctly or not included in both

solvents, the initial choice of protonation state/tautomer is

likely to affect computed logD values. Here, our initial

solvation free energy calculations used provided SMILES

strings without any consideration of other tautomers. To

explore how this may have affected our logD calculation,

we decided to repeat a few solvation free energy calcula-

tions with alternate tautomers. We used SAMPL5_050 and

SAMPL5_083 as examples since both have other neutral

tautomers that could be present in both the water and

cyclohexane solutions. Also, most participants failed to

accurately predict the correct logD for either solute. The

new tautomer for SAMPL5_050 was found with LigPrep

[44]; the one for SAMPL5_083 was found with COSMO-

RS and was provided by Andreas Klamt [63, 65]. For both

SAMPL5_050 and SAMPL5_083 there were significant

changes in calculated solvation free energies and partition

coefficients for the two different tautomers (Table 5).

Distribution coefficients were calculated from the logP and

state penalties calculated with Schrödinger’s LigPrep tool

[44]. In both cases the logD is still significantly different

from the experimental values. Since both the calculated

solvation free energies and the tautomer/protomer popula-

tions are needed to estimate the distribution coefficient, it is

impossible for us to know which calculation introduces

more error into our estimates.

Solvents are not completely immiscible

Though the concentration of water in cyclohexane is very

small, 0.00047 mole fraction [47], it may still affect how a

solute is distributed across the two solvents. This will be

particularly important for solutes with many polar groups;

andmay be one reason itwas difficult to accurate estimate the
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logD for SAMPL5_074. We performed two new calcula-

tions of solvation free energy of SAMPL5_074 into cyclo-

hexane with some water present in cyclohexane. These

simulations were set-up with Solvation Toolkit as described

above. Both sets of simulations had a single solute molecule

in 150 cyclohexanes, but one had seven water molecules and

the other had a single water molecule. While neither of these

results reach the low experimental concentration of water in

cyclohexane, they do demonstrate the dramatic variation in

solvation free energy and logD which can be caused by the

presence of water in cyclohexane. With varying amounts of

water in cyclohexane, the water dramatically impacts the

computed solvation free energy for SAMPL5_074 into

cyclohexane (Table 6) and thus calculated logD values. In

this case particular case, the presence of water also dramat-

ically improves the estimation for logD, though as noted this

is with far too high awater concentration in cyclohexane.We

visualized trajectories from the production phase of our

calculations and find that all water molecules stay adjacent to

SAMPL5_074 for the full simulation, likely indicating a

particularly high affinity for water. Addition of one or a few

molecules of a second solvent (water) to cyclohexane might

be expected to raise the uncertainty in calculated free ener-

gies significantly due to slowmixing of the second solvent in

the simulation box, but we do not observe that here. It seems

likely this is because the water molecules are so strongly

attracted to the solute that they essentially stay bound

throughout the simulations, so we do not observe slow

mixing and the associated increased uncertainty. For a solute

with so many polar functional groups, it is perhaps unsur-

prising that the water molecules in cyclohexane are drawn to

the solute. In general, this suggests that the local concen-

tration ofwater near highly polar solutesmay bemuch higher

than the bulk concentration in cyclohexane, and this may

potentially be important when considering simulation set-

tings. It is important to note that the concentration of water in

cyclohexane for these simulations are 0.0067 and 0.047 for 1

and 7 water molecules, both a gross overestimate of the

amount of water in cyclohexane (by multiple orders of

magnitude) as our focus here was to explore the sensitivity of

logD to cyclohexanewater content. However, our results are

sufficient to show that the presence of water in the cyclo-

hexane phase can dramatically affect the computed distri-

bution coefficient, depending on the affinity of the solute for

water. To accurately account for these effects, we will need

long simulations at much larger box sizes to not only match

the experimental water concentration, but to determine how

much water will localize around the solute at equilibrium.

Given the extent to which water stays localized near the

solute in these simulations, substantially longer simulations

may also be needed to converge the relative populations of

water in bulk cyclohexane versus near the solute.

Other buffer/solution components may affect distribution

coefficients

The two phases for the distribution coefficients were

cyclohexane and an aqueous buffer, however, DMSO and

Table 5 Shown are the results

for solvation free energy of two

different tautomers of

SAMPL5_ 050 and 083

SAMPL5_050 SAMPL5_083

Tautomer 1 Tautomer 2 Tautomer 1 Tautomer 2

DGhydration -11.45 ± 0.04 -21.50 ± 0.03 -33.98 ± 0.07 -32.68 ± 0.1

DGcyclohexane -13.09 ± 0.04 -13.25 ± 0.04 -35.6 ± 0.1 -36.1 ± 0.2

logPcyc=wat 1.20 ± 0.04 -6.04 ± 0.03 1.21 ± 0.09 2.5 ± 0.2

State penalty correction -11.902 -0.453 -0.488 -6.53

logDcyc=wat -10.70 ± 0.04 -6.50 ± 0.03 0.72 ± 0.09 -4.0 ± 0.2

Experimental logD -3.2 ± 0.6 -1.9 ± 0.4

Corrections from logP to logD account for tautomer populations in the aqueous phase. Free energies are

reported in kcal/mol

Table 6 Shown are results for the solvation free energy and distribution coefficient for SAMPL5_074 in cyclohexane with no water present, 1

water molecule, and 7 water molecules all with 150 cyclohexane molecules and 1 solute molecule

Number molecules 0 water 1 water 7 water

DGhydration -21.90 ± 0.04

DGcyclohexane -16.77 ± 0.04 -18.05 ± 0.04 -19.54 ± 0.04

logDcyc=wat -3.76 ± 0.04 -2.82 ± 0.04 -1.73 ± 0.04

Experimental logD -1.9 ± 0.3

No changes were made for the aqueous phase so the DGhydration is the same for all three calculations. Free energy is reported in kcal/mol
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acetonitrile were used in the experiments [8] as well. While

DMSO and acetonitrile were at very low concentrations,

their presence in either solvent layer may affect how a

solute distributes between phases. We created topology and

coordinate files for a system with 780 water, 130 cyclo-

hexane, 4 DMSO, and 2 acetonitrile molecules using Sol-

vationToolkit, roughly matching the experimental

concentrations. In the trajectory visualized with VMD,

both DMSO and acetonitrile spend most of their time near

the solvent interface, with very little movement into the

bulk of the water or cyclohexane. In our view, this does not

immediately suggest profound implications for calculated

logD values, but a detailed understanding of the implica-

tions of this for both calculated and measured distribution

coefficients will require further study.

Conclusions

Past SAMPL challenges often involved a broad range of

methods for hydration free energies. Here, in our first

SAMPL on cyclohexane/water distribution coefficients, we

saw a similarly diverse set of methods. Predicting logD

accurately for this set of molecules was rather difficult,

exhibiting a number of the same challenges that will face

accurate prediction of binding affinities. The best methods

showed reasonable agreement with experiment with

RMSEs around 2.5 log units and Kendall tau’s around 0.6.

However, considering that the null model and Xlog Pcorr

both would have topped the submissions list by RMSE and

AUE, there is clear room for all of the methods employed

in SAMPL5 to improve.

This SAMPL5 set was substantially more complex,

flexible, and polyfunctional than typical molecules in

SAMPL hydration challenge sets. Additionally, the most

relevant protonation state and tautomer were not always

clear for the compounds. Some compounds likely had

multiple relevant protonation states and tautomers, and

shifts in protonation/tautomeric state on transferring

between phases. These issues are especially important

given that the challenge focused on distribution coefficients

rather than partition coefficients (logP). Given these

complexities, it is not surprising that we saw drop in per-

formance relative to the accuracy that would have been

expected for logD values if participants predicted logD

based on solvation free energies in two solvents that could

be computed as accurately as hydration free energies in

previous SAMPL challenge (yielding an expected accuracy

of about 1.5 log units). In large part, this is probably

because of the additional complexities of distribution

coefficients such as the need to account for other proto-

nation states and tautomers. Our solvation free energy

calculations performed with a less dominant tautomer of

SAMPL5_050 lead to a logD estimate of �10:70� 0:04

which is 7.5 log units below the experimental value. Thus,

accurately accounting for tautomers appears to be a vital

part of accurately calculating logD, and better methods for

treating protonation and especially tautomeric states in

non-aqueous environments are needed.

As mentioned earlier, the molecules chosen for

SAMPL5 are generally larger and more flexible than those

in past SAMPL challenges. It follows that conformational

sampling of the solutes might play a significant role in

accurately predicting these distribution coefficients. In a

previous study using the same protocol as the reference

calculation here, the Mobley lab showed that changing the

initial conformation of a large, flexible molecule dramati-

cally changed its calculated partition coefficient due to

insufficient conformational sampling [23]. In this issue,

Tyler Luchko et al. spend time addressing the importance

of conformational sampling for these molecules in the

context of their submission results for the challenge [59].

We asked participants to estimate two forms of uncer-

tainty, statistical uncertainty and model uncertainty, the

latter of which should predict how well their calculation

will agree with experiment. This latter uncertainty estimate

is particularly key, as it would allow practitioners to predict

how reliable their calculations are likely to be in applica-

tions. Here, we find that almost every participant dramat-

ically underestimated their model uncertainty. The

importance for the community to improve error estimation

has been addressed in past SAMPL challenges [1], but

clearly, much more work is still needed.

A common trend in SAMPL5 submissions was that the

dynamic range in the predicted distribution coefficients

was larger than the dynamic range observed experimen-

tally—that is, generally, the smallest logD values were

underestimated and the largest were overestimated. This

issue of dynamic range is visible in Figs. 2, 5, and 7, but

was evident in comparison plots for almost all submissions.

For SAMPL5_074, the introduction of water to cyclohex-

ane increased the logD estimate from -3.76 to -1.73; it is

possible that accounting for water in cyclohexane would

affect the apparent underestimation at the lower end of the

logD scale. As discussed above, it is also possible that

insufficient conformational sampling could account for

some of this problem. For example, if a solute has a par-

ticular conformation that is more stable in a non-polar

environment and that conformation was not found for the

solute in cyclohexane due to insufficient conformational

sampling, then the calculated distribution coefficient would

over favor the aqueous environment. However, this will

require further investigation. It is of course also possible

that experimental issues could have compressed the mea-

sured dynamic range of compounds, but this too will

require further investigation.
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The results of this challenge strongly suggest predictions

for solute partitioning will be extremely helpful for driving

improvements to physical modeling needed in pharma-

ceutical research. The major challenges encountered here

are all very likely to occur when attempting to predict

binding affinities or other biomolecular properties of

interest to drug discovery. Specifically, accurately pre-

dicting the population of protonation and tautomeric states

was a challenge, complicated by the fact that there is no

simple way to predicted protonation states and tautomers to

corresponding experimental values relevant to the condi-

tions studied here. Most work so far on tautomer prediction

has focused on tautomeric ratios in vacuum or in water, but

tautomer populations are likely environment-dependent in

ways that can dramatically affect computed physical

properties. These same challenges are likely to apply when

predicting biomolecular binding. An improved treatment of

these effects within the context of SAMPL or similar

challenges will drive advances in computational techniques

also used to predict binding and related properties such as

solubility.

Overall, distribution coefficients have been an extremely

valuable part of this year’s SAMPL5 challenge, and, since

they can be measured in a relatively straightforward way,

seem to be a promising potential source of future data for

blind challenges. Additionally, this data highlights impor-

tant issues, such as tautomer enumeration, that need better

treatment in many of our models. The ability to create new,

completely blind data sets make distribution coefficients a

great option for future challenges.

Supporting information

Supporting information is available free of charge online

through the University of California Dash at http://n2t.net/

ark:/b7280/d1988w. It includes all of the files provided to

SAMPL5 participants. That includes a table of SAM-

PL5_ID numbers paired with SMILES, MOL2 files for

each molecule, and the GROMACS, AMBER, DES-

MOND, and LAMMPS topology and coordinate files for

each solute in water and cyclohexane. A separate directory

is included with analysis associated with our reference

calculations and post sample method development. This

includes all python scripts, input files, output files, and

results files required to repeat our simulations and calcu-

lations done with Schrödinger tools. We also provide the

data files for all submission, the scripts used for error

analysis, plots for all submissions, and data for only batch 0

and batches 0 and 1. This is supported with detailed

README files explaining the structure of the directories.
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