
Calculation of distribution coefficients in the SAMPL5 challenge
from atomic solvation parameters and surface areas

Diogo Santos-Martins1 • Pedro Alexandrino Fernandes1 • Maria João Ramos1

Received: 21 June 2016 / Accepted: 21 August 2016 / Published online: 1 September 2016

� Springer International Publishing Switzerland 2016

Abstract In the context of SAMPL5, we submitted blind

predictions of the cyclohexane/water distribution coeffi-

cient (D) for a series of 53 drug-like molecules. Our

method is purely empirical and based on the additive

contribution of each solute atom to the free energy of

solvation in water and in cyclohexane. The contribution of

each atom depends on the atom type and on the exposed

surface area. Comparatively to similar methods in the lit-

erature, we used a very small set of atomic parameters:

only 10 for solvation in water and 1 for solvation in

cyclohexane. As a result, the method is protected from

overfitting and the error in the blind predictions could be

reasonably estimated. Moreover, this approach is fast: it

takes only 0.5 s to predict the distribution coefficient for all

53 SAMPL5 compounds, allowing its application in virtual

screening campaigns. The performance of our approach

(submission 49) is modest but satisfactory in view of its

efficiency: the root mean square error (RMSE) was 3.3 log

D units for the 53 compounds, while the RMSE of the best

performing method (using COSMO-RS) was 2.1 (submis-

sion 16). Our method is implemented as a Python script

available at https://github.com/diogomart/SAMPL5-DC-

surface-empirical.

Keywords SAMPL5 � Drug design data resource � D3R �
Solvent accessible area � Free energy of solvation �
Distribution coefficient

Introduction

The free energy of solvation DGsolv can be separated in (1)

cavitation free energy and (2) solute–solvent interaction

free energy. The cavitation free energy corresponds to the

cost of disrupting solvent–solvent interactions in order to

create a cavity that accommodates the solute. Solute–sol-

vent interactions include van der Waals interactions and

electrostatic interactions. Hydrogen bonds can be treated

separately or within the general framework of electrostatic

interactions. The assumption that cavitation and solute–

solvent interaction free energies are additive provides a

simple framework where the balance between these two

terms rationalizes observed phenomena. For example, the

hydrophobic effect observed for apolar solutes in water

results from the high cost of forming a cavity (which

includes the entropic penalty associated with constrained

water molecules) and lack of counterbalancing strong

solute–water interactions.

The solute–solvent interaction energy is mostly deter-

mined by the first layer of solvent molecules and by

exposed solute atoms, simply because atoms in close

proximity make the largest vdW and electrostatic contri-

bution (charged buried atoms, such as in transition metal

complexes, may be exceptions to this general rule).

Moreover, if the solvent has hydrogen bond donors/
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acceptors, only exposed solute atoms can participate in

hydrogen bonds with solvent molecules. For this reason,

computational definitions of surface area have found

application in the calculation of solute–solvent interac-

tions, either by applying rigorous electrostatic formalisms

as in the Poisson–Boltzman equation, or simply to estimate

the contribution of different solute atoms in empirical

models, as is the case of the present work.

The free energy of solvation of a molecule can be pre-

dicted as the sum of the individual contribution of each

solute atom, weighted by its exposed surface area and by

an atomic solvation parameter associated with its atom type

[1]. Despite its simplicity, this formalism has been reported

multiple times in scientific publications. Table 1 provides a

comparison of published models used to calculate the free

energy of solvation in water. Most studies employ a large

number of parameters allowing the model to adhere very

well to experimental data. In the work of Boyer et al. [2] a

total of 84 parameters were fitted, leading to a mean

absolute error (MAE) of 1.41 kcal/mol. Other publications

report extremely low MAE’s achieving 0.54 kcal/mol by

Wang et al. [3] and 0.65 kcal/mol by Hou et al. [4].

However, using a large number of parameters relatively to

the size of the training set makes the model susceptible to

overfitting. Ooi et al. [5] fitted 7 parameters using only 22

molecules for training, and reported an extremely low root

mean square error (RMSE) for compounds in the training

set (RMSE ¼ 0.32 kcal/mol) but a significantly larger error

when the model was tested on molecules outside the

training set (RMSE ¼ 2.0 kcal/mol). For this reason, in

this work we used a reduced number of parameters and a

large training set.

These models have been used to predict the solvation

free energy of different solute conformations [5]. This is

possible because surface areas effectively capture the sol-

vent exposure of each solute atom, preventing shielded

atoms (e.g. after intramolecular hydrogen bonding) from

contributing to the hydration free energy of the conformer.

Moreover, atomic solvation parameters and surface areas

have also been used to calculate partition coefficients [6]

and aqueous solubilities [7], and have been integrated into

both molecular dynamics [8] and molecular docking [9].

The existence of approximate but computationally

inexpensive methods enables the large scale prediction of

free energies of solvation. The question is: how does the

performance of empirical models compare to more physi-

cal models? In the previous edition of the SAMPL chal-

lenge (SAMPL4), one of the blind predictions of the

hydration free energies was an empirical model that per-

formed almost as well as the more physically grounded

methods [10, 11]. Instead of using surface areas to estimate

solvent exposure of solute atoms, the proximity of other

solute atoms from the atom of interest was taken into

account. A total of 34 atom types were defined, but the total

number of fitted parameters was 102 (68 parameters were

used to describe shielding effects and quantify solvent

exposure of solute atoms).

In this work we built empirical models to predict the

free energy of solvation of organic compounds in water and

cyclohexane, where the contribution of each solute atom is

weighted by its exposed surface area and an atomic sol-

vation parameter specific to its atom type. Then, we used

these models to predict the cyclohexane/water distribution

coefficient of 53 SAMPL5 molecules (depicted in Fig-

ure S2) for which experimental log D values have been

calculated [12, 13]. Despite the reduced number of atomic

solvation parameters (10 for the free energy of solvation in

water and 1 for the free energy of solvation in cyclohex-

ane), our method performed reasonably. Unsurprisingly,

more physical methods made better log D predictions (see

the SAMPL5 overview paper [14]), but the computational

efficiency of our approach makes it valuable for large scale

applications.

Methods

Cyclohexane/water distribution coefficients (D) were cal-

culated from the free energies of solvation in each solvent,

according to the following equation:

Table 1 Comparison of quality of fit (training errors) for DGsolv
water for several models found in the literature and for the one proposed in this work

Solvent radius (Å) Type of surface Partial charges Fitted parameters Dataset size MAE RMSE

Ooi [5] 1.4 SAS – 7 22 – 0.32

Wang [3] 0.6 SAS – 54 401 0.54 0.79

Hou [4] 0.5 SAS – 58 415 0.65 0.75

Boyer [2] 1.4 SAS RESP 84 596 1.41 –

This work 1.5 SES Gasteiger–Marsili 10 642 1.25 1.69

SAS solvent accessible surface, SES solvent excluded surface, MAE mean absolute error and RMSE root mean squared error, both presented in

kcal/mol
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logD ¼
DGsolv

water � DGsolv
cyclohexane

2:303RT
ð1Þ

where T is the temperature (293 K) and R is the ideal gas

constant (1.9872 cal/mol K). The chosen temperature value

is approximate: some training molecules had their solva-

tion free energies determined at 298 K while others were

studied at 293 K. The following sections describe the

calculation of free energies of solvation in water and in

cyclohexane.

Throughout this work, the following simplifications

were adopted: (1) molecules were used in the conforma-

tion provided by SAMPL5 organizers and no conforma-

tional sampling was performed; (2) only a single

protonation state was considered for each molecule, cor-

responding to a neutral state, and ignoring different tau-

tomeric states.

Free energy of solvation in water (hydration)

The free energy of hydration (DGsolv
water) was calculated as

the sum of atomic contributions over all solute atoms. The

contribution of an individual atom depends on the atomic

solvation parameter, and on its solvent exposure:

DGsolv
water ¼

XN

i

Wi � Si ð2Þ

where N is the number of solute atoms, Wi is the atomic

solvation parameter of the ith atom and Si is the solvent

exposure of the ith atom. Solvent exposure was calculated

either as the solvent accessible surface (SAS) area or the

solvent excluded surface (SES) area, computed with

MSMS [15] using a solvent probe radius of 1.5 Å. The van

der Waals radii for solute atoms are listed in Table 2. The

difference between SAS and SES is illustrated in Fig. 1.

In an alternative formalism, we included atomic partial

charges for the calculation of free energies of hydration,

using the Gasteiger–Marsili [16] method implemented in

Openbabel 2.3.2 [17, 18]. The contribution of partial

charges is also weighted by the solvent exposure of each

solute atom, and is implemented by an additional term

relatively to Eq. 2:

DGsolv
water ¼

XN

i

Wi � Si þ Q
XN

i

jqijSi ð3Þ

where qi is the partial charge of the ith atom and Q is the

weight factor for the contribution of partial charges to

hydration free energy. Equations 2 and 3 provide two

alternative models, including or excluding atomic charges.

Training procedure

Atomic solvation parameters (Wi and Q) were fitted by the

least squares method to reproduce the experimental free

energy of hydration of 642 compounds in the FreeSolv-

0.32 database [19, 20], using the R software package [21].

Some atom types displayed poor statistical significance and

were manually set to zero. This is either because there are

few molecules in the training set containing these atom

types or because they are often buried (e.g. phosphorous in

phosphate groups). In different models (SES or SAS, with

or without partial charges), the excluded atom types varied.

The formalism presented in equations 2 and 3 lacks a term

to explicitly describe the cost of creating a cavity in water

to accommodate the solute. However, since the atomic

solvation parameters are fitted to experimental free ener-

gies of solvation, the cost of cavity formation is implicitly

incorporated into the atomic solvation parameters.

Atom types

We devised a simple atom typing scheme that resulted in a

reduced number of atomic solvation parameters. Atom

types indicate three attributes: (i) the element, (ii) aro-

maticity (iii) the possibility of making hydrogen bonds

Table 2 Van der Waals radii used in this work

Element vdW radius (Å) Element vdW radius (Å)

H 1.20 P 1.80

C 1.70 S 1.80

N 1.55 Cl 1.75

O 1.52 Br 1.85

F 1.47 I 1.98

Fig. 1 Solvent accessible surface (SAS) and solvent excluded surface

(SES). SES and SAS are both computed by rolling the probe sphere

over the van der Waals surface of the molecule. The SAS is

determined by the center of the probe, while the SES is determined by

the surface of the probe. The SAS is generally larger than the SES, but

the SES of buried atoms can be larger that the SAS. In this example,

atom #1 is only solvent accessible on the left side between atoms #3

and #4, where its SES is larger than its SAS
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with solvent waters. Both the aromaticity and hydrogen

bonding were predicted by Openbabel 2.3.2. The resulting

atom types are shown in Table 3. There are two types for

hydrogen atoms (polar and apolar hydrogens), two types of

carbon (aromatic and non-aromatic carbon), four types of

nitrogen (aromatic / non-aromatic, able / unable to accept

hydrogen bonds). Oxygen has a single atom type, thus all

oxygens are typed as O. All oxygens in the FreeSolv-0.32

database and in the SAMPL5 set are considered H-bond

acceptors by Openbabel 2.3.2. The remaining elements are

composed of a single atom type each. Chemical groups

which are H-bond donors, such as hydroxyl groups and

amines, rely on the presence of polar hydrogens (HD) to

describe their H-bond donor properties.

Free energy of solvation in cyclohexane

For training the model to predict DGsolv
cyclohexane we used a

total of 18 compounds with experimental values [22].

These compounds (Figure S3) are sidechain analogues of

the 20 naturally occurring aminoacids except glycine and

proline. Due to the reduced number of compounds used for

training the model, we opted to fit only a single parameter:

the SES area of the molecule. The free energy of solvation

in cyclohexane is then calculated as:

DGsolv
cyclohexane ¼ Wc � A ð4Þ

where Wc is the fitted parameter (using the least squares

method) and A is the SES area of the solute, using a solvent

probe radius of 1.5 Å. The value of Wc and the quality of

the model are discussed in the results section.

Results and discussion

In the following sections, we discuss (1) the model for

predicting free energies of solvation in water, (2) the model

for predicting free energies of solvation in cyclohexane and

(3) the blind prediction of cyclohexane/water distribution

coefficients (log D) for SAMPL5 compounds.

Prediction of free energy of solvation in water

Atomic solvation parameters were fitted using the least

squares method to reproduce the experimental free energies

of hydration of 642 molecules in the FreeSolv-0.32 data-

base [19, 20]. In order to evaluate the benefit of using

partial charges calculated by a fast method (Gasteiger–

Marsili) and also to test different surfaces (SES and SAS)

to quantify solvent exposure of solute atoms, four sets of

atomic solvation parameters were derived. The resulting

parameters are reported in Table 3. The quality of

Table 3 Atomic solvation parameters used in the calculation of the free energy of hydration, fitted to experimental data in the FreeSolv-0.32

database using the least squares approach

Atom type Description Atomic solvation parameters (Wi) (cal/mol Å2)

SES (Eq. 3) SAS (Eq. 3) SES (Eq. 2) SAS (Eq. 2)

H Apolar hydrogen ?11.2 (±1.6) ?3.2 (±0.7) ?8.1 (±2.3) �2.0 (±0.5)

HD Polar hydrogen �193.5 (±13.3) �45.7 (±5.1) �303.3 (±13.0) �95.5 (±4.4)

C Carbon 0 ?21.2 (±5.8) �44.6 (±9.8) 0

A Carbon (arom.) �12.6 (±3.1) 0 �40.7 (±3.0) �22.4 (±2.2)

N Nitrogen 0 0 ?144.9 (±38.4) 0

NA Nitrogen (arom.) �626.6 (±65.4) �465.2 (±52.5) �621.5 (±71.5) �497.6 (±59.0)

NH Nitrogen (H-bond acc.) �128.7 (±22.4) �24.6 (±8.3) �130.9 (±24.4) �47.7 (±9.1)

NHA Nitrogen (arom./H-bond acc.) �185.6 (±21.7) �98.6 (±11.9) �244.3 (±22.8) �124.9 (±13.3)

O Oxygen (H-bond acc.) �42.2 (±7.2) �10.9 (±2.8) �108.8 (±4.5) �46.8 (±2.2)

F Fluorine ?72.4 (±6.5) ?38.9 (±2.8) ?31.7 (±5.7) ?11.3 (±2.6)

P Phosphorus 0 0 0 0

S Sulfur 0 0 0 �15.7 (±5.1)

Cl Chlorine ?13.9 (±2.8) ?8.4 (±1.3) �7.1 (±2.1) �5.1 (±1.0)

Br Bromine 0 0 0 0

I Iodine 0 0 0 0

Weight factor for Gasteiger charges (Q) �246.9 (±22.1) �162.0 (±9.2) – –

Training RMSE (kcal mol�1 ) 1.69 1.76 1.80 1.99

Atomic solvation parameters correspond to Wi in Eqs. 2 and 3 and to Q in Eq. 3. Zeroed parameters were set manually due to poor statistics
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prediction using SES areas and including atomic charges is

depicted in Fig. 2.

The magnitude and sign of atomic solvation parameters

quantifies the contribution of each atom type to the free

energy of hydration. More negative values indicate a larger

favorable contribution to the hydration free energy. How-

ever, the contribution of an individual atom is weighted by

its surface area, explaining the larger magnitude of solva-

tion parameters obtained using SES areas (the SAS is

always larger than the SES except for highly buried atoms,

as is exemplified for atom #1 in Fig. 1).

Atom types capable of making Hydrogen bonds with

water have the most negative solvation parameters (HD, O,

NH, NHA). This means that solute–solvent hydrogen

bonds can be captured by atomic solvation parameters. The

coefficient Q from Eq. 3 scales the contribution of partial

charges and also has a large negative value, indicating that

the contribution of electrostatic interactions have also been

incorporated in the parameters. This observations are

consistent with a physically meaningful model, with a

straightforward interpretation of atomic solvation parame-

ters. It is important to note that inclusion of partial charges

in the model (Eq. 3) decreases the magnitude of the atomic

solvation parameter of atoms involved in hydrogen bonds

(HD, O, NH, NHA) by about fourfold if SES areas are used

and threefold if SAS areas are used. This means that

Gasteiger–Marsili charges are able to describe a significant

part of solute–solvent hydrogen bonds.

One particular atom type, NA (aromatic nitrogen that

does not accept H-bonds) displays a more negative solva-

tion parameter than atom types involved in hydrogen

bonds, which is hard to rationalize. This is partially

explained by the low exposure of NA atoms, which are

shielded by three substituent groups in a planar geometry,

making solvent contacts possible only in small surface

patches above and below the plane of the aromatic ring.

However, even considering their low solvent exposure, NA

atoms can make significant contributions: for cyanuric acid

(the molecule from FreeSolv-0.32 database with the largest

SES area associated with NA atoms), NA atoms contribute

with almost �8 kcal/mol to the hydration free energy. For

comparison, the contribution from hydrogen bond donors/

acceptors and from partial charges is about �15:3 kcal/mol

for cyanuric acid, and the free energy of hydration is

overestimated by �5:6 kcal/mol. These observations sug-

gest that the parameter for NA has overfitted. We’ll return

to this discussion in view of the results obtained in blind

log D prediction for SAMPL5 compounds containing NA

atoms.

Among the four sets of parameters derived to predict

DGsolv
water , the quality of the fit was slightly better (lower

RMSE) with the use of SES areas and the inclusion of

partial charges. Thus, this model was used to make blind

predictions of the cyclohexane/water log D for compounds

in the SAMPL5 set.

Prediction of free energy of solvation in cyclohexane

Free energies of solvation in cyclohexane were predicted

using Eq. 4, in which a single parameter Wc is multiplied

by the SES area of the solute to obtain DGsolv
cyclohexane. From a

physical point of view, we are assuming that the free

energy of solvation is directly proportional to the solute

area. This assumption is reasonable because the dielectric

constant of cyclohexane is very low (� ¼ 2:02), and van der

Waals interactions constitute the largest contribute to

intermolecular stabilization. Using a set of 18 molecules,

Wc was fitted to �36 cal mol�1 Å�2. The quality of the fit

is depicted in Fig. 3, and has a RMSE of 1.02 kcal/mol. On

an additional set of 91 molecules from Ref. [23], the

RMSE is 1.07 kcal/mol (see Figure S1 and Table S1). The

model systematically underestimates free energies of sol-

vation for more negative values and overestimates more

Fig. 2 Prediction of hydration free energies for molecules in the

training set using SES areas and including partial charges

Fig. 3 Prediction of solvation free energies in cyclohexane for

molecules in the training set

J Comput Aided Mol Des (2016) 30:1079–1086 1083

123



positive values. This bias could be fixed by introducing an

intercept term B in Eq. 4 and transforming it into

DGsolv
cyclohexane ¼ Wc � Aþ B: However, the presence of an

intercept term B would mean that a molecule with no

surface area would have an interaction with cyclohexane,

which is physically unreasonable. For this reason, we

decided to avoid the use of an intercept. Moreover, in a

retrospective analysis, we used an intercept in the model to

predict DGsolv
cyclohexane but this showed no improvement in the

prediction of log D values for SAMPL5 compounds, and

showed a systematic bias for larger molecules, indicating

that Eq. 4 without intercept is more appropriate to calculate

DGsolv
cyclohexane.

Prediction of log D for SAMPL5 compounds

The prediction of log D values for compounds in the

SAMPL5 challenge was based on the free energies of

solvation in water and on cyclohexane (Eq. 1). The free

energy of solvation in water was calculated using SES

areas and partial charges (Eq. 3). The model that predicts

the free energy of solvation in cyclohexane consists of a

single coefficient multiplied by the SES area of the mole-

cule (Eq. 4). Our predictions are reported in Table S2.

Figure 4 compares the calculated and experimental log

D values for the 53 SAMPL5 molecules. While a correla-

tion is readily observable the model exaggerates the mag-

nitude of the predictions, both for negative and positive

valued log D’s. In other words, if the calculated log D was

scaled by a factor of about 0.3, the predictions would

approach the equality line. The key parameters to describe

the quality of the prediction are the Pearson’s correlation

coefficient of 0.58, the Kendall rank order correlation

coefficient of 0.42, a mean signed error of -1.06 (1.42

kcal/mol in DGsolv units), a mean absolute error (MAE) of

2.57 (3.45 kcal/mol) and a root mean square error (RMSE)

of 3.27 (4.39 kcal/mol). These values correspond to modest

prediction of log D values. The Kendall rank order corre-

lation coefficient (0.42) also indicates modest performance

in ranking the compounds.

The largest outlier is adenosine (ID: SAMPL5_074)

which is predicted to have a log D value of -14.1 while the

experimental value is -1.9. Analysis of the predictions

submitted by other participants revealed a systematic bias

towards more negative values. This may indicate a problem

with the experimental value of this molecule, or the exis-

tence of a phenomena that lies outside the scope of the

modeling techniques, such as the formation of adenosine

dimers in cyclohexane, satisfying a significant number of

hydrogen bond donors/acceptors. However, this is a merely

speculative explanation for the systematic deviation of the

predictions. If SAMPL5_074 is removed, the RMSE

decreases from 3.27 (4.39 kcal/mol in DGsolv units) to 2.84

(3.80 kcal/mol), and the MAE reduced from 2.57 (3.45

kcal/mol) to 2.39 (3.20 kcal/mol).

Discussion of the NA atom type

The atomic solvation parameter for NA in the DGsolv
water

model is the most negative among all fitted parameters,

which is suspicious in view of the smaller magnitude of

other parameters associated with strong interactions with

water: hydrogen bonds and atomic charges. As is depicted

in Fig. 5, our blind predictions on SAMPL5 compounds

confirmed the suspicions: a larger contribution from NA

atoms is indeed associated with a biased prediction of log

D values towards distribution of the solute in water. In

view of these results, we concluded that the atomic sol-

vation parameter for atom type NA has overfitted. It is

important to note that the aberrant NA parameter does not

explain all errors in our model: molecules in which NA is

absent still present large deviations from the experimental

Fig. 4 Blind prediction of cyclohexane/water log D values for

SAMPL5 compounds

Fig. 5 Error in the blind prediction of cyclohexane/water log D

values is associated with the contribution from NA atoms
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value (see Fig. 5). The value of this analysis lies in the

identification of an error created by a machine learning

approach through interpretation of the physical meaning of

solvation parameters.

In an attempt to explain the aberrant NA parameter, we

performed three retrospective (non-blind) experiments, in

which the cyclohexane/water log D was calculated for the

53 SAMPL5 molecules using a modified set of parameters

to calculate the solvation free energy in water:

1. Set WNA ¼ 0 without change to any other atomic

parameter.

2. SetWNA ¼ 0 and re-calibrate the remaining parameters

using all 642 molecules in the FreeSolv-0.32 database.

3. SetWNA ¼ 0 and re-calibrate the remaining parameters

using all molecules in the FreeSolv-0.32 database

except those that contain NA (19 out of 642 molecules

contain NA).

The performance of the new sets of solvation parameters

were evaluated in (i) the full SAMPL5 set (n ¼ 53), (ii) all

compounds except SAMPL5_074 (n ¼ 52), and (iii) the

subset of SAMPL5 compounds that do not contain NA

atoms (n=40). We note that SAMPL5_074 contains NA

and is excluded in subset (iii).

The results are reported in Table 4. Overall, retrospec-

tive experiment 2 increased the error, while experiments 1

and 3 decreased the error relatively to the original set of

parameters (Table 3). We speculate that NA containing

molecules are implied in the origin of the aberrant NA

parameter during the fitting process. Setting WNA ¼ 0

without change to other solvation parameters (experiment

1) lowers the error, but forcing WNA ¼ 0 while allowing

other parameters to re-optimize (experiment 2) increases

the error. Excluding NA containing molecules from the

training set (experiment 3) also decreased the error. It is

possible that specific chemical features in training set

molecules containing NA introduce a bias in the NA

parameter in order to reproduce the free energy of hydra-

tion. For exaple, the existence of multiple tautomeric states

in NA containing molecules (e.g. cyanuric acid), or the

induction of a dipole moment in aromatic rings by the

presence of a nitrogen atom instead of a carbon atom are

complex physical properties beyond the scope of the pre-

sent model. Thus, the NA parameter optimizes to a

meaningless value because it is prevalent in molecules that

happen to contain chemical features that the present model

is unable to describe.

Estimating the model error

In the submission of results to SAMPL5, participants were

asked to estimate the uncertainty of the predictions. We

estimated the uncertainty of our model based on the

training RMSE of predictions of solvation free energy in

water (1.68 kcal/mol) and cyclohexane (1.02 kcal/mol),

which accumulate to 2.7 kcal/mol. We rounded up this

value to 3 kcal/mol because the compounds in the

SAMPL5 set are larger and chemically more diverse than

those used for fitting parameters. According to Eq. 1, 3

kcal/mol correspond to 2.24 log D units. Our log D pre-

dictions displayed a RMSE of 3.27 and a mean absolute

error (MAE) of 2.6, which is higher than the estimated

error. If the compound with ID SAMPL5_074 is excluded

(this compound was systematically predicted to have a

lower log D by other SAMPL5 participants), the RMSE

lowers to 2.84 and the MAE to 2.39. which is not far from

our RMSE estimate of 2.24. Overall, the errors in the blind

challenge were higher than we have anticipated, but the

error estimate is reasonable.

Conclusions

In this work, we employed an empirical model based on

atomic solvation parameters and on the surface area of

exposed solute atoms to predict the free energies of sol-

vation in two solvents: water and cyclohexane. This

approach was used to make blind predictions of the

cyclohexane/water distribution coefficients of 53 molecules

in the context of the SAMPL5 challenge. Our predictions

were not among the best performing methods in the chal-

lenge, but can be considered satisfactory in view of its

speed: it takes an average of 0.01 s per molecule.

The most striking feature of this work relatively to

similar studies is the reduced number of atomic solvation

parameters. Typically, the number of atom types ranges

between 30 and nearly 100, but here we have fitted

parameters for only 10 atom types (for predicting free

Table 4 RMSE (log D units)

evaluated on SAMPL5

compounds using updated

atomic solvation parameters

from retrospective experiments

Evaluation set

All SAMPL5 (n = 53) Except 074 (n = 52) NA free (n = 40)

Experiment 1 2.97 2.52 2.63

Experiment 2 3.33 2.82 2.92

Experiment 3 2.89 2.45 2.55

Submission #49 3.27 2.84 2.63
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energies of hydration). Thus, our model can capture only

simple features of the solute–solvent interaction, such as

hydrogen bonds, but in compensation has a straightforward

interpretation of the physical meaning of atomic solvation

parameters and is less susceptible to overfitting. As a result,

the error in the blind predictions is only slightly higher than

the errors obtained in the fitting stage.
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