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Abstract The Drug Design Data Resource (D3R) ran

Grand Challenge 2015 between September 2015 and

February 2016. Two targets served as the framework to test

community docking and scoring methods: (1) HSP90,

donated by AbbVie and the Community Structure Activity

Resource (CSAR), and (2) MAP4K4, donated by Genen-

tech. The challenges for both target datasets were con-

ducted in two stages, with the first stage testing pose

predictions and the capacity to rank compounds by affinity

with minimal structural data; and the second stage testing

methods for ranking compounds with knowledge of at least

a subset of the ligand–protein poses. An additional sub-

challenge provided small groups of chemically similar

HSP90 compounds amenable to alchemical calculations of

relative binding free energy. Unlike previous blinded

Challenges, we did not provide cognate receptors or

receptors prepared with hydrogens and likewise did not

require a specified crystal structure to be used for pose or

affinity prediction in Stage 1. Given the freedom to select

from over 200 crystal structures of HSP90 in the PDB,

participants employed workflows that tested not only core

docking and scoring technologies, but also methods for

addressing water-mediated ligand–protein interactions,

binding pocket flexibility, and the optimal selection of

protein structures for use in docking calculations. Nearly

40 participating groups submitted over 350 prediction sets

for Grand Challenge 2015. This overview describes the

datasets and the organization of the challenge components,

summarizes the results across all submitted predictions,Electronic supplementary material The online version of this
article (doi:10.1007/s10822-016-9946-8) contains supplementary
material, which is available to authorized users.
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and considers broad conclusions that may be drawn from

this collaborative community endeavor.

Keywords D3R � Docking � Scoring � Free energy �
Ligand � Protein

Introduction

The Drug Design Data Resource (D3R; www.drugde

signdata.org) aims to motivate the development of

improved computational methods by offering pharmaceu-

tical-related high quality datasets as benchmarks and

blinded community challenges. In this article, we describe

the composition of the datasets, the challenge preparation,

and the motivation for the challenge provided, and an

overview of participant results of the first community-wide

D3R Grand Challenge, conducted between September 15,

2015 and February 1, 2016. Grand Challenge 2015 had

high participation and the approaches to solving this pro-

tein–ligand pose and affinity ranking problem-set were

varied. This overview is supplemented in detail accompa-

nied by a number of participant authored articles, in this

special issue, which provide further detail.

Development of accurate automated protein–ligand

docking and scoring methods promises a high social impact

by reducing the time, expense, and environmental costs of

extensive chemistry campaigns in drug discovery. How-

ever, this high potential is matched by the high barriers to

developing such methods. Design goals include the abili-

ties to recapitulate experimentally observed ligand–protein

poses with root-mean-square deviations (RMSD) B 2.0Å,

and to accurately rank affinities for ligands bound to any

receptor. At least three types of affinity ranking problems

are commonly addressed: ranking of diverse compounds to

classify them as binders or non-binders of a given protein

(virtual screening); ranking of congeneric series of active

compounds that bind a single protein; and ranking of the

affinities of a single ligand against various proteins, par-

ticularly within a protein family. A number of community

challenges in recent years have tested the performance of

algorithms for these purposes, identifying successes and

illuminating areas for improvement [1–4].

D3R’s Grand Challenge 2015 presented the community

with two datasets from drug discovery programs at two

different companies, AbbvVie (formerly Abbott) and

Genentech, Inc. The first sub-challenge focuses on the

human heat shock protein 90 (HSP90), which regulates

proteostasis in normal cells and the stabilization of many

oncoproteins in tumor cells [5, 6]. Over the past fifteen

years, discovery of small molecule inhibitors of the HSP90

ATP-binding domain has led to over 20 anticancer agents

that are currently in clinical trials [6]. The second sub-

challenge focused on the human mitogen-activated protein

kinase kinase kinase kinase 4 (MAP4K4), a signaling Ser/

Thr kinase that is involved in pathways regulating various

pathological processes, including inflammation and cancer,

and is therefore an investigational drug target for a range of

diseases [7].

The HSP90 dataset is based on data contributed by

AbbVie and was enhanced by our predecessor the Com-

munity Structure-Affinity Resource (CSAR www.csardock.

org), which added 17 new compounds and related assay

and structural data. This dataset exemplifies many of the

features of an ideal docking challenge dataset representa-

tive of a drug discovery program. It consists of three dif-

ferent chemical series of *60 compounds each, which

cover an affinity range of four orders of magnitude. Par-

ticipants were provided with examples of chemically sim-

ilar compounds that do not inhibit the target, as well as a

set of co-crystal structures representative of the binding

modes for each chemical series. This challenge provided

participants with the opportunity to test workflows that go

beyond the docking algorithms and scoring methodologies

and to find ways to incorporate the extensive knowledge

base that exists for this target, including over 200 crystal

structures in the Protein Data Bank (PDB; www.pdb.org)

with various bound ligands, binding modes and confor-

mational examples for most prevalent conformations of the

binding pocket’s ATP-lid [8]. The distribution of affinities

and the number of compounds provided in this dataset also

afforded the opportunity to define subsets of chemically

similar compounds designed to test alchemical methods [9]

of computing relative binding free energies.

The second dataset is based on the protein MAP4K4, and

was contributed by Genentech. This dataset contained 30

crystal structures with resolution better than 2.5 Å, and

binding data for 18 compounds spanning four orders of

magnitude, in many cases confirmed by multiple assay

methods. This dataset differs fromHSP90 in that it has a high

number of unrelated diverse compounds and only a third of

the compounds fall into a congeneric series. Moreover, there

was a paucity of co-crystal structures publicly available at

the time of the Challenge launch; only eight ligand-bound

(non-ATP) structures were extant in the PDB [7, 10–12].

Thus most of the compounds in the dataset were unrelated to

available MAP4K4 crystal structures and provided an

opportunity to test docking programs’ cross-docking ability.

In MAP4K4, as in the HSP90 dataset, binding site flexibility

adds to the difficulty of pose prediction, as the kinase P-loop

can adopt both a closed and open conformation [13], and in

some cases, has residues unresolved in crystal structures due

to its flexibility [13].

Unlike previous blinded challenges, we chose to present

these subchallenges without providing cognate receptors or

receptors prepared with hydrogens, and likewise did not
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require a specified crystal structure to be used for pose or

affinity prediction in Stage 1. Given this freedom to test a

large number of crystal structures, especially for HSP90,

many participants tested a number of workflows that went

beyond a docking program’s sampling and scoring capa-

bilities, and instead strove to incorporate target knowledge

in an automated manner. This also allowed for expanding

the challenge test beyond cognate ligand–receptor docking

(known to be successful for the majority of docking algo-

rithms) and challenge the community to test methods for

the ability to handle water-mediated ligand–protein inter-

actions, binding pocket flexibility, close chemotype

(chemical series or similarity) docking and cross-docking.

In the case of HSP90, care was taken to provide crystal

structure examples of the binding mode for each of the

three chemotypes, allowing for similarity and cross-dock-

ing challenges. The MAP4K4 pose prediction challenge

had an additional level of difficulty, in that there were no

examples for binding modes for many of the compounds;

on the other hand, MAP4K4 was, arguably, simpler in the

sense that correctly treating water-mediated protein–ligand

interactions was less critical than for HSP90.

Materials and methods

Composition and construction of challenge datasets

Raw datasets

Heat shock protein 90 The HSP90 dataset used for this

challenge is based on a large collection of enzyme inhi-

bition data contributed by Abbvie Pharmaceuticals to

CSAR, D3R’s predecessor, which further developed the

dataset by adding new compounds and binding data. The

AbbvVie dataset contains a set of small molecules with

their IC50 values for binding to the protein’s N-terminal

ATP-binding domain, measured with a time-resolved flu-

orescence energy transfer (TR-FRET) assay [14]. The

dataset was expanded to a total of 180 with an additional

set of 17 ligands, which were designed by the CSAR team,

synthesized by WuXi AppTech and assayed by the same

TR-FRET method. Some of the compounds were analyzed

further by isothermal titration calorimetry and the

OctetRed method [15], and had their pKas and solubilities

measured. Although these additional data were not used

herein, they are informative regarding the measurement

uncertainties and are provided on our website

(doi:10.15782/D6159 W). Table S1 (SI-Dataset) provides

the names, structures, and IC50 values for all compounds

used in the present challenge. These compounds may be

classified into three chemical series: aryl-benzimidazolones

[16], pyrimidin-2-amines [14], and benzophenone-like

compounds. Each series includes approximately 11 com-

pounds for which binding was undetectable by the TR-

FRET assay, corresponding to an IC50 greater

than *50 lM. IC50 values ranged from 5.2 nM

to[50 lM. The CSAR team also obtained co-crystal

structures using exactly the same truncated form of the

protein used in the binding assays with eight of the ligands,

as listed in Table S1 (SI-Dataset). Resolution limits for the

resulting co-crystal structures range from 1.60 to 1.95 Å,

and the crystallization methods and conditions can be

found in www.RCSB.org. Some of the AbbVie compounds

were further characterized by other assays as part of the

CSAR effort, as detailed in the SI (HSP90_Materi-

als&Methods; HSP90_Experimental_Data).

Mitogen-activated protein kinase kinase kinase kinase

4 The MAP4K4 dataset used here was contributed by

Genentech, Inc., and comprises 30 crystal structures of the

enzyme’s catalytic domain bound to 30 chemically varied

ligands, together with IC50 values, measured by an ATP

consumption assay [7] for 18 of the 30 compounds, and Ki

values for 14 of the compounds determined by a Surface

Plasmon Resonance (SPR)-based fragment screen [17], as

summarized in Table S2 (SI-Dataset). The IC50 values

range from 0.0031 to 10 lM. Additional assay results for a

partial list of the compounds are available at the D3R

website, doi:10.15782/D6WC7Z, providing some estimates

of uncertainties.

Analysis and refinement of HSP90 and MAP4K4 datasets

Crystal structure coordinates were interrogated for quality

of ligand and side chain occupancy around the binding

pocket, guided by both visual inspection of 2 m|Fo|-D|Fc|

difference Fourier syntheses generated using the MOE

software package [18], and by data quality estimates found

in the wwPDB Validation Report (www.rcsb.org/valida

tion/validation-reports; [19]) for each co-crystal structure.

The most important criterion was the clarity of the differ-

ence electron density feature corresponding to each ligand,

as shown in Tables S1 and S2 (SI-Dataset). The 2 m|Fo|-

D|Fc| maps contoured at 1.0r clearly indicate the existence

of the ligand in each co-crystal complex. For ligands of the

HSP90 data set, the real space correlation coefficient

(RSCC) ranges from 0.92 to 0.99 and the real space Rfactor

(RSR) ranges from 0.05 to 0.1, leading to very low Zscores

(RSRZ), ranging from -0.93 to 0.02, much lower than the

cutoff value (ZRSR = 2.0) for poor electron density;

RSCC and RSR values were generated by the wwPDB

DCC program [20]. For the ligands of the MAP4K4 data

set, RSCC ranges from 0.89 to 0.98, RSR from 0.09 to

0.27, and RSRZ from 0.88 to 1.24 which are more diverse

than the HSP90 cocrystal structures, yet well below the
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cutoff for poor quality. Additional information is provided

(see supplemental information: SI_Crystallographic_-

data_HSP90 and MAP4K4). The MAP4K4 crystal struc-

ture for ligand MAP32 was re-refined after the close of the

challenge, to make the tautomeric state of the ligand

pyrazole moiety more consistent with the observed

hydrogen bonds the ligand makes between kinase protein

backbone in the hinge region; this modification also

required a 180-degree rotation of the pyrazole-phenyl

bond. The RMSD values reported in this paper were

evaluated against this new MAP32 model and differ

somewhat from those previously distributed to challenge

participants.

We also looked for possible consequences of crystal

packing on ligand poses, as these might undermine the

validity of these poses as references for pose predictions.

The MAP4K4 crystal structures contain two protein copies

per asymmetric unit, with only one copy containing bound

ligand. Here, the bound ligands made interactions to only

one polypeptide chain, so all 30 co-crystal structures were

suitable for the challenge. However, the structure of HSP90

with ligand HSP90_44 (4YKT) was disqualified, because

the bound ligand directly contacts a second molecule of

HSP90, raising the likelihood of a significant perturbation

of the pose, relative to what would exist in solution (SI-

Figures, Figure S1). Additionally, two initially blinded

HSP90 co-crystal structures were provided to participants

as docking targets (see below), leaving five of the original

eight pose-prediction challenges for this target.

Challenge procedures

Posing the challenge

For both the HSP90 and the MAP4K4 datasets, the chal-

lenge was held in two stages, as previously done by CSAR

[4]. In Stage 1, participants could predict the poses of the

ligands for which blinded crystal structures were available

and also predict the rankings of all ligand binding affinities,

or the binding free energies. Immediately after Stage 1

closed, all of the available co-crystal structures were

released to the participants, and Stage 2 provided a second

chance to predict or rank affinities, now with the presumed

advantage of full access to all structural data.

Participants were provided with SMILES strings of the

ligands to be docked, the pH at which the binding assays

were performed, and the crystallization buffer conditions.

Protein–ligand crystal structures were also provided, each

of suitable quality for docking studies (overall resolu-

tion\2.5Å), and exemplifying relevant ligand binding

modes, water-mediated interactions, and protein confor-

mations, when available. The provided co-crystal struc-

tures were all translationally and rotationally aligned to a

single reference structure within each dataset. These

alignments were based on the coordinates of the a-carbon
backbone atoms and emphasized secondary structure ele-

ments (a-helices and b-sheets) [18]. As mentioned above,

the structures were provided to participants at the Chal-

lenge outset or as ‘‘Answers’’ after completion of Stage 1.

Participant instructions permitted docking of ligands into

other structures available in the PDB, and encouraged full

utilization of information available in the scientific litera-

ture. The provided structures were chosen through in house

docking and analysis of the active sites for both targets. For

the HSP90 challenge, two crystal structures from the

blinded dataset were provided at the outset of the challenge

to exemplify new chemotype/water-mediated binding

modes not found in the public domain. Where multiple

crystal structures could have been selected, we chose to

provide the structure refined using the highest resolution

data. All challenge data were provided via the D3R

website.

For pose predictions, participants were invited to submit

up to five poses for each ligand, with one marked as their

top-ranked pose. For affinities, participants were asked to

submit a ranked list of all ligands for each protein target. In

addition, three small (4, 5 and 10 ligands) sets of HSP90

ligands (Table 1) were identified as sufficiently similar to

be amenable to explicit solvent alchemical free energy

calculations [9], and were thus proposed as targets for this

relatively computationally intensive approach.

For HSP90, Stage 1 opened Sep 15, 2015 and closed

Nov 20, 2015; Stage 2 started several days after the close

of Stage 1 and ended Feb 02, 2016. For MAP4K4, Stage 1

ran from Oct 16, 2015 to Dec 16, 2015; Stage 2 also started

soon after and ran until Feb 02, 2016. Pose prediction

answers for Stage 1 were released at the end of the Stage.

As noted above, all available co-crystal structures were

released immediately after the close of Stage 1 so they

could be used in a second round of affinity predictions. No

limit was placed on the number of predictions a participant

could submit for each component of the challenge. Par-

ticipants were provided the option of remaining anony-

mous and were able to change their choice in this regard

until the experimental results were released.

Submission and validation of predictions

Participants were required to provide their predictions in

defined formats, in order to enable automated processing of

their submissions. Each ligand pose was submitted in the

form of a legacy PDB format file, containing both ligand

and protein coordinates, and a REMARK line with an

energy or score for the pose. Although participants were

free to dock the ligands into the protein structure(s) of their

choice, the coordinates were required to be superimposed
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on those provided (above). Affinity rankings and free

energy predictions were submitted in the form of comma-

separated-value (CSV) files, with one ligand per line. Each

submission was also required to include a protocol file,

containing an informal name for the procedure used to

predict the poses and/or affinities, the name(s) of the main

software packages used, the values of key parameters, and

a brief, plain-text description of the method. Detailed

instructions, examples of correctly formatted submissions,

and fillable template files, were provided to participants via

the D3R website.

In order to participate in the challenge, a user or group

was required to create a D3R login and then register for the

challenge. Upon registration, the participants could access

all available files to date, and upload predictions during

open submission windows. Immediately after being

uploaded by the participant, each new submission file was

automatically scanned for a set of possible formatting and

technical problems, and the submitter was immediately

notified of any apparent problems. If no problems were

detected at this stage, the submission was accepted and

assigned a Submission ID. Each registered participant

could then view his or her set of completed submissions, on

a D3R page specific to the D3R login. Further validation

checks of each prediction file took place subsequent to

initial submission and assignment of the Submission ID.

For example, a pose prediction was considered invalid if

the PDB file contained the wrong ligand or if there were

multiple copies of a ligand in one PDB file. Submitters

were notified of any apparent problems at this stage and

allowed to correct their submissions if they could do so

before the close of the submission window.

Some submissions for the affinity ranking components

of the challenges did not include predictions for all 180

ligands in the case of HSP90 or all 18 ligands in the case of

MAP4K4. Those containing predictions for only two

ligands were not analyzed. In the case of HSP90, some

submissions contained rankings for only the six ligands in

the pose-prediction part of this challenge; for these, the

results were analyzed and provided to the submitters but

were excluded from the analysis in this report.

Evaluation of predictions

Evaluation of ligand poses

The accuracy of each predicted ligand pose was evaluated

in terms of the symmetry-corrected root-mean-square

deviation (RMSD) of the prediction relative to the crys-

tallographic pose. Because submitters were instructed to

provide coordinates aligned with the structures provided as

references, the structures were not adjusted in order to

compute the RMSD values. However, we used the maxi-

mum common substructure functionality of the OEChem

Python toolkit [21] to correct for possible renumbering of

ligand atoms and for ligand symmetries, as previously

described [22]. Although participants were free to treat the

protein as flexible, we did not evaluate the accuracy of the

protein conformation, or of water molecules, in the pose

predictions. As noted above, participants were invited to

submit up to five poses per ligand, with one of the five

identified as top ranked. We computed the RMSD values of

all poses in each submission, and reported statistics on both

the top ranked pose, and, separately, the best (lowest

RMSD) pose among the five. The results for HSP90 and

MAP4K4 were analyzed and are presented separately,

rather than merging results by methodology, partly because

it was impossible to be sure which methods (if any) were

identical from one target to the other; and partly because,

as detailed below, target-specific issues other than the

docking and scoring method itself proved to be important

determinants of docking accuracy.

Evaluation of affinity rankings

Predicted affinity rankings were evaluated in terms of the

Kendall’s tau and Spearman’s rho rank correlation coeffi-

cients. Both range from 1 to -1, where 1 indicates a perfect

ranking and -1 represents a perfectly reversed ranking.

The Results section reports Kendall’s tau and Spearman’s

rho for the predictions as submitted (i.e., without resam-

pling), along with uncertainties from the following

resampling procedure. The uncertainty in each correlation

coefficient was assessed over 10,000 rounds of bootstrap

resampling with replacement, where, in each round, the

experimental IC50 data were randomly modified based on

the experimental uncertainties and reranked accordingly.

The modified IC50 values were generated by converting

each IC50 into a free energy, DG ¼ �RT ln IC50ð Þ,
(T = 300 K), adding a random offset dG drawn from a

Gaussian distribution of mean zero and standard deviation

RTln(Ierr), and then converting back to an IC50 as

IC500 ¼ e� DGþdGð Þ=RT . The value of Ierr was set to 3 for

HSP90 based on published estimation of assay accuracy at

Abbvie [23] and comparison of assay data for 17 com-

pounds where the TR-FRET assay and ITC Kd values had

a median difference of 2.09-fold and average of 3.47 (see

D3R website). The value of Ierr for MAP4K4 was set at 2

based on evaluation of assay results for 15 compounds

measured in the same assay at two different locations; the

two different assays all have median differences less that

two-fold (see D3R website).

Some submission files included multiple variants of the

same method. In order to simplify reporting, we report only
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the highest score from each such submission; the names of

the methods for such submissions have the number of

prediction sets in the method name (parenthesis), in

Tables S4–S7. The numbers of rankings before and after

these mergers are reported in Table 2.

Eight compounds (HSP90_35, 61, 94, 95, 116, 123, 127

and 170) have chiral centers and the affinities were

reported as pertaining to racemic mixtures. Recalculation

of all Kendall’s tau statistics without these compounds led

to minimum, mean and maximum changes in this statistic

of -0.02, 0.01 and 0.04. This did not change the trends and

the reported results include these compounds.

Two simple null models [24] were set up as trivial

performance baselines and evaluated in the same manner as

the submitted predictions. The null models are ‘‘Mwt’’, in

which the affinities were ranked by molecular weight; and

clogP [25] in which affinities were ranked based on the

octanol–water partition coefficient estimated computa-

tionally by CDD Vault [26].

Evaluation of free energy predictions

Participants were invited to submit predictions of relative

binding free energies for three small sets of chemically

similar HSP90 ligands. Only IC50 measurements are

available for these compounds. Although IC50 values can

approach dissociation constants, our application of the

Cheng-Prusoff equation [27] for the HSP90 TR-FRET

assay conditions suggest the relationship of Kd to IC50

is *1:3 to 1:5 ([Geldanamycin] = 0.8 lM, 3 h incubation

and Kd * 20–50 nM). However, a constant ratio of this

sort will not perturb relative binding free energies, so the

relative energies can be compared with experiment.

Because each set includes compounds with similar

affinities (Table 2), even small errors in the computed free

energies can lead to reranking of the ligands. Ranking

metrics like Kendall’s tau may therefore be overly sensitive

to quantitatively small errors and thus be uninformative.

Therefore, although Kendall’s tau is reported for these

special sets, we focus more on the quantitative accuracy of

the results, using the centered root mean square error

(RMSEc) of the calculated binding free energy differences

versus those from experiment [28, 29]:

RMSEc ¼
(
1

N

XN�1

i¼1

"
DDGcalc

i � DDGexpt
i

� �

� 1

N

XN�1

i¼1

DDGcalc
i � DDGexpt

i

� �#2)1
2

ð1Þ

Here N is the number of ligands in each set (4, 5 and 10),

and DDGcalc and DDGexpt are the submitted and experi-

mental binding free energies of ligand i relative to one

arbitrarily selected reference ligand, here termed ligand 0.

The advantage of the RMSEc over other statistics that

might be used to characterize the accuracy of computed

relative binding free energies is that it does not depend on

which ligand is selected as the reference ligand.

The free energy component of the HSP90 challenge

centered on three small sets of chemically similar com-

pounds. However, some free energy submissions included

all 180 compounds for HSP90 or all 18 compounds for

MAP4K4. Only one of these submissions used the explicit

Table 1 The IDs and potencies of the HSP90 ligand sets in the free

energy sets. ‘‘Evaluation of affinity rankings’’ section discusses the

uncertainties in these data

ID IC50 lM

SET 1 = 5 ligands

hsp90_80 1.91

hsp90_81 0.206

hsp90_82 11.6

hsp90_83 15.0

hsp90_84 5.85

SET 2 = 4 ligands

hsp90_100 50.0

hsp90_101 0.192

hsp90_105 0.123

hsp90_106 0.0874

SET 3 = 10 ligands

hsp90_10 4.89

hsp90_11 0.215

hsp90_15 6.75

hsp90_19 6.59

hsp90_21 0.193

hsp90_23 3.08

hsp90_26 0.0205

hsp90_28 0.276

hsp90_34 6.14

hsp90_61 [50.0

Table 2 Number of validated submissions, Nsubmit, received for each

component of D3R Grand Challenge 2015

Challenge component Nsubmit

HSP90 pose predictions 47

MAP4K4 pose predictions 33

HSP90 stage 1 affinity ranking 75 (41)

MAP4K4 stage 1 affinity ranking 77 (40)

HSP90 stage 2 affinity ranking 59 (30)

MAP4K4 stage 2 affinity ranking 46 (26)

HSP90 small set free energies 18

The numbers in parentheses for the affinity rankings are the numbers

of ‘‘merged’’ submissions, as explained in ‘‘Evaluation of affinity

rankings’’ section
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solvent free energy methods that were envisioned for the

free energy challenge, and this submission was subse-

quently withdrawn by the participant. The remaining all-

ligand free energy submissions were merged into and

analyzed with the ranking submissions. Note, however, that

a number of methods other than explicit solvent free energy

simulations were applied to the small free energy sets, and

these are included in the comparison of free energy

methods.

Results

A total of 38 participants uploaded a total of 355 submis-

sions that passed validation tests (above). Note that 11 out

of these 355 submissions did not include the method names

and protocols used and are not included in this paper. The

numbers of valid submissions for the seven components of

the challenge are listed in Table 2. The methods used

ranged from knowledge-based to physics-based, and

include both automated and manual methods. The methods

are summarized in Tables S3–S9 (SI-Methods), and further

details may be found in papers from the participants, most

or all of which are published in the same special issue as

the present overview article. The following subsections

analyze the performance of these methods for ligand pose

prediction and the assessment of ligand binding potency.

Pose predictions

HSP90 pose predictions

Overview of prediction accuracy The results for 39 sets

of HSP90 pose predictions submitted for all five ligands

along with method details are summarized in Fig. 1, in

terms of RMSD statistics for each submission (Table S3,

SI-Methods) over the five ligand structures, with variances

in the RMSDs across ligands are illustrated in terms of

boxes and whiskers. This presentation, though perhaps not

needed for such small datasets, facilitates comparison with

analogous graphs for the larger MAP4K4 study. The

methods are ordered along the horizontal axis by the

median RMSD of the submissions’ top ranked poses (rank

1). The left-hand panel provides statistics for these rank 1

poses, while the right-hand panel shows results for the

lowest RMSD poses across up to five poses submitted for

each ligand (best of top 5). The median RMSDs of the rank

1 poses range from 0.3 to 6.6 Å, and the corresponding

range for the best of top 5 poses is essentially the same.

However, the rank 1 poses were the best of the five 56 % of

the time, which is better than the expected fraction of 20 %

if the ranking were entirely random.

Correlation of performance with docking software and

method Half of the submissions provided rank 1 poses

with median RMSD\ 2Å, and thus met a reasonable and

common criterion of success. However, it is not immedi-

ately obvious that the success of these submissions can be

attributed to the choice of docking software, as they used a

range of tools (rDOCK, AutoDock Vina or a variant

thereof, Gold, and Surflex) as well as some combinations

(Gold-PlantsPLP-rDock, RosettaLigand-Omega-ROCS,

Surflex-Grim and Glide-Prime-Desmond-Qsite). Addition-

ally, submissions using similar or the same software

packages yielded differing levels of accuracy; for example,

methods using AutoDock Vina and Glide are scattered

through the ranking. It is suggestive that four of the most

successful 11 methods mention visual inspection of com-

putationally generated poses, while apparently none of the

28 less successful methods included human intervention.

Two RosettaLigand submissions provide an informative

illustration of the complexities that arise in interpreting the
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Fig. 1 HSP90 RMSD box plots of rank 1 and best of top 5 poses for

all submitted-methods. The methods are ordered by the median

RMSD. The mean is shown by the circles, the connect line is for the

median, the box is for the interquartile range (IQR) with the whiskers

indicating 1.5X IQR. Table S3 (SI-Methods) has the names of the

Submitted Methods and a summary of the protocols. Each Submitted

Method’s box plot contains 5 data points
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present results. For method 4, the median RMSD of the

rank 1 poses is only 0.5 Å; for method 25, this statistic is

considerably worse, at 3.3 Å. Neither method used docking

as conventionally interpreted; instead, both generated

multiple ligand conformations and used superposition

software to find an optimal overlay on the pose of a similar

ligand with an available co-crystal structure, and Roset-

taLigand scores were determined for the resulting poses. In

method 4, ligand conformations were generated with the

program Omega [30], and the programs PoPSS [31, 32] and

ROCS [33] were used for the overlay. In method 25, MOE

and the in-house unpublished BioChemicalLibrary (BCL)

tool were used.

Correlation of pose prediction with protein conformation

and binding site water molecules Further examination of

the results suggests that docking success is influenced by

the choice of protein structure and the treatment of binding

site water molecules, perhaps more so than by the choice of

docking software. All the HSP90 ligands fall into three

chemical classes: benzimidazolone (ligand HSP90_40);

aminopyrimidine (ligands HSP90_73 and HSP90_179);

and benzophenone-like (ligands HSP90_164 and

HSP90_175), and the protein crystal structures provided

for this challenge included at least one determined with a

ligand from each chemical series: 4YKR for benzimida-

zolone, 2JJC and 2XDX for aminopyrimidine, and 4YKY

for benzophenone-like. However, the correspondence of

protein structure to ligand class was not revealed, and

participants were also free to dock these ligands into other

HSP90 structures drawn from the PDB. We conjectured

that predictions in which a ligand was docked into a

structure solved with another ligand of the same congeneric

series (‘‘similarity docking’’) might be more accurate that

predictions in which a ligand was docked into a structure

determined with an entirely different ligand (‘‘cross-dock-

ing’’). This conjecture is borne out for all three ligand

classes, most clearly for the benzimidazolone and ben-

zophenone-like classes (Fig. 2). Note that each bar corre-

sponds to 11–28 different docking submissions, providing a

reasonable sampling of each approach.

In the above plot, ‘‘similarity’’ refers to the listed

chemical series chemotypes, rather than to overall Tani-

moto similarity. Chemotype similarity can assist in selec-

tion of crystal structures with similar chemical series that

provides a side chain (and water) template for binding

mode within a chemical series but not necessarily the best

binding pocket conformation, particularly where there is

binding site flexibility. Participants that defined similarity

more generally across the entire ligand could select struc-

tures that accommodate the need for a more open ATP lid

structure, Fig. 3. Examination of the two aminopyrimidine

ligand co-crystal structures (Fig. 3) reveals that ligand

HSP90_73 binds to an open conformation (yellow), while

ligand HSP90_179 binds to a closed conformation (purple),

and that the nitro group of HSP90_73 would have a steric

clash with the closed form.

For the benzophenone-like chemotype, similarity could

assist with binding mode prediction (Fig. 4), but partici-

pants had more difficulty predicting the pose of HSP90_175

(median RMSD 5.7 Å) versus ligand HSP90_164 (median

RMSD 1.8 Å). We find that the protein structures used by

the participants influence accuracy in different ways for

these compounds, despite having similar binding modes

(Fig. 5). Both experimental co-crystal structures have the

same closed conformation of the protein, and the most

notable difference is a water-mediated interaction for ligand

HSP90_175 (absent for HSP90_164), although the water

position is identical in both cases (Fig. 4). One might

therefore expect omitting the water molecule during dock-

ing for ligand HSP90_175 to be a problem, but not neces-

sarily for HSP90_164. (Note that one of the protein

structures provided for the docking exercise, 4YKY, was

determined with a ligand of this chemotype and has the

appropriate closed conformation and the conserved waters

present.) Indeed, as shown in Fig. 5, predictions for ligand

HSP90_175 that used a closed conformation and included

the water molecule had the best results, while docking

without the water molecule led to high median RMSDs,

regardless of loop conformation. (None of the participants

used an open conformation structure with the water mole-

cule present.) However, the presence or absence of the water

molecule mattered less for ligand HSP90_164 (Fig. 5): with

or without the water molecule, using the correct confor-

mation (closed) of the receptor resulted in low median

RMSDs, and a high median RMSDwas observed only when
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Fig. 2 HSP90 box plot distributions for the rank 1 pose, color coded

by chemical series and organized by receptor–ligand PDB selection

type, ‘‘similarity’’ or ‘‘cross-docking’’. The mean is shown by the

circles with a plus sign, the median by the filled circle, the box is for

the interquartile range (IQR) with the whiskers indicating 1.5X IQR.

The outliers are indicated by asterisks above the whiskers. The box

plots contain 12, 27, 24, 15, 11, and 28 data points, respectively
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incorrect conformation (open) was used in the absence of

the bound water, perhaps by restricting the sampling space

for the possible binding modes. It is remarkable that many

of the most successful workflows used superposition of

‘‘similar’’ ligands and avoided the sampling of large binding

site spaces.

Fig. 3 a Binding site conformations of of HSP90 with ligands 73

(grey) and 179 (cyan) in the experimental co-crystal structures. The

open conformation with ligand 73 is shown in yellow while 179’s

closed conformation is shown in purple, with the positioning of

Thr109 depicted. b Chemical structures of the two ligands: 4YKW

(HSP90_73) and 4YKU (HSP90_179), respectively

Fig. 4 a HSP90 ligands 164 (grey, 4YKX) and 175 (cyan, 4YKZ) in their experimental co-crystal structures. b Chemical structures of both

ligands
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Fig. 5 HSP90 box plot of RMSD distributions for rank 1 poses of

ligands HSP90_175 and HSP90_164, separated according to the

conformation of the protein structure used and whether the crucial

water was present or absent in the docked structure. (An open

conformation and the water-present structure was not tested for ligand

HSP90_175.) The means are shown by circles with a plus sign, the

medians by the filled circles, the boxes are for the interquartile ranges

(IQR), and the whiskers indicate 1.5 9 IQR. The respective box plots

contain 6, 21 and 13 predictions for ligand 175; and 8, 17, 2, 12

predictions for ligand 164

J Comput Aided Mol Des (2016) 30:651–668 659

123



MAP4K4 pose predictions

Overview of prediction accuracy The results for the 30

sets of MAP4K4 pose predictions are summarized in Fig. 6,

which shows RMSD statistics for each submission

(Table S3) over the 30 ligand structures, with variances

across ligands expressed in terms of boxes and whiskers.

Overall, these predictions are considerably less accurate than

those forHSP90 (Fig. 1). Only one out of 30 submissions has

a median RMSD below 2.0 Å for rank 1 poses, compared to

20 out of 39 for HSP90. Furthermore, for MAP4K4, the

median RMSDs for rank 1 poses range from 1.6 to 8.8 Å,

while the range for HSP90 is 0.3-6.6 Å. Nonetheless, it is

encouraging that the rank 1 pose is the best of the five sub-

mitted poses for 52 % of the submissions, much more often

than the 20 % which would be expected if the rankings were

random (as seen in the HSP90 challenge).

TheMAP4K4 pose prediction challengewas anticipated to

be more challenging than HSP90 for a number of reasons.

With respect to cross-docking, there were far fewer relevant

co-crystal structures available in the PDB (eight versus[ 200

for human HSP90). Available MAP4K4 co-crystal structures

exemplified limited diversity in bound ligand chemotypes and

the range of chemotypes in the dataset was highly diverse.

Another factor noted by a number of participants was the

potential for a large binding site size, depending on the con-

formation of the glycine-rich P-loop [13].

Correlation of performance with docking software and

method For MAP4K4, the only submission with a median

RMSD less than 2.0 Å for the rank 1 poses used Method 1,

named Glide SP-Qsite. Two additional submissions

achieved a median RMSD less than 2.0 Å for the best of

top 5 poses; these used Methods 4 and 6, Vina and

RosettaLigand-Omega-PoPPs-ROCS, respectively. As

noted above, method 6 is not a true docking method, but

instead is based on superposition of the ligand to be docked

on the pose of a ligand with an available co-crystal struc-

ture. These three approaches were among the more accu-

rate ones used for HSP90. However, much as observed for

HSP90, the other RosettaLigand methods, which here used

docking rather than another overlay method, were not as

predictive. In fact, just as for HSP90, submissions based on

a given piece of software could provide widely ranging

performances, depending on the details of how the software

was used. Thus, methods based on Glide, RosettaLigand

and AutoDock Vina appears throughout the rank list of

methods (Table S4). For a discussion of methods that

appear to provide relatively accurate performance across

both datasets, see ‘‘Role of the protein conformation used

for pose prediction’’ section, below.

Role of the protein conformation used for pose predic-

tion For HSP90, ‘‘similarity docking’’, in which each

ligand was docked into a protein structure solved with

another ligand of same or similar chemotype, tended to be

more predictive than true cross-docking into a less-related

protein structure, as noted above. This strategy was less

successful across the diverse range of chemotypes pre-

sented in the MAP4K4 dataset. Four submissions (4, 10, 13

and 22) that used ligand similarity-based structures for

selection of the protein target had median RMSDs of 2.7,

4.6, 5.0 and 6.5 Å respectively, when all compounds were

considered. However, ten compounds (one-third of the

dataset; compounds 3, 14–16, 18, 19, 21, 22, 25, & 27)

have the closely related aminopyrimidine/aminoquinazo-

line chemotypes of published structures [7]. When the

evaluation is limited to these compounds the median

RMSD values for these four submissions are 1.6, 2.7, 2.6

and 6.1 Å, respectively. Inspections of pose prediction on a
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Fig. 6 MAP4K4 RMSD box plots of rank 1 and best of top 5 poses

for all submitted-methods. Means are shown by circles, the connecting

line is for the medians, the box is for the interquartile range (IQR), and

the whiskers indicate 1.5 9 IQR. Outliers are indicated by asterisks

above the bars. Table S4 (SI-Methods) has the names of the Submitted

Methods and a summary of the protocols. Each Submitted Method’s

box plot contains 30 data points
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per compound basis (SI figures, Figure S2) illustrates that

nine of the 15 compounds with the lowest medians are in

this aminopyrimidine/aminoquinazoline class. Notably,

one of the better performing methodologies expanded the

number of crystal structures by considering chemotype

similarity to closely related kinases with more diverse sets

of bound ligands (Table S3, protocol 4).

Compounds that had no similarity to common chemo-

types known to bind the kinase hinge region presented a

significant pose prediction challenge, these are the 3 ben-

zoxepins (MAP12, MAP13 and MAP17 gold colored in

Figure S2). These cases were challenging for two reasons.

They have a difficult-to-predict 7-membered ring confor-

mation, and they lack obvious kinase hinge binding

hydrogen bond donors and acceptors. Moreover, MAP17

presents a particularly difficult case as it does not have any

direct hydrogen bonding to the pocket, and its interaction

with the kinase hinge backbone is water-mediated.

Interestingly, the level of difficulty in these pose pre-

dictions does not appear to correlate with potentially rel-

evant ligand properties, such as molecular weight, presence

of tautomers, or number of rotatable bonds; with features of

the protein structures used for docking, such as the con-

formation of the P-loop (open vs closed) or the crystal

structure resolution; or with the ligand–protein binding

affinity.

Performance of methods across both HSP90 and MAP4K4

Certain well defined methods were applied to both the

HSP90 and MAP4K4 pose prediction challenges, allowing

us to assess their predictive ability across targets. We

focused on the more predictive 20 % of submissions for

each target, which corresponds to the top ranked eight for

HSP90 and five for MAP4K4. The methods in common

between both lists are DockBench, which appears second

on both lists, and which, as part of its procedure, analyzes

which of a number of docking methods best works for

given targets and in this case selected Gold, PlantsPLP and

rDock; Surflex-GRIM, which appears third in both lists;

and RosettaLigand-Omega-ROCS, which appears fourth in

both lists, and, as noted above, is a ligand-overlay method

rather than a full-docking method. As noted above, the best

performing methods for pose prediction were less associ-

ated with a single docking algorithm than with a ‘‘simi-

larity-docking’’ approach.

Predictions of ligand binding potency

This section examines the reliability of potency predictions

in terms of the ability to correctly rank-order the full sets of

HSP90 and MAP4K4 ligands, and free-energy-based

methods to rank order a subset of HSP90 ligands.

Affinity rankings

Overall evaluations Participants were asked to predict

the ranking of affinities for 180 HSP90 ligands and 18

MAP4K4 ligands. This challenge component was run in

two stages. During Stage 1, none of the co-crystal struc-

tures of these ligands with their respective targets were

available to the participants. In Stage 2, participants had a

second opportunity to rank-order all of the ligands by

affinity, this time with knowledge of all of the co-crystal

structures available (i.e., five structures for the HSP90

ligands and all 18 for the MAP4K4 ligands). The results,

summarized in Figs. 7 and 8, focus on the Kendall’s tau

statistic, with error bars indicating one standard deviation

in the bootstrapping analysis (see ‘‘Materials and meth-

ods’’). The Spearman’s rho results added little information

(Figures S3 and S4).

Almost all of the submitted rankings correlate positively

with the experimental ranking (Figs. 7, 8), with mean and

median tau values of 0.15 and 0.17, respectively, for

HSP90, and 0.18 and 0.24, respectively, for MAP4K4.

These results are statistically meaningful, given that the

standard deviation of the tau values provided by resam-

pling (see ‘‘Materials and methods’’) are all in the range

0.046–0.057 (mean 0.052), and indicate that a range of

current methods have predictive value for ranking ligand

affinities. On the other hand, the correlations are not par-

ticularly high, with maximum values of about 0.32 for

HSP90 and 0.48 for MAP4K4. For comparison, an ideal

computational method that yields results in exact agree-

ment with the experimental IC50 values, would have

Kendall’s tau values of 0.76 ± 0.02 and 0.80 ± 0.07, for

HSP90 and MAP4K4, respectively, after bootstrap resam-

pling to account for the experimental uncertainties.

Another baseline reference for the predictions is provided

by the null models; ranking by molecular weight and clog

P. These yield positive correlations with experiment, but

neither null model is particularly accurate, as their tau

values fall near or below the median of the predictions. In

addition, whereas molecular weight did better than clog P

for HSP90, clog P did better for MAP4K4, and neither did

well for both systems (Figs. 7, 8).

Perhaps surprisingly, information about ligand poses did

not lead to more accurate affinity rankings. Thus, the

rankings are about equally accurate for HSP90 and

MAP4K4 in Stage 1, even though pose predictions for the

former tended to be more accurate. Moreover, access to the

known crystallographic poses in Stage 2 did not improve

the ranking results over Stage 1, even for MAP4K4, where

co-crystal structures were provided for all 18 ligands to be

ranked. Also notable is that purely ligand-based methods

(green bars in Figs. 7 and 8), which do not use information

about the protein structure, were not clearly distinguishable
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Fig. 8 MAP4K4 Kendall’s Tau

correlation coefficient scores

between the predicted scores

and experimental binding

affinities. The green bars are for

ligand-based scoring methods,

and unfilled bars are for null

models. The names

corresponding to the Submitted

Method’s number are in

Tables S7 and S8 (SI—

Methods). The error bars are

1r confidence intervals based

on 10,000 bootstrap samples.

They are fairly large for the

MAP4K4 dataset due to a

relatively big experimental

uncertainty

Fig. 7 HSP90 Kendall’s Tau

correlation coefficient scores

between the predicted scores

and experimental binding

affinities. Green bars are for

ligand-based scoring methods,

and unfilled bars are for null

models. The method names

corresponding to the Method

IDs are in Tables S5 and S6 (SI-

Methods). The error bars are

1r confidence intervals based

on 10,000 bootstrap samples
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from the structure-based methods, as they exhibited a wide

range of performance, from near the best in HSP90 Stage 1

to the worst in MAP4K4 Stage 2.

In order to identify submissions that gave above average

performances, we consider the uncertainties in the values

of tau. For HSP90 Stage 1, the mean value of tau is 0.159,

and the standard deviations of all the tau values are in the

range 0.046–0.057, so we use the mean, 0.052 for all. The

standard deviation of the difference between two tau values

then obtained by adding the two standard deviations in

quadrature, and one may add the result to the mean of tau

to find that a tau of 0.306 is a convincing two standard

deviations above the mean. Method 1 (vina-smina(7), tau

0.32) and Method 2 (rdock(2), tau 0.31) meet this criterion,

and Method 3 (qsar(4), tau 0.28) is close. Applying the

same criterion to HSP90 Stage 2 yields only Method 1

(vina-smina(7), with tau of 0.32. For both stages of

MAP4K4, the uncertainties in tau are much larger (means

of 0.19) because the number of data points is 10-fold

smaller. Applying the same criterion as for HSP90 yields

only one prediction at least two standard deviations above

the median, Method 1 (PLANTS ? Pyplif_subset-Vina) in

Stage 1. Unfortunately, this method does not appear to

have been applied to Stage 2 or to HSP90, so no consis-

tency check is available.

The vina-smina (7) submission that did well in the

HSP90 rankings included seven variant sub-methods, and

we have focused here on only the top performing variant.

Encouragingly, it is the same variant that did best for both

stages of HSP90, and this also yielded tau values of 0.29

and 0.29 for Stages 1 and 2 of MAP4K4, which are above

the means. The method involved generating ligand con-

formers with the program Omega [30] aligning conformers

to the most similar co-crystal ligands in the PDB, mini-

mizing the aligned conformers in the co-crystal binding

site, and recording the highest docking score obtained.

HSP90 affinity rankings by chemotype We considered

whether it was easier to rank the affinities of a series of

compounds with a common chemical scaffold, as opposed

to a heterogeneous set. The 180 HSP90 ligands were

classified into three chemotype (CT) groupings by CSAR:

benzimidazolone (CT1, 61 compounds, IC50

0.0052–42 lM), aminopyrimidine (CT2, 62 compounds,

IC50 0.016–50 lM), and benzophenone (CT3, 57 com-

pounds, IC50 0.01–50 lM). The rankings of the benzimi-

dazolones (CT1) (Fig. 9, top) are clearly better than the

rankings of the full set of HSP90 ligands (Fig. 7), as the

highest tau values are about 0.51, rather than 0.32. On the

other hand, the aminopyrimidine rankings (Fig. 9, middle)

are only marginally better (maximum tau about 0.38) than

those for the full set, while those for the benzophenones

(Fig. 9, bottom) are somewhat worse (maximum tau about

0.22). These subset results, when compared with the

‘‘ideal’’ mean tau values of 0.77, 0.74 and 0.71, based on

bootstrap resampling for the respective compound series,

suggest that it was significantly easier to rank compounds

in the benzimidazolone series, and harder to rank the

benzophenones. The fact that the benzophenones are par-

ticularly problematic may have to do with their having

lower molecular weights or generally weak affinities, rel-

ative to the other series. Also we note that this chemical

series has more chemotype diversity than the others (see

SI-Datasets).

Free energy predictions

In order to facilitate participation of research groups

wishing to use this Grand Challenge to evaluate compu-

tationally intensive ‘‘alchemical’’ [9] methods of predicting

differences in binding free energy, we included a challenge

component in which three sets of chemically similar

HSP90 ligands were put forward as targets for relative

binding free energy predictions. Free energy Sets 1, 2 and 3

respectively comprise 5, 4 and 10 ligands and the binding

free energies within each set span 2.6, 3.8 and 2.1 kcal/-

mol. Eleven predictions (Table S8) were submitted for free

energy Sets 1 and 2, and ten were submitted for Set 3. Of

these, three predictions in fact used alchemical free energy

methods with explicit solvent, while the rest used methods

based on analysis of small numbers of local energy minima

generated by docking, with free energy estimates based on

scoring functions, force fields with implicit solvent, and

electronic structure calculations with implicit solvent. Two

of the three predictions, Methods 5 and 11, used the same

computational protocol; however, Method 5 was submitted

at Stage 1 and omitted Set 3, while Method 11 was sub-

mitted at Stage 2 and include not only Sets 1 and 2 but also

9 of the 10 compounds in Set 3. Figure 10 and Table S8

summarize the results and methods in terms of RMSEc and

Kendall’s tau; the Method IDs are ordered in terms of the

average RMSEc across all three Sets, so that Method 1 has

the lowest mean error and Method 11 the highest.

A number of methods provide errors (RMSEc) across the

sets of roughly 1–2 kcal/mol (Fig. 10, top row; Table S9).

Most of the more accurate results come from methods based

on docking (Fig. 10, blue bars). Thus, Methods 1–3, which

seem closely related to each other, as well as Methods 4 and

10, used scoring functions related to AutoDock and Auto-

Dock Vina, while Method 8 is force-field based. The

alchemical free energy methods (Fig. 10, red bars) perform

no better than the simpler docking-based methods, and per-

haps somewhat worse in the case of Set 1. It is worth noting

that the three sets of alchemical predictions are of similar

accuracy: the bootstrap analysis suggests an expected

accuracy range of about 1.0–3.3 kcal/mol. Finally, Method
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7, which used electronic structure calculations instead of a

scoring function or force field, yields particularly high errors

of 3.4 (Set 2) to 9.7 kcal/mol (Set 3).

The Kendall’s tau statistics (Fig. 10, lower row;

Table S9) are associated with large error bars, presumably

due in large part to the fact that each ligand set includes

only a few compounds, and some of these compounds

have quite similar affinities, which makes ranking diffi-

cult. Nonetheless, some of the predictions appear to yield

fairly robustly reversed rankings, notably the alchemical

methods and Method 9 for Set 1, and Methods 4 and 10

for Set 2.

Discussion

The D3R Grand Challenge 2015 attracted international

participation and allowed a range of computational meth-

ods to be evaluated for prospective prediction of ligand–

protein poses, ranking of ligands by affinity for a targeted

protein, and prediction of relative binding free energies.

The challenge was entirely open, in the sense that partici-

pants could use any and all existing information on the

HSP90 and MAP4K4 systems, such as existing co-crystal

structures in the PDB and affinity data available in articles

and databases. In particular, for the pose-prediction

Fig. 9 HSP90 Kendall’s Tau

correlation coefficient scores

between the predicted scores

and experimental binding

affinities, separated by the three

chemotypes. The names

corresponding to the Submitted

Methods number are in

Table S5. The error bars are 1r
confidence intervals based on

10,000 bootstrap samples
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component, participants could dock the ligands into HSP90

and MAP4K4 structures of their own choosing, rather than

using structures provided specifically for this purpose, and

affinity rankings could use structure-based and/or ligand-

based methods.

Pose predictions for HSP90 were somewhat successful,

as multiple submissions had median RMSD values well

below 2.0 Å. MAP4K4 proved to be much more chal-

lenging, as few methods met this criterion. The higher

success rates for HSP90 may indicate that it is an intrin-

sically easier system to model, but may also stem from the

far greater number of HSP90 co-crystal structures in the

PDB, which participants could use in various ways to

enhance their methods. In fact, for HSP90, we observed a

trend—though not a rule—that pose predictions were more

accurate if they docked each ligand into a structure that had

been determined with a ligand of the same chemical class.

For some ligands it was also important to explicitly include

certain crystallographic water molecules. A similar trend is

observed for MAP4K4 with the ten compounds belonging

to the chemical class(es) where co-crystal structures were

publicly available; thus, participants did notably better at

predicting poses for the aminopyrimidine/6-quinazolone

class than the other diverse chemotypes in the dataset.

A closely related finding is that a given docking pro-

gram could yield either high or low accuracy, depending

upon extrinsic factors such as which protein structure was

used for the docking, how protein structures were pre-

pared, and other aspects of the protocol. This finding

indicates that successful prediction of ligand–protein

poses relies not only on the docking program, but also on

other steps in the overall protocol, or workflow, which

may include a docking program as a central component

but also contains key preparatory or procedural steps.

For example, some of the better performing methods in

this challenge started by identifying an available co-

crystal structure solved with a ligand similar to the one

whose pose was to be predicted. Given such a well-cho-

sen structure, a number of docking programs could then

provide an accurate pose, if not as the top rank, certainly

in the top five poses. One may draw an analogy to the

case of comparative protein structure modeling, where

accuracy hinges not only on the modeling technology

used, but also on the availability of protein structures with

similar sequences and on the quality of the method used

for sequence alignment [34]. It also appears that multiple

docking programs effectively sample relevant poses, as

the better performing methods used various docking

Fig. 10 RMSEc (top row) and Kendall’s tau (bottom row) for the

three free energy prediction sets. Methods using explicit solvent

alchemical free energy simulations (5, 6 and 11) are shown in red.

The X-axis labels are the Method IDs from Table S9, and are in order

of increasing average RMSEc across all three sets. Error bars indicate

1r ranges based on 10,000 bootstrap samples
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algorithms, a result supported by the success of cognate

docking [2]. This analysis also supports the utility of

integrated docking workflows, such as OpenEye’s POSIT

[35] which systematically include knowledge-based steps

to improve cross-docking.

The challenge of ranking ligands by affinity proved

more difficult, consistent with other recent studies [36].

Although it is encouraging that nearly all predicted rank-

ings yielded positive correlations with experiment, even the

best predictions remain far from ideal. Of greater concern

was the fact that prediction accuracy did not improve on

going from Stage 1 to Stage 2. Thus, much of the ranking

error must be attributed to the scoring or energy functions

in use, not pose prediction. This holds particularly in the

case of MAP4K4, where participants in Stage 2 knew the

crystallographic poses of all 18 ligands whose affinities

were to be ranked. One way to seek improved scoring

accuracy is to use more detailed calculations, such as

alchemical free energy simulations [9] which have recently

provided encouraging results in protein–ligand modeling

[37, 38]. The free energy component of Grand Challenge

2015 accordingly included three small sets of chemically

similar ligands amenable to such calculations. However,

these more rigorous methods did not yield improved

accuracy, when compared with the results of several simple

scoring functions that also were applied to these small free

energy sets.

We also note that some of the challenge in ranking may

be associated with the dataset itself. For example, several

HSP90 inhibitors have time dependent binding kinetics

[39]. If some of the HSP90 compounds in this dataset also

have time-dependent apparent IC50 values, the reported

IC50 s could have erroneous relative values, particularly if

the kinetics vary across compounds. Another consideration

is the relative solubilities of the compounds tested. A small

set (30) of the 280 compounds were tested by CSAR for

solubility and three were noted to have poor solubility,

rendering them unmeasurable for some of the assays (e.g.

ITC). While these three of the thirty HSP90 compounds

were noted to have solubility issues, we did not have

equivalent information across the dataset and we therefore

treated the error estimation equivalently across the HSP90

compounds. This may or may not accurately reflect the

error in the affinity measurements.

One limitation of the present study is that the modest

size of the datasets, combined with the large number of

scenarios that can arise in protein–ligand modeling, ren-

ders the results anecdotal in nature. Nonetheless, some of

the broad conclusions appear sound and make intuitive

sense, and future D3R challenges will allow these issues to

be probed further and in more contexts. Moreover, the

forthcoming Continuous Evaluation of Ligand Pose Pre-

dictions (CELPP: drugdesigndata.org/about/celpp)

challenge will enable participants to set up and continu-

ously evaluate their own docking servers, by using weekly

pre-release data from the PDB to drive a ongoing series of

blinded pose-prediction challenges. We estimate this

channel will enable *50 new pose-prediction challenges

each week. A second limitation of the present study is that

a number of prominent research groups and companies that

develop widely-used modeling tools elected not to partic-

ipate. This may reduce the likelihood that the results will

lead to near-term improvements in available software.

Increased participation by software developers would be

welcome in future challenges, and it is perhaps worth

noting in this regard that submissions may be made

anonymously, as detailed on the D3R website.

Finally, the results highlight promising directions for

future development. First, there appears to be considerable

potential for creation of automated software and workflows

that go beyond pure docking and scoring by automatically

collecting and effectively using available information, such

as crystal structures and affinity data, to generate enhanced

pose predictions and affinity rankings. Work in this direc-

tion may ultimately benefit from integration of key data

sources, such as the PDB, ChEMBL [40], BindingDB [41],

and PubChem [42], to facilitate identification and collec-

tion of needed data in suitable formats. At the same time,

even when prior data are available and well utilized, there

is clearly also a need for improved physical models, given

the difficulty of affinity calculations, even when ligand

poses are known, and even when detailed simulation

methods are employed. Future developments along these

and other lines will lead to continued improvement in

performance in blinded prediction challenges, and ulti-

mately in the power of CADD tools to speed the design of

new medications.
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