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Abstract Induced fit or protein flexibility can make a

given structure less useful for docking and/or scoring. The

2015 Drug Design Data Resource (D3R) Grand Challenge

provided a unique opportunity to prospectively test optimal

strategies for virtual screening in these type of targets: heat

shock protein 90 (HSP90), a protein with multiple ligand-

induced binding modes; and mitogen-activated protein

kinase kinase kinase kinase 4 (MAP4K4), a kinase with a

large flexible pocket. Using previously known co-crystal

structures, we tested predictions from methods that keep

the receptor structure fixed and used (a) multiple receptor/

ligand co-crystals as binding templates for minimization or

docking (‘‘close’’), (b) methods that align or dock to a

single receptor (‘‘cross’’), and (c) a hybrid approach that

chose from multiple bound ligands as initial templates for

minimization to a single receptor (‘‘min-cross’’). Pose

prediction using our ‘‘close’’ models resulted in average

ligand RMSDs of 0.32 and 1.6 Å for HSP90 and MAP4K4,

respectively, the most accurate models of the community-

wide challenge. On the other hand, affinity ranking using

our ‘‘cross’’ methods performed well overall despite the

fact that a fixed receptor cannot model ligand-induced

structural changes,. In addition, ‘‘close’’ methods that

leverage the co-crystals of the different binding modes of

HSP90 also predicted the best affinity ranking. Our studies

suggest that analysis of changes on the receptor structure

upon ligand binding can help select an optimal virtual

screening strategy.

Keywords Drug discovery � Virtual screening � D3R �
Induced fit � Affinity ranking � Pose prediction

Introduction

Major challenges in virtual screening are the inadequate

scoring functions to evaluate the affinity of docked poses,

and the difficulty to predict ligand induced flexibility

observed in many important therapeutic targets [1–5]. To

evaluate improvements in this area, the Drug Design Data

Resource (D3R) developed the 2015 Grand Challenge, a

community-wide experiment for researchers around the

world to prospectively test docking and scoring method-

ologies against blinded data from two targets: heat shock

protein 90 (HSP90), a protein that binds following an

induced fit mechanism [6], i.e., the unbound or apo struc-

ture undergoes significant structural rearrangements upon

ligand binding; and mitogen-activated protein kinase

kinase kinase kinase 4 (MAP4K4), a kinase with a large

pocket that includes sizable flexible loops [7].

The most commonly used scoring functions can basi-

cally be classified into three types as Kitchen et al. [1]

summarized: force-field-based scoring (e.g., D-Score [8],

G-Score [8], GOLD [9], AutoDock [10], DOCK [11], Glide

[12], SIE [13]), empirical scoring (e.g., LUDI [14, 15],

F-Score [16], ChemScore [17], SCORE [18], Fresno [19],

X-SCORE [20], AutoDock Vina [21]), and knowledge-

based scoring (e.g., DrugScore [22], SMoG [23]). In the

2010 Community Structure–Activity Resource (CSAR)
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Exercise, Carlson and collaborators analyzed the perfor-

mance of different scoring functions on the CSAR-NRC

data set [5, 24]. The results indicated that most of the

scoring functions had comparable performance

(R2 = 0.3–0.4) and the best R2 were achieved by Auto-

Dock and AutoDock Vina (R2 = 0.55) [5]. Despite the

poor performance of scoring, many docking methods did

well in predicting poses within 2.0 Å of the crystal con-

formation [3, 5].

Over the last few years, the Camacho lab has steadily built

novel platforms for drug discovery, from predictions of

druggable sites [25], to pharmacophore-based interactive

virtual screening technologies that search billion size

libraries in seconds [26]. We also developed Smina [27], a

version of AutoDock Vina specially optimized to support

high-throughput minimization and scoring. Based on our

current implementation in AnchorQuery [28], Smina can

minimize 10,000 compounds into a fixed receptor in about

10 s (details will be published elsewhere), the same time

scale required for docking a single compound to a flexible

receptor [1]. More recently, we have shifted our attention to

improving our virtual screening pipeline [26–28]. We par-

ticipated in the 2013/14 CSAR challenge that involved rank-

ordering compounds to homology models of the receptors

with a given protein primary sequence, identifying close-to-

native bound conformations out of a set of decoy poses, and

rank-ordering the affinity of sets of congeneric compounds to

a given protein. Our predictions were among the best in the

field [29, 30]. We showed that the most significant contri-

bution to ameaningful enrichment of native-likemodels was

the identification of the best receptor structure for docking

and scoring. In particular, we showed that ranking a set of 31

congeneric compounds cross-docked to the tRNA (m1G37)

methyltransferase (TRMD) structure with the largest pocket

resulted in an impressive R2 = 0.67, whereas other receptor

structures yielded R2*0.

Here, we report our participation in the 2015 D3R Grand

Challenge, wherewe performed a comprehensive analysis of

different strategies for predicting docking poses and ranking

affinities for two highly flexible targets: HSP90 and

MAP4K4. These strategies included methods that utilize all

available receptor/ligand co-crystals (‘‘close’’), all available

ligands and a single holo-receptor structure (‘‘min-cross’’)

and only a single receptor/ligand co-crystal (‘‘cross’’). As in

the 2013/14 CSAR competition [29], we found that the

method that predicted the best docking poses was not the

same as the ones that predicted the best ranking of active

compounds. Similarly, different methods were shown to

predict the optimal ranking of active compounds for HSP90

and MAP4K4, i.e., ‘‘close’’ and ‘‘cross’’, respectively.

Inspection of the type of flexibility exhibited by each target,

i.e., induced fit versus large flexible pocket, suggests guiding

principles for selecting the optimal virtual screening for

flexible targets. We note that these findings are strongly

supported by the fact that our prospective pose predictions

and affinity rankings for HSP90 to the 2015 D3R Grand

Challenge were the best in the community-wide experiment.

Methods

We tested the performance of five major methods (Fig. 1)

on both pose and affinity predictions. Several variants of

the methods were also applied to special cases, which will

be discussed later in the specific challenges.

The methods used the following applications that are

freely available for academic research. Structure prepara-

tion: all receptor structures were superimposed using the

‘‘align’’ command in PyMOL 1.7 [31]. Conformer gener-

ation: For structural alignment, 20 conformers were gen-

erated using Omega2 [32] with default settings. Chemical

similarity: Babel 2.3.2 [33] was used with fingerprint 3

(FP3) to identify the most similar or ‘‘closest’’ compound

among known ligands. The co-crystal receptor corre-

sponding to the ‘‘closest’’ compound is referred to as

‘‘closest’’ receptor. Conformer alignment: Structural

alignments were performed using Open3DALIGN 2.282

[34]. Minimization: Aligned conformers are minimized to a

given receptor using Smina [27] with default settings.

Docking: Compounds were docked with Smina with

default parameters and AutoDock Vina [21] scoring func-

tion. A reference compound was used to define the docking

box. The Vina-predicted energy was used to select the best

ranked docked pose.

Align-close method

(a) Conformers were generated for each compound in the

test set. (b) The ‘‘closest’’ compound among known bound

ligands was identified. (c) Conformers were aligned to the

‘‘closest’’ compound. (d) Aligned conformers were mini-

mized to the ‘‘closest’’ receptor. (e) The best Vina score

was used to predict affinity for the compound.

Dock-close method

(a) The ‘‘closest’’ compound among known bound ligands

was identified. (b) Compounds were docked to the ‘‘clos-

est’’ receptor using ‘‘closest’’ ligand as reference to define

docking box. (c) The best Vina score was used to predict

affinity for the compound.

Min-cross method

(a) Conformers were generated for each compound. (b) The

‘‘closest’’ compound was identified. (c) Conformers were
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aligned to the ‘‘closest’’ compound. (d) The aligned con-

formers were minimized to all known bound receptors.

(e) The best Vina score to each receptor was used to predict

affinity. (f) Optimal receptor for virtual screening is

selected (see below).

Align-cross method

(a) Conformers were generated for each compound.

(b) Conformers were aligned to every known bound ligand.

(d) Aligned conformers were minimized to the corre-

sponding bound receptor. (e) The best Vina score among

conformers was used to predict affinity to each receptor

structure. (f) Optimal receptor for virtual screening is

selected (see below).

Dock-cross method

(a) Compounds were docked to every known bound

receptor using its bound ligand as reference. (b) The best

Vina score to each receptor was used to predict affinity.

(c) Optimal receptor for virtual screening is selected (see

below).

These five methods can be grouped by receptor selec-

tion. The optimal receptor for ‘‘cross’’ methods (min-cross,

align-cross and dock-cross) was chosen by comparing the

Vina scores for each receptor with experimental data

(IC50, see Supplementary Tables 1 and 2). We calculated

Spearman’s rank correlation coefficient (Spearman q) and
coefficient of determination (R2) to select the optimal

receptor that performs the best for affinity ranking in our

training set. Similarly, we compared the best-scored poses -

for each receptor with the crystal poses to generate the

ligand root-mean-square deviation (RMSD), and computed

the percentage of poses that have a RMSD less than 2 Å to

select the optimal receptor for pose prediction. For testing

data, we use the best-performing receptor in the training

data set to rank affinity and predict poses. For ‘‘close’’

methods (align-close and dock-close), there is no optimal

receptor, but multiple receptor/ligand co-crystals are used

for predictions.

Results

HSP90 challenge

Challenge

(1) Predict binding modes of six HSP90 compounds. (2)

Predict affinity ranking of P = 180 HSP90 compounds,

among this set, 33 unidentified compounds were said to have

no inhibition. (3) Predict relative/absolute free energy of

three small sets of compounds. Analyses of the 180 com-

pounds show that they all fall into three chemical scaffolds

(aminopyrimidines, benzimidazolones and benzophenone-

like, Fig. 2c–e. Upper panels show scaffolds, and lower

panels show examples). Two unpublished structures, 4YKR

and 4YKY, were provided as examples of benzimidazolones

and benzophenone-like compound binding.

dock-close align-close align-cross 

test ligand 
co-crystal ligand 

co-crystal receptor 

alignment 

minimization 
docking 

min-cross dock-cross 

Fig. 1 ‘‘Close’’ and ‘‘cross’’ methods for affinity ranking and pose

prediction. Align-close and dock-close methods minimize and dock to

the ‘‘closest’’ receptor for each compound. Min-cross, align-cross and

dock-cross methods minimize and dock to all available receptors and

select ‘‘optimal’’ receptor based on available experimental data (see

‘‘Methods’’ section). This is shown in the figure by the greyed-out

shapes in the ‘‘cross’’ methods that ultimately select one optimal

receptor. Red blocks and arrows correspond to alignment, blue blocks

and arrows correspond to minimization, green blocks and arrows

correspond to docking
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Binding pocket analysis

There are N = 179 PDB plus two unpublished HSP90

structures bound to small molecules, with I = 69 of them

having known IC50 (from BindingDB [35], BindingMOAD

[36] and PDBBind [37], Supplemental Table 1). We super-

imposed all the known receptors to the receptor structure in

4YKR. Interestingly, a distal loop (L2 between H4 and H5,

Fig. 2a) is very adaptive upon different ligand binding.

Basically, all co-crystal structures can be grouped into four

distinct conformations based on the adaptive loop (red car-

toon in Fig. 2a): close, helix, open and half-close (a con-

formation between open and close). The histograms of these

binding modes in the whole dataset and sub-dataset with

IC50 are shown in Fig. 2f. The core binding pocket is quite

rigid and stable, and four crystal water molecules are

observed to participate in ligand binding (Fig. 2b). Three

waters are highly conserved despite the different adaptive

loop conformations (Fig. 2g). These analyses suggest that

the ligand-binding pocket of HSP90 consists of a rigid core

part with a conserved water-mediated interacting network

and a ligand-dependent adaptive loop. Therefore, when

preparing models for docking and alignment/minimization,

we kept conserved water molecules as part of the receptors.

Methods

We applied the five methods listed in Fig. 1 (i.e., align-

close, dock-close, min-cross, align-cross, and dock-cross)

for both pose prediction and affinity ranking. For affinity

ranking, we also devised several variations of the previous

methods as potential improvements for ligand alignment,

and others. (a) min-cross-scaffold and align-close-scaffold

methods: Given the limited set of scaffolds that presumably

capture the core ligand interactions, for min-cross and

align-close methods we aligned the test compounds to the

three scaffolds shown in Fig. 2c–e (see, e.g., Fig. 3b)

instead of the chemically ‘‘closest’’ compounds as in

Fig. 3a. (b) min-cross-pose and align-close-pose methods:

Instead of using as templates ligand structures from co-

crystals, we use the actual predicted poses by ‘‘close’’

methods as templates for alignment in min-cross and align-

close methods (see, e.g., Fig. 3c). (c) dock-close-filter and

align-close-filter: We also used the aforementioned pre-

dicted poses for manually selecting inactive compounds in

testing set. We then overruled the Vina score and moved

this set of compounds to the bottom of the affinity ranking

for the two methods that had best performance in training

set. (d) HSP90 score 1–4: We used machine learning and

forward selection methodologies to develop four HSP90-

specific scoring functions from the set of energy terms

available in Smina [27] (see Supplemental Table 2 for the

selected parameters and weights). A training dataset was

constructed by cross-docking the I = 69 compounds with

published IC50 data to crystal structure 4EFU (optimal

receptor for dock-cross method) with the default Smina

settings. HSP90 score 1 and 2 functions were trained on

active compounds (measured by Spearman q), while

HSP90 score 3 and 4 were trained to maximize the dis-

crimination of active versus decoy compounds which were

A B

F G

C D E

Fig. 2 HSP90 adopts at least four ligand-induced binding modes.

a Four conformations of HSP90 ligand-induced binding pocket based

on the nearby adaptive loop (L2, between H4 and H5 [43]): close

(2WI5), helix (4EFU), open (3RLR), half-close (3B28) (white

cartoon: HSP90, red cartoon: flexible loop, orange sticks: small

molecules). b Four waters in the binding pockets labeled from 1 to 4

(white cartoon: HSP90, red sphere: water molecules).

c Aminopyrimidine scaffold and compound (2XDX). d Benzimida-

zolone scaffold and compound (4YKR). e Benzophenone-like scaf-

fold and compound (4YKR). f Histogram of binding modes among

the N = 181 known co-crystal structures and I = 69 structures with

IC50 data. (N number of co-crystals, I number of co-crystal with IC50

data). g Histogram of conservation frequency of water molecule in

Fig. 2b shows that three crystal waters are 100 % conserved
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obtained from the HSP90 dataset in the DUD-E database

[38] (measured by AUC). (e) 3DQSAR-align-pose and

3DQSAR-dock-pose: The relatively large amount of

binding data made quantitative structure–activity relation-

ship (QSAR) possible. Using Open3DQSAR 2.3 [39], we

trained 3DQSAR models with the 69 HSP90 structures

with IC50 data. We applied the trained models to the

predicted poses in the testing set from ‘‘close’’ methods.

Phase 1: Pose prediction results Retrospective study of

known ligands demonstrated that dock-close and align-

close methods predicted the most accurate poses. For the

analysis shown in Fig. 3d the co-crystal of each ligand was

first removed from the dataset, and poses were then pre-

dicted based on the remaining co-crystal structures in the

training set. Given the large dataset of available co-crystal

structures, our results reflect the empirical observation that

crystallographic information is superior to any computa-

tional model. Hence, we were able to predict high-accuracy

poses for all six testing compounds. We took the top five

poses predicted by ‘‘close’’ methods (sorted by Vina score),

and submitted the best models. The mean RMSD for the

first ranked and best pose were 0.46 and 0.32 Å, respec-

tively. Figure 3f–h show an example of the best-predicted

poses of each scaffold. The predicted pose for HSP90-44

had a flexible group sticking out of the binding site. We

used molecular dynamics to predict the most likely con-

formation, yet the co-crystal shows that this group is sta-

bilized by Lys58 from the second HSP90 monomer in the

dimer structure (Fig. 3e). When structural data is available,

our results demonstrate that ‘‘close’’ methods are signifi-

cantly better in pose prediction than ‘‘cross’’ methods,

while dock-cross have an upper limit of about 50 % suc-

cess rate using a single receptor structure.

Phase 2: Affinity prediction results The results of our

predictions are summarized in Table 1. Dock-close

(Spearman q = 0.42, R2 = 0.26) and align-close (Spear-

man q = 0.45, R2 = 0.24) methods have the best perfor-

mance. The relative performance of the five methods is

consistent between the training set and our submitted pre-

dictions (Fig. 4a). An interesting question to ask is whether

for the ‘‘cross’’ methods, were we able to predict the

optimal receptors? The answer is that our R2 analysis

correctly predicted an open structure (Fig. 2a) as optimal

receptor. However, in retrospect, we found that other open

structures were marginally better, see Testing (best) in

Fig. 4a. Thus, a receptor is only assumed to be ‘‘optimal’’

based on the data available. Overall, the relatively similar

outcomes of ‘‘close’’ and ‘‘cross’’ methods suggest that our

A D F

G

H

E

B

C

Fig. 3 ‘‘Close’’ methods predicted high-accuracy poses for six

HSP90 compounds. a–c Examples of different alignment methods

in HSP90 challenge. a A compound is aligned to the ‘‘closest’’

compound. b A compound is aligned to one of the three scaffolds. c A
compound is aligned to the predicted pose. d Performance of pose

prediction using different methods in the training set. (N number of

co-crystals) e Lysine 58 from another HSP90 stabilizes the confor-

mation of the extending functional group of HSP90-44. (white and red

stand for two different HSP90 monomers. sticks: HSP90-44; meshes:

HSP90; lines: lysine 58 of HSP90; black dash: hydrogen bonds). f–h
Best predicted poses are aligned to the co-crystal structures. f HSP90-
40 is an example of aminopyrimidines (RMSD 0.14 Å). g HSP90-73

is an example of benzimidazolones (RMSD 0.28 Å). h HSP90-175 is

an example of benzophenone-like compounds (RMSD 0.27 Å).

(white sticks: crystal pose of the compounds; magenta sticks: best

pose prediction of the compounds; white meshes: HSP90 surface; grey

lines: HSP90 residues close to the binding groove)
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scoring function cannot account for the change in free

energy associated with different receptor structures, and

therefore ranking ligands to induced-fit targets is still

limited.

Alignment is an area that can be improved particularly

for large and/or low similarity compounds. Thus, we

developed two variants of the above methods to test dif-

ferent structural alignments. First, we surmised that align-

ing to the scaffold would lead to better core interactions

(Fig. 2c–e). Although this was the case in our training data

set, the opposite was observed for ‘‘-scaffold’’ methods in

the testing set (Fig. 4b). In retrospect, we found that our

method was able to improve some bad alignments, but it

also eliminated some good ones. The latter was particularly

true for benzophenone-like compounds whose structures

are quite diverse. Second, using our models for the testing

set as ‘‘predicted closest’’ templates also failed to improve

the affinity ranking, observing only a minor ‘‘-pose’’

improvement for min-cross in the training set (Fig. 4b).

The failure may come from the inadequacy of the force

field to smoothly remove clashes upon minimization. In

summary, neither aligning to scaffolds nor to predicted

poses improved affinity ranking relative to aligning to the

‘‘closest’’ compound.

As a control of blind versus human predictions, we

visually inspected all dock-close and align-close poses and

predicted whether they were binders/active or non-binders/

inactive (‘‘-filter’’ methods in Table 1). Humbly, the blind

methods performed better than the subjective human fil-

tered scores. In hindsight, one problem is that a compound

may bind but it might also be deemed inactive. For

instance, HSP90-176 and HSP90-110 are both inactive

compounds (Fig. 4d–f), yet, compound 176 binds HSP90

(4YKY), same thing happened for our binding model for

HSP90-110 (Fig. 4f) that is based on a highly similar co-

crystal (3B26 in Fig. 4e).

The 3DQSAR models perform poorly in affinity ranking

(Table 1; Fig. 4c). The major reason seems to be that there

were no cases for aminopyrimidine scaffold among the 69

compounds with IC50 data. Therefore, when applying the

models and functions to testing set, they did poorly at

scoring aminopyrimidine compounds.

The HSP90 score 1–2 were trained to better rank active

compounds, and their predicted ranking was similar to

other ‘‘cross’’ methods. However, these scoring functions

had a meaningful improvement in the discrimination

between actives and inactives (Fig. 4c). On the other hand,

the HSP90 score 3 and 4 that were specially designed

solely to distinguish actives from inactives. As expected,

these methods performed poorly in affinity ranking. How-

ever, training on inactive compounds from the DUD-E

database did not improve the discrimination of active

compounds. In hindsight, we realized that the inactive

compounds in the testing set had different scaffolds than

the DUD-E decoy compounds. Thus, in all likelihood the

observed discrimination might be close to random. These

results show how dangerous is to evaluate machine learn-

ing scoring functions without a rigorous benchmarking.

Overall, these results indicate that target specific scoring

functions and 3DQSAR models can do better at distin-

guishing active from inactive compounds than the default

Vina scoring function used in the methods in Fig. 1.

MAP4K4 challenge

Challenge

(1) Predict the binding modes of P = 30 MAP4K4 com-

pounds. (2) Predict affinity ranking of P = 18 MAP4K4

compounds. The structural data available for MAP4K4

were fairly limited. Only N = 8 published co-crystal

structures of MAP4K4 bound to small molecules were

found in the PDB, and all of them (I = 8) had IC50 data

(from BindingDB [35], and literature [40, 41]). MAP4K4 is

a kinase with a large ATP binding pocket surrounded by

several flexible regions (Fig. 5a): residues 171-to-190,

residue 30-to-39 (P loop) and residue 60-to-75 (aC).
Residue 171–190 is a disordered region that is not resolved

in most co-crystals [42]. The P loop links two ß-sheets, ß1

and ß2, in the binding groove, and acts as a lid to adap-

tively adjust conformation upon ligand binding. Helix aC
is also flexible and the loop between aC and ß3 is some-

times not resolved.

Table 1 Affinity ranking prediction results of HSP90 challenge

Method Phasea Spearman q Kendall Taub

Align-close P1, P2 0.45 (best) 0.31 (best)

Dock-close P1, P2 0.42 0.29

Align-cross P1, P2 0.33 0.22

Dock-cross P1 0.37 0.25

Align-close-scaffold P1, P2 0.42 0.3

Min-cross-pose P2 0.26 0.18

Align-close-pose P2 0.37 0.26

Align-close-filter P1, P2 0.38 0.26

Dock-close-filter P1, P2 0.38 0.26

HSP90 score 1 P1 0.17 0.12

HSP90 score 2 P1 0.23 0.16

HSP90 score 3 P1 -0.01 -0.01

HSP90 score 4 P1 0.09 0.06

3DQSAR-align-pose P2 0.18 0.13

3DQSAR-dock-pose P2 0.24 0.16

a P1 means this method was submitted for evaluation in HSP 90

Phase 1 challenge. P2 stands for Phase 2
b Spearman q and Kendall Tau are from D3R result evaluation
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Methods

We first applied the five methods described in Fig. 1 for

pose prediction and affinity ranking. Scaffolds of testing

compounds were quite different from the eight published

ligands. Thus, we enriched our structural sampling by

collecting an additional eight co-crystal structures of rela-

ted kinases (Supplemental Table 1), which we only used to

improve the alignment of compounds in the MAP4K4

binding pocket. Otherwise, the methods are the same as for

HSP90. For affinity ranking, we also tested: (1) Min-cross-

pose and align-close-pose (see description in HSP90

challenge methods); (2) Co-crystal-min: Since for Phase 2

we learned the co-crystal structures of all the testing

compounds, we ranked these ligands using Vina scores

after minimization; (3) Interaction-based ranking: Since the

Vina scoring function does not have a directional Hydro-

gen bond term, we generated an alternative ranking by

counting the number of intermolecular hydrogen bonds

between the compound and the receptor.

Phase 1: Pose prediction results Analysis of the training

set showed that only the align-close method predicted top

quality models (Fig. 5b). Contrary to HSP90 where dock-

A

C D

E F

B

Fig. 4 ‘‘Close’’ methods have better performance than ‘‘cross’’

methods for affinity ranking in HSP90 challenge. a Prediction rates

on: training set, testing set submitted prospectively, and testing (best)

set reassessed retrospectively. Optimal receptors for align-cross, min-

cross and dock-cross were (prospectively) 3OWD, 4BQJ, 3K98 and

(retrospectively) 3T10, 3RLP, 3OWD, respectively. N number of co-

crystals, I number of co-crystal with IC50 data, P number of

compounds for prediction. b Results of variant methods: aligning to

scaffold, to predicted pose, and using human expertise to eliminate

non-binders. c Distinguishing active from 33 inactive compounds

using general methods, human discrimination, 3DQSAR, and special

purpose scoring functions to discriminate HSP90 ligands. The lower

panel shows binding/non-binding AUC performances, and upper

panel shows the corresponding affinity ranking. d–f Examples of

binding poses of inactive compounds. d Co-crystal of inactive

compound 176 (4YKY). e Co-crystal from PDB 3B26 (unknown

IC50). f prediction for compound 110 (inactive)
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close performed very well, docking on the large kinase

pocket performed very poorly. However, expanding the set

of ligands to those bound to homolog kinases allowed us to

find related compounds for 27 out of the 30 testing com-

pounds, using align-close for pose prediction resulted in a

mean RMSD for the first predicted poses and best poses of

2.6 Å and 1.6 Å, respectively. Figure 5c, d show successful

examples of pose predictions with reference in MAP4K4

training set or other kinases (CHK1). Two particularly bad

predictions were MAP-17 and MAP-20. For MAP-17, we

predicted a binding mode similar to MAP-12 and MAP-13,

however, the co-crystal showed that the compound is not as

deeply buried (Fig. 5e). For MAP-20, the reference struc-

ture we used was 3FV8 from JNK3. Here, the co-crystal

revealed a pose that is 180� rotated from our predicted pose

(Fig. 5f). Without these two incorrect predictions, our

mean RMSD was 1.1 Å. The above notwithstanding, our

results produced the best overall models of D3R, and our

method proved to be a robust approach for pose prediction

of kinases even when there is limited available data.

Phase 2: Affinity prediction results The ranking predic-

tions of the 18 MAP4K4 compounds are summarized in

Table 2. Our best submitted predictions were obtained

using the min-cross and min-cross-pose methods (Spear-

man q = 0.41, R2 = 0.28). Based on the IC50 data, we

predicted 4OBP as the optimal receptor for all ‘‘cross’’

methods, achieving a remarkable Spearman q = 0.8 in the

training set. Of course, this prediction lacked statistical

significance due to the small number of IC500s. For Phase
2, we were given the co-crystal structures of all the com-

pounds in the testing set but we still selected the same

optimal receptor as in Phase 1. Hence, as shown in Table 2,

results from Phase 1 and Phase 2 did not show significant

A

C D E

F

B

Fig. 5 Align-close predicted the best models for 30 MAP4K4

compounds with a mean RMSD of 1.6 Å. a Flexible regions around

the MAP4K4 binding pocket adapt to different conformations upon

ligand binding. (left panel: 4OBO, right panel: 4U44, white cartoon:

MAP4K4, red cartoon: flexible loop/helix, orange sticks: small

molecules). b Pose prediction performance across different methods

in training set. c, d Alignment of our best-predicted pose with the co-

crystal structure. MAP-14 is an example of aligning to compound

from MAP4K4 (RMSD 0.67 Å). MAP-02 is an example of aligning to

the compound from other kinase (CHK1, 4QYH) (RMSD 0.79 Å). e,
f Two cases we did poor in pose prediction: MAP-17 and MAP-20.

(white sticks: crystal; magenta sticks: predicted; white meshes:

MAP4K4 surface; grey lines: MAP4K4 residues close to the binding

groove)
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differences for most of the methods. The two methods that

improved were min-cross-pose and interaction-based

methods, in which predicted poses were replaced by co-

crystal poses. However, it is important to note that our

retrospective analysis shows that with more affinity data

our approach could have improved the affinity ranking (see

Testing best Fig. 6a). In fact, just choosing MAP23 as our

optimal receptor would have resulted on a Spearman

q = 0.57, comparable to the best prediction for this target

in the D3R challenge.

Several variations of the main methods resemble

‘‘close’’ methods that overall did not perform as well as

some ‘‘cross’’ methods. Figure 6b showed that min-cross-

pose and align-close-pose, which in Phase 2 aligned com-

pounds to the crystal poses as opposed to the ‘‘closest’’

poses, had almost the same Spearman outcomes. Consistent

with our training data predicting ‘‘cross’’ methods superior

to ‘‘close’’ methods, the co-crystal-min method that com-

bined scores from different receptors performed poorly.

The interaction-based method (Table 2; Fig. 6b) showed

that hydrogen bonding is important in determining the

affinity of the compounds, highlighting a limitation of the

Vina scoring function.

Discussion

The Drug Design Data Resource (D3R) 2015 Grand

Challenge provided a unique platform for the prospective

validation of new methods addressing two of the funda-

mental challenges in computer-aided drug discovery: pre-

dicting the pose of compounds bound to a non-cognate

receptor (the cross-docking problem) and ranking series of

congeneric compounds based on their affinity (the scoring

problem). For the last several decades, the field has worked

to develop solutions to these problems and many advances

have been made. However, most evaluations of docking

and scoring are retrospective wherein the correct answers

(poses or affinities) are already known [3]. This retro-

spective analysis can lead to an unintentional bias to

overestimate the performance of the method as the persons

developing the methods may notice problems that can lead

them to the circumstantial corrections of flaws in the

workflow. Unfortunately, this does not reflect the real

world use-case of docking and scoring methods where the

correct answers are unknown until tested experimentally.

This highlights the importance of prospective validation of

methods as the true test of their performance since after the

submission of the predictions, no further tweaking of

parameters or workflows can take place.

The 2015 Grand Challenge featured two challenging and

therapeutically relevant targets: HSP90 and MAP4K4. Here

we presented five methods for pose prediction and affinity

ranking that we employed in the challenge: align-close,

dock-close, min-cross, align-cross and dock-cross. As

reported, our approach of using ‘‘close’’ methods for pose

predictions, where all available crystallographic information

(mostly co-crystals) is used, yielded the most accurate poses

in the community-wide experiment for both targets. Con-

sistent with our earlier work [29], align-close was particu-

larly robust for both flexible targets. Although dock-close

predicted better-docked poses to the rather tight pocket of

HSP90, the same method failed predicting good poses in the

much larger binding site of MAP4K4. The reason is that

docking to a large pocket naturally relies more on scoring to

select among several ‘‘reasonable’’ poses.

Affinity ranking is still a major challenge in drug dis-

covery, where sometimes not even the co-crystal structure

helps much. Part of the problem is that often scoring

functions are optimized for virtual screening, whereas

calculating the true binding free energy is a multidimen-

sional process that involve different interaction energies,

water molecules, polarization effects, conformational

changes and dynamics in the two components. The meth-

ods that we present here are aimed to optimize virtual

screening technologies. As such we keep the receptor

structure fixed for docking and/or minimization. With this

constraint, we find that ‘‘cross’’ methods had more robust

predictions than ‘‘close’’ methods, stressing the limitations

scoring different receptor structures. Interestingly, for

HSP90, dock-close had slightly better predictions than

dock-cross. Analyses of the HSP90 bound structures sug-

gest that dock-close performed better because the induced-

fit binding process modifies the distal helix of the binding

pocket but keeps the core motif almost intact (Fig. 2a),

providing a better normalization between receptors. The

latter is very different from MAP4K4 where most of the

Table 2 Affinity ranking prediction results of MAP4K4 challenge

Method Spearman value Kendall Tau valuea

Phase 1 Phase 2 Phase 1 Phase 2

Align-close 0.33 –b 0.22 –

Dock-close 0.03 – 0.06 –

Min-cross 0.41 (best) 0.41 (best) 0.29 (best) 0.29 (best)

Align-cross 0.11 0.11 0.07 0.07

Dock-cross 0.06 0.01 0.06 -0.01

Min-cross-pose 0.31 0.41 (best) 0.23 0.29 (best)

Align-close-

pose

– 0.29 – 0.22

Interaction-

based

0.30 0.37 0.22 0.27

Co-crystal-min – 0.33 – 0.33

a The results are from D3R results evaluation
b This method is not submitted in this Phase

J Comput Aided Mol Des (2016) 30:695–706 703

123



binding pocket is malleable (Fig. 5a), and the binding

energy associated with those differences varies greatly.

There is still significant room for improvements. For

instance, our methods use Vina scoring function, which

represents the state of the art in open source scoring

functions but it is still far from perfect [5]. Additionally, it

is well known that experimental data coming from different

assays is not well normalized. The above notwithstanding,

compared with 3D-QSAR and machine learning algo-

rithms, the structure-based methods sketched in Fig. 1 were

significantly more reliable with limited data (Table 1).

From a methodology point of view, we have shown that

‘‘close’’ methods show great power to predict poses. For

affinity ranking, the choice of methods seems to be more

dependent on the binding pocket features. Consistent with

MAP4K4, another kinase from CSAR 2013/14 competi-

tion, SYK, had ‘‘cross’’ methods as the best ranking

method [29], whereas for TRMD, a target with a rigid and

buried pocket perhaps resembling HSP90, dock-cross per-

formed the best [29]. These results suggest a preference of

method selection in different pocket types, but the specific

features that dominate the selection of the optimal method

remains to be determined. In the 2013/14 CSAR compe-

titions, we suggested that the structure with the largest

binding pocket should have the best performance [29].

Similar analyses have been applied to HSP90 and

MAP4K4, but no strong correlations were observed. Fur-

ther research is needed to understand what are the condi-

tions to select the optimal receptor or set of receptors that

would predict the best ranking of compounds.

In presenting the results of our participation in the D3R

2015 Grand Challenge, we have validated five major

methods for pose prediction, docking and scoring. These

methods prospectively predicted the overall best poses for

both flexible targets and best affinity ranking (Spearman q)
for HSP90. Furthermore, these general methods can be

adapted and applied in a number of different situations by

modifying the scoring functions or docking protocols,

improving the outcome of virtual screening experiments.
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