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Abstract High affinity ligands for a given target tend to

share key molecular interactions with important anchoring

amino acids and therefore often present quite conserved

interaction patterns. This simple concept was formalized in

a topological knowledge-based scoring function (GRIM)

for selecting the most appropriate docking poses from

previously X-rayed interaction patterns. GRIM first con-

verts protein–ligand atomic coordinates (docking poses)

into a simple 3D graph describing the corresponding

interaction pattern. In a second step, proposed graphs are

compared to that found from template structures in the

Protein Data Bank. Last, all docking poses are rescored

according to an empirical score (GRIMscore) accounting

for overlap of maximum common subgraphs. Taking the

opportunity of the public D3R Grand Challenge 2015,

GRIM was used to rescore docking poses for 36 ligands (6

HSP90a inhibitors, 30 MAP4K4 inhibitors) prior to the

release of the corresponding protein–ligand X-ray struc-

tures. When applied to the HSP90a dataset, for which

many protein–ligand X-ray structures are already available,

GRIM provided very high quality solutions (mean

rmsd = 1.06 Å, n = 6) as top-ranked poses, and signifi-

cantly outperformed a state-of-the-art scoring function. In

the case of MAP4K4 inhibitors, for which preexisting 3D

knowledge is scarce and chemical diversity is much larger,

the accuracy of GRIM poses decays (mean rmsd = 3.18 Å,

n = 30) although GRIM still outperforms an energy-based

scoring function. GRIM rescoring appears to be quite

robust with comparison to the other approaches competing

for the same challenge (42 submissions for the HSP90

dataset, 27 for the MAP4K4 dataset) as it ranked 3rd and

2nd respectively, for the two investigated datasets. The

rescoring method is quite simple to implement, indepen-

dent on a docking engine, and applicable to any target for

which at least one holo X-ray structure is available.

Keywords Docking � D3R � Drug discovery data

resource � Grand challenge

Introduction

In absence of structural data on protein ligand complexes

(X-ray diffraction, nuclear magnetic resonance spec-

troscopy, electron microscopy), molecular docking remains

the computational method of choice to predict ligand

binding modes [1]. Since the pioneering work of Kuntz

et al. [2], over 100 different docking software have been

reported [1, 3–6] that progressively addressed most of the

issues related to this computational exercise: full ligand

flexibility, accurate configurational sampling of the ligand

in the protein binding site, partial protein flexibility,

implicit or explicit solvation, prediction of relative or

absolute binding (free) energies. Many benchmarking

studies [7–11] comparing different algorithms across

diverse datasets of protein–ligand X-ray structures, agree

on the point that state-of-the-art docking algorithms are

very efficient in predicting ligand poses: a relative position

of a ligand with respect to a protein and a conformation of

a protein-bound ligand. Unfortunately, these good solutions

are hardly distinguishable from a much larger set of
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incorrect proposals (decoys) using any predicted energy

criterion. Considering success in pose prediction as the

ability to predict poses with root-mean square deviation

(rmsd) from X-ray solution below 2 Å, most docking tools

present in the best cases (self-docking) a success rate close

to 70 % when considering the top-1 (best scored) solution

[12]. Considering all possible solutions, this rate raises

typically up to 85–90 % [12] thereby demonstrating that

the best scored pose is not always the most reliable one. If

handling multiple docking solutions is feasible albeit

cumbersome for one particular ligand, this approach cannot

be followed upon in silico screening a large compound

library. Reasons accounting for repetitive failures in pre-

dicting either binding free energies or relative potency

ranks [9, 12–14] are numerous: target flexibility, incorrect

protonation/tautomeric states, incorrect treatment of many

energy terms (solvation, entropy, metal chelation and weak

non-covalent interactions).

Three main approaches have been followed to rescue the

inability of fast scoring functions to prioritize the best

docking poses: (1) develop more sophisticated first-prin-

ciple scoring functions, (2) use supervised machine learn-

ing (ML) algorithms to predict the likelihood of docking

poses, (3) apply knowledge-based (chemical and topolog-

ical) rules to filter out unreliable solutions. The first

approach uses CPU-intensive energy calculations (e.g.

MM-PBSA, MM-GBSA) to refine early docking results.

Unfortunately, the benefit of this extra computational cost

is controversial as it appears to be target-dependent and

hardly predictable [15–17]. The second approach consists

in training machine learning algorithms (e.g. support vector

machines [18], random forest [19, 20]) with 3D protein–

ligand structural descriptors in order to discriminate good

from bad poses. If remarkable results in predicting binding

affinities from protein–ligand X-ray structures have been

recently published [20], such scoring functions have rarely

been applied to prospective virtual screening campaigns

and their true utility in virtual screening remains unknown.

In any case, docking/ML combinations [21] must be

regarded with great care due to the tendency of machine

learning methods to be overtrained [22]. The third strategy,

which is currently experiencing a revival, utilizes various

knowledge-based approaches to rescore docking poses.

The main idea is to use non-energetical topological criteria

to address the quality of docking poses, notably by com-

paring docking solutions with protein–ligand complexes of

known X-ray structure. Among knowledge-based approa-

ches, we can clearly distinguish those methods aimed at

constraining the docking algorithms towards expected

poses (pharmacophore-constrained docking [23], shape-

guided docking [24, 25], template matching [26]) from

computational protocols that just restrain the analysis of

docking poses to reward user-defined features. Both

methods have proven useful in many examples for

enhancing the quality of top-ranked poses as well as

enriching virtual hit lists in true actives. Constrained

docking may however be dangerous in forcing known

inactive compounds to properly dock in a binding site. It is

therefore common practice to conduct a totally free dock-

ing calculation and further apply simple cheminformatics

descriptors (1D fingerprints [27], 3D similarity [28]) to

enable the selection of docking solutions that look the most

similar to experimentally-determined poses of known

ligands. For example, we [29] and others [27, 30, 31]

proposed several years ago, the concept of molecular

interaction fingerprints (IFPs) [29] to post-process docking

data and pick-up poses producing IFPs similar to that of

known actives. Computing IFPs from docking poses is a

robust and very efficient manner to predict ligand binding

modes [32], propose reliable scaffold hops [33], and enrich

virtual hits in true actives upon docking a compound

library [34, 35]. The success of this post-processing

approach relies on the fact that true ligands of a same target

often share key interactions with key anchoring residues

and thereby produce quite similar IFPs. A drawback of this

method lies in the definition of a consensus binding site

(fixed set of target residues) in order to generate fixed-sized

and comparable interaction fingerprints. To overcome this

limitation and extend the concept of interaction fingerprints

to binding site-independent and coordinates frame-invari-

ant fingerprints, we recently proposed to encode interaction

patterns (sets of protein–ligand interactions) into either

generic 1D fingerprints or 3D graphs [36]. Our GRIM

algorithm for matching interaction pattern graphs has been

described in details elsewhere [36], and here it will be just

briefly summarized. Starting from 3D coordinates of a

protein–ligand complex, molecular interactions (hy-

drophobic contacts, aromatic interactions, hydrogen bonds,

ionic bonds, metal chelation) are first computed from a set

of topological and chemical rules. Every detected interac-

tion is then labelled by three interaction pseudoatoms

(IPAs) located on (1) the ligand-interacting atom, (2) the

protein-interacting atom and (3) the geometric barycenter

of protein and ligand-interacting atoms (Fig. 1a, b). Start-

ing from two sets of IPAs (reference, target), GRIM first

creates a list of possible IPA matches. A pair is made if

reference and target IPAs have the same label (same

interaction type) and represent the same point of view (li-

gand, protein, barycenter). A product graph is created from

the two reference and target graphs in which each suc-

cessfully matched pair is consequently a vertex. A weight

is added to each pair which is inversely proportional to the

observed frequency among the 284,186 IPAs generated

from the 9877 protein–ligand complexes of the sc-PDB

dataset [37]. Assigned weights were as follows:

hydrophobic IPA (0.299), aromatic IPA (0.990), h-bond
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acceptor (0.930), h-bond donor (0.834), negative ionizable

(0.993), positive ionizable (0.966), metal complexation

(0.985). An edge is observed between two vertices of the

product graph after computing distances between the two

reference IPAs and the two target IPAs. If the difference is

below a given threshold [37], an edge is created. The lar-

gest cliques are then detected using the Bron–Kerbosch

algorithm [38] with pivoting and pruning improvements

[39]. Each IPA of the target is matched with the corre-

sponding reference IPA using a quaternion-based charac-

teristic polynomial [40]. It returns both the translation

vector and the rotation matrices to match target and ref-

erence graphs as well as a Graph-alignment score

(GRIMscore). As the graph is specific of a given protein–

ligand interaction pattern, two sets of protein–ligand

coordinates can therefore be easily compared by aligning

the corresponding graphs (Fig. 1c). According to a previ-

ous benchmark, a GRIMscore value above 0.70 is indica-

tive of a statically significant similarity of interaction

patterns.

When applied to rescore docking poses generated by

Surflex-Dock [41], GRIM rescoring significantly outper-

formed the Surflex-Dock scoring function in a retrospective

virtual screening exercise aiming at recovering true actives

from DUD-E decoys [42] for 10 targets of pharmaceutical

interest [36]. We herewith present a prospective application

of the GRIM graph matching method to the problem of

docking pose selection by predicting, prior to the release of

the corresponding X-ray coordinates (D3R Grand Chal-

lenge 2015) [43], the binding modes of 36 inhibitors bound

Fig. 1 Principle of the graph alignment method for matching

interaction patterns (GRIM). a The estrogen receptor b-WAY697

complex (PDB ID 1 9 76) is converted into a set of interaction

pseudoatoms (IPAs) describing intermolecular interactions. For each

interaction (e.g. hydrogen-bond between Arg346 of the protein and a

phenolic oxygen atom of the ligand, displayed by a dashed black

line), IPAs are placed on the ligand-interacting atom (l), the protein-

interacting atom (p) and the geometric barycenter of both interacting

atoms (c). IPAs are color-coded according the described interaction

(gray, apolar and aromatic interactions; red, hydrogen bond (protein

acceptor) and ionic bond (protein negatively charged); blue, hydrogen

bond (protein donor) and ionic bond (protein positively charged).

b Same procedure as above for a second complex between the same

receptor and WAY-338. IPAs describing the same interaction with

Arg346 are labelled L, C and P, respectively. IPAs are color-coded

according the described interaction (light gray, apolar and aromatic

interactions; light red, hydrogen bond (protein acceptor) and ionic

bond (protein negatively charged), light blue, hydrogen bond (protein

donor) and ionic bond (protein positively charged). c Graph-based

alignment of the two sets of IPAs leading to an interaction-guided

overlay of the two bound ligands. Please note that GRIM does not

allow matching IPAs from different origin (e.g. l-type with p-types

for example)
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to two different targets of pharmaceutical interest

(HSP90a, MAP4K4). This manuscript will only highlight

results obtained for Stage 1 (docking pose accuracy) of the

D3R challenge.

Computational methods

HSP90a dataset

Four input protein structures (PDB ID: 2JJC, 2XDX,

4YKY, 4YKR) and 180 known HSP90a inhibitors

(SMILES strings, Supplementary Table 1) were directly

downloaded from the D3R Grand Challenge 2015 website

[43] as a zipped archive file (279_data_303589.tar.gz).

HSP90a protein structures were prepared for docking as

follows. First, existing hydrogen atoms were removed from

the 4 input HSP90a structures and added back while

optimizing both the protonation and tautomeric states using

Protoss v.2.0 [44]. Two conserved waters mediating the

interactions between protein and ligands (HOH2078 and

HOH2166 for 2JJC; HOH2029 and HOH2054 for 2XDX;

HOH6 and HOH233 for 4YKR; HOH5 and HOH198 for

4YKY) were kept, other water molecules were removed.

Next, each protein structure was saved in 4 copies varying

by the presence/absence of bound waters as follows: with

both water molecules (wat2), with the first water molecule

(wat1a), with the second water molecule (wat1b), without

waters (dry). In total, 16 structures were therefore used as

input for docking the 180 HSP90a inhibitors, which were

provided by D3R Grand Challenge. Note, that binding

mode should have been predicted only for 6 of those

compounds.

Ligands from HSP90a crystal structures were checked

manually (bond order, protonation and tautomeric states)

and corrected whenever necessary. Protein and ligand

structures were separately saved in MOL2 format using

SYBYLX-2.1 [45]. In addition, 176 HSP90a-inhibitor
complexes (Supplementary Table 2) were defined as tem-

plates for graph matching by searching the RCSB Protein

Data Bank [46] for the P07900 UniProt [47] accession

number and a known bound ligand. These 176 complexes

were further processed as described above.

Starting from the provided input SMILES strings of 180

HSP90a inhibitors, hydrogen atoms were added and a 3D

conformation was generated for every ligand using Corina

v3.40 [48]. All Ligands were then saved in MOL2 format.

MAP4K4 dataset

Two input protein structures (PDB ID: 4OBO, 4U44) and 30

knownMAP4K4 inhibitors (SMILES strings, Supplementary

Table 3) were directly downloaded from the D3R Grand

Challenge 2015 website [43] as a zipped archive file (280_-

data_473989.tar.gz). Furthermore, 6 additional MAP4K4-

inhibitor complexes (Supplementary Table 4) were retrieved

by searching the RCSB Protein Data Bank for the O95819

UniProt accession number and a known bound ligand. The 8

protein structures were prepared for docking using the pro-

tocol described for the HSP90a dataset. No bound water

molecules were conserved in the present case.

Starting from the input SMILES strings of the 30

MAP4K4 inhibitors, hydrogen atoms were added and 3D

conformations were generated using Corina v3.40 [48]. All

Ligands were then saved in MOL2 format.

Docking

Ligands were docked to input protein structures using

Surflex-Dock v.2745 [41]. For each protein input structure,

a protomol was first generated using a list of binding site

residues (including bound waters) for which at least one

heavy atom was closer than 6.5 Å from at least one ligand

heavy atom. The docking accuracy parameter set -pgeom

was used. The -pgeom option starts each docking from 4

initial and different poses to ensure good search coverage,

turns on ligand minimization prior to docking and after

docking (in-pocket minimization), ensures that the returned

poses are different from one another by at least 0.5 Å rmsd,

and saves a total of 20 poses (ranked by Surflex-Dock

energy score, from 000 to 019). In summary a total of

57,600 (180 9 16 9 20) and 4800 (30 9 8 9 20) poses

were generated for the HSP90a, and MAP4K4 inhibitors

respectively.

GRIM rescoring

Each Surflex-Dock pose was compared to the list of tem-

plate complexes (176 for HSP90a inhibitors, 8 for

MAP4K4 inhibitors). The interaction pattern of each

docking pose was computed with IChem [36], aligned to

that of the corresponding templates by graph-based align-

ment and ranked by GRIMscore. For every HSP90a ligand

to dock, all poses were merged, regardless of the input

protein structure and graph template used, and ranked by

decreasing GRIMscore. For each MAP4K4 inhibitor, poses

that do not exhibit at least one hydrogen-bond to the hinge

region of the MAP4K4 kinase (residues E106, M107,

C108) were discarded from further evaluation. Such poses

were detected thanks to the protein–ligand interaction fin-

gerprint generator [29] embedded in the IChem toolkit

[36]. The 5 remaining poses with the highest GRIMscores

(GRIM-1 to GRIM-5) were saved for every MAP4K4

ligand. For HSP90a inhibitors, a slightly different protocol

was used to reflect the much higher number of templates

and GRIM comparisons. To avoid retrieving too similar
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solutions, all poses were then clustered using an agglom-

erative method and a complete linkage clustering, starting

from the highest GRIMscore (seed) and using a 2 Å rmsd

threshold from the seed pose, until five different clusters

were defined for each ligand. A representative pose

(highest GRIMscore) for each of the 5 clusters was finally

saved and ranked from 1 (GRIM-1) to 5 (GRIM-5) by

decreasing GRIMscore.

Results and discussion

Predicting the binding mode of 6 HSP90a inhibitors

The first part of the challenge consisted in predicting the

bound conformation of 180 HSP90a inhibitors from three

chemical series (benzimidazolones, aminopyridines, ben-

zophenones), given four reference input protein structures

co-crystallized with at least one inhibitor of the above-cited

three chemical series. A particular emphasis was put on six

inhibitors (Fig. 2) whose protein-bound X-ray structures

had to be released just at the closure of the first step (pose

prediction accuracy) of the D3R Grand Challenge 2015.

Since HSP90a inhibitors notoriously use conserved water

molecules [49] to recognize the ATP-binding site, we

decided to generate four sets of protein coordinates for

each of the provided 4 input structures that just differ in the

number of bound waters (none, one or two; see ‘‘Compu-

tational methods’’). To use knowledge about inhibitor

binding to the HSP90a target, we further retrieved 176

additional protein–ligand X-ray structures from the Protein

Data Bank and ensured that all these inhibitors were

occupying the same binding site that the 4 ligands co-

crystallized with the input reference structures. Docking of

all inhibitors to the 16 input structures was completely

unrestrained (beside defining the common binding-site) and

led to a total of 57,600 poses which were all compared to

the 176 template structures using our GRIM interaction

pattern matching method. To ascertain the generation of a

few representative but diverse poses, we decided to cluster

docking solutions using a 2 Å-rmsd threshold and provided

up to 5 poses for each of 180 ligands (Table 1). Analyzing

the rmsd of predicted poses to the true X-ray solution

(released just after closure of the challenge) shows that our

interaction pattern rescoring strategy achieves an out-

standing accuracy since top-1 GRIM poses are predicted

with a mean rmsd of 1.06 Å (Table 1). The top-1 GRIM

pose of only two compounds (hsp90_44, hsp90_175) is

predicted with a rmsd higher than 1 Å. The larger value of

2.47 Å (hsp90_44) is mainly due to pose differences

occurring at the accessible pyridine-3-sulfonamide that

does not strongly interact with the binding site; the position

of the buried benzimidazolone core being nicely predicted

with a rmsd of 0.53 Å (Fig. 3a). For compound hsp90_175,

the main difference (rmsd = 1.67 Å) lies in the rotation of

a single dihedral angle that drifts a phenol ring from its

X-ray pose.

Since we intentionally clustered poses to avoid gener-

ating too many redundant answers, the quality of GRIM

poses logically deteriorates when other solutions are con-

sidered (Table 1). Four 4 out of the 6 ligands, the GRIM-1

pose is by far the closest to the true X-ray structure which

greatly facilitates the analysis of our rescoring. In all cases,

the top solution selected by GRIM is better than that

Fig. 2 Structure and name of

six HSP90a inhibitors to dock

and to determine binding mode
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predicted by the native scoring function embedded in

Surflex-Dock (mean rmsd = 1.91 Å; Table 1). As

observed for almost all docking engines, the top-ranked

pose is rarely the absolute best solution (the closest to the

true X-ray pose). Among the set of 320 poses generated for

each ligand, the lowest-rmsd pose is indeed very close

Table 1 Accuracy of pose

selection (rmsd in Å to X-ray

solution) for six HSP90a
inhibitors

Compound rmsd to X-ray, Å

GRIM-1a GRIM-2b GRIM-3c GRIM-4d GRIM-5e Surflex-1f Bestg

hsp90_40 0.44 1.69 5.54 2.35 6.12 0.59 0.44

hsp90_44 2.48 4.19 2.79 1.49 2.78 4.17 1.36

hsp90_73 0.85 2.49 5.78 5.60 3.31 2.01 0.72

hsp90_164 0.37 5.56 5.87 3.53 5.42 0.85 0.37

hsp90_175 1.67 5.85 1.35 6.00 5.72 1.81 0.73

hsp90_179 0.54 2.12 4.53 3.63 3.44 2.00 0.27

Mean rmsd 1.06 3.65 4.31 3.77 4.47 1.91 0.65

a 1st pose according to GRIMscore
b 2nd pose according to GRIMscore
c 3rd pose according to GRIMscore
d 4th pose according to GRIMscore
e 5th pose according to GRIMscore
f 1st pose according to Surflex-Dock score
g Lowest rmsd pose

Fig. 3 Predicted versus X-ray pose of two HSP90a inhibitors.

Heteroatoms are colored in blue (nitrogen), red (oxygen), yellow

(sulfur), and green (chlorine). The chemical structures of the two

inhibitors are displayed below the binding poses. a Predicted binding

mode of hsp90_44 (tan sticks) to HSP90a ATP-binding site (white

surface). The pose has been selected by interaction pattern similarity

to that of another HSP90a inhibitor co-crystallized with PDB entry

2ykr (plum sticks). The true X-ray pose is indicated by cyan sticks.

b Predicted binding mode of hsp90_179 (green sticks) to HSP90a
ATP-binding site (white surface). The pose has been selected by

interaction pattern similarity to that of another HSP90a inhibitor co-

crystallized with PDB entry 4fcq (plum sticks)
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(mean rmsd = 0.65 Å; Table 1) to the X-ray solution,

thereby attesting the quality of Surflex-Dock as pose gen-

erator. For two out of the six ligands (hsp90_40,

hsp90_164), the absolute best pose is ranked first by GRIM

(Table 1). For two others (hsp90_73, hps90_179), the rmsd

difference is so tiny (\0.3 Å) that these poses can be

considered as almost equivalent.

We next looked for those cases where GRIM rescoring

was able to rank at first position a near-native pose, and

identified which protein input structures and which interac-

tion pattern template had been used to select this particular

pose (Table 2). In two cases (hsp90_40, hs90_175), the

ligand to dock is a very close analog of the co-crystallized

ligand from the input reference structure (2D similarity

[0.90), it is therefore logical that the later protein structures

and corresponding interaction patterns are used by GRIM to

select the top pose. As a consequence, the interaction pattern

of the predicted pose is very similar to that of the template

(GRIMscore[0.85). However, the remaining ligands were

posed by interaction pattern similarity to that of chemically

different template ligands (2D similarity \0.60) thereby

nicely illustrating the power of the knowledge-based

rescoring method. A prototypical example is given by the

6-phenyl-1,3,5-triazine-2,4-diamine hsp90_179 (Table 2)

whose correct pose (rmsd = 0.54 Å) has been deduced from

that of a chemically unrelated 7H-pyrrolo[2,3-d]pyrimidine

inhibitor (PDB entry 4fcq) that however exhibits a very

similar binding mode (Fig. 3b) and interaction pattern

(GRIMscore = 0.79).

Predicting the binding mode of 30 MAP4K4

inhibitors

The second challenge aims at predicting the bound con-

formation of MAP4K4 inhibitors, and is much more

demanding than the previous one for many reasons: (1) the

dataset to dock is larger (30 inhibitors; Fig. 4 and Sup-

plementary Table 3) and much more chemically diverse

(17 different chemotypes, 11 low molecular-weight frag-

ments), (2) the number of templates (known MAP4K4-

inhibitor X-ray structures) is lower with only 8 PDB

complexes and three chemotypes (amino-quinazolines,

amino-pyrrolotriazines, hydroxydihydropyridinone; Sup-

plementary Table 4).

Although Surflex-Dock is able to propose at least one

very reliable docking pose for 28 out of the 30 ligands

(mean rmsd of the best possible pose = 0.94 Å; Table 3).

The native Surflex-Dock scoring function and GRIMscore

cannot detect near-native poses (\2 Å rmsd) as top-1

solution for 17 and 19 inhibitors, respectively. Rescoring

by interaction pattern graph similarity (GRIM) provides

overall better poses (mean rmsd of GRIM-1 pose = 3.18

Å) than Surflex-Dock (mean rmsd of Surflex-1

pose = 3.63 Å) but their accuracy remains lower than that

observed for the previous HSP90a dataset. Despite their

medium accuracy, it remains reassuring that the quality of

the poses decreases with the GRIM rank (Table 3).

We next looked for the reasons explaining why it is so

challenging to find near-native poses for MAP4K4 inhibi-

tors. The first reason is that the MAP4K4 set of inhibitors

contains a significant amount (11 out of 30 compounds) of

low molecular weight fragments (MW\ 250 and heavy

atoms count\20). Out of these 11 fragments, only three of

them (27 %) are well posed by GRIM (Fig. 5). Conversely,

the success in predicting near-native poses for higher

molecular weight ligands (heavy atom count C20) is sig-

nificantly higher (8 out of 19, ratio = 42 %; Fig. 5).

Upon examining the GRIM docking poses of all 30

MAP4K4 inhibitors, we could identify three possible sce-

narios. The first one relates to 9 lead-like compounds

Table 2 Characteristics of

GRIM top-ranked docking

poses for six HSP90a inhibitors

Ligand Proteina Poseb Templatec GRIMscored Tce rmsdf

hsp90_40 4ykr_wat1ag 000 4ykr_wat2 0.89 0.94 0.44

hsp90_44 4ykr_wat1a 004 4ykr_wat2 0.84 0.58 2.48

hsp90_73 2xdx_wat1a 000 2xdx_wat2 0.80 0.63 0.85

hsp90_164 4yky_wat2 005 4yky_wat2 0.89 0.77 0.37

hsp90_175 4yky_wat2 008 4yky_wat2 0.87 1.00 1.67

hsp90_179 4ykr_wat2 001 4fcq 0.79 0.52 0.54

a Set of protein coordinates used for docking
b Surflex–Dock pose number
c Set of protein–ligand coordinates used as template for graph matching; see ‘‘Computational methods’’ for

the numbering of conserved water molecules in PDB input structures
d GRIMscore
e 2D chemical similarity (Tanimoto coefficient) between query and template ligands, calculated from

166-bit MDL public keys
f Root-mean square deviations (in Å) from X-ray pose
g See ‘‘Computational methods’’ section for the numbering of water molecules
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Fig. 4 Structure and name of 30 MAP4K4 inhibitors to dock
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(MAP01, MAP07, MAP08, MAP09, MAP11, MAP14,

MAP18, MAP19, and MAP23) that were successfully

docked (rmsd\ 2.5 Å) and scored by GRIM (GRIMs-

core[ 0.68) because the corresponding interaction pat-

terns are quite similar to that from one of the six templates

exhibiting either the same or a bioisosteric scaffold (e.g.

MAP18 binding pose; Fig. 6). Importantly, polar interac-

tions are those that contribute the most to the GRIMscore,

thereby ensuring that both key hydrogen bonds to the

kinase hinge region and overall shape of the bound inhi-

bitors are shared between docked compounds and tem-

plates. The second scenario applies to the three fragments

(MAP21, MAP27, MAP32) whose poses were also pre-

cisely recovered with GRIM. In all cases, the good pose

was inferred by bioisosterism (same interaction pattern but

different chemical structure) to a larger template ligand

(Table 3). For example, the hydroxyphenyl-aminopyrim-

idine scaffold of MAP21 is perfectly docked (rmsd to

Table 3 Accuracy of pose

selection (rmsd in Å to X-ray

solution) for 30 MAP4K4

inhibitors

Compound rmsd to X-ray, Å

GRIM-1a GRIM-2b GRIM-3c GRIM-4d GRIM-5e Surflex-1f Bestg

MAP01 0.98 1.29 2.04 9.67 2.26 9.68 0.93

MAP02 4.35 4.37 3.25 3.45 3.39 1.47 1.08

MAP03 2.73 2.73 2.74 2.81 2.74 0.63 0.45

MAP04 5.12 5.21 5.21 5.21 1.95 5.46 1.54

MAP05 8.69 8.81 8.31 8.31 8.91 8.32 0.66

MAP06 5.19 5.10 4.92 2.05 2.27 2.32 1.10

MAP07 1.73 1.75 0.94 8.72 8.67 1.18 0.86

MAP08 0.71 1.69 1.79 0.83 1.79 0.88 0.49

MAP09 1.73 1.88 1.74 1.88 1.14 7.47 0.55

MAP11 2.26 8.30 8.39 1.36 0.63 0.80 0.76

MAP12 4.21 2.56 4.23 8.60 8.60 6.53 2.11

MAP13 6.11 6.13 6.21 6.18 6.11 7.22 2.25

MAP14 1.64 1.26 1.12 1.70 1.09 4.84 0.95

MAP15 3.49 3.46 3.69 3.51 2.32 2.33 0.39

MAP16 4.52 4.43 4.24 2.92 4.24 4.58 1.16

MAP17 3.09 4.74 9.36 4.77 3.02 2.39 1.24

MAP18 0.63 2.34 1.72 1.23 1.93 1.76 0.57

MAP19 1.33 1.34 3.66 7.51 2.66 0.62 0.62

MAP20 1.03 1.86 1.61 1.25 1.86 1.93 1.03

MAP21 0.51 0.55 0.50 0.46 5.21 0.51 0.35

MAP22 5.83 6.32 6.08 6.07 6.32 0.69 0.61

MAP23 2.29 4.59 4.89 4.89 5.06 2.25 1.27

MAP25 3.67 3.60 3.73 3.76 8.18 1.53 0.42

MAP26 2.74 3.17 2.78 2.78 2.78 6.60 0.90

MAP27 0.89 1.03 1.03 1.03 1.03 3.45 0.80

MAP28 3.00 4.15 3.24 4.24 4.15 2.70 1.85

MAP29 4.24 4.16 4.16 4.14 4.14 6.65 1.17

MAP30 4.12 4.04 4.06 3.38 3.59 3.93 0.63

MAP31 6.26 6.45 4.71 4.82 5.94 4.55 0.77

MAP32 0.98 2.20 2.20 2.20 2.20 5.21 0.73

Mean rmsd 3.18 3.65 3.75 3.99 3.81 3.63 0.94

a 1st pose according to GRIMscore
b 2nd pose according to GRIMscore
c 3rd pose according to GRIMscore
d 4th pose according to GRIMscore
e 5th pose according to GRIMscore
f 1st pose according to Surflex-Dock score
g Lowest rmsd pose
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X-ray structure = 0.51 Å) to MAP4K4 because of the high

similarity of its interaction pattern graph to that observed in

the 4rvt PDB template, although the latter ligand exhibits a

chemically different but bioisosteric scaffold (Fig. 7). It is

interesting to notice that GRIM did not select an interaction

pattern graph generated by a much chemically closer

template ligand (e.g. 4obo, 4obq) therefore demonstrating

that our pose selection protocol is really biased by protein–

ligand interactions and not dominated by simple ligand

chemical neighborhood. Since Surflex-Dock was able to

generate at least one reliable pose for all these ligands, the

reason for GRIM failure to detect it (third scenario) usually

lies in wrong graph alignments dominated by hydrophobic

interactions. A prototypical example is illustrated with the

incorrect pose of MAP06 (rmsd to X-ray pose = 5.19 Å)

by analogy to that of the 4obp template (Fig. 8) where

GRIM optimizes the shape overlap between the two

interaction patterns without a single shared hydrogen-bond.

The overlay of the GRIM pose to that of the 4obp template

notably highlights a very good match of both pyridine rings

which serve as pure hydrophobic anchors to the MAP4K4

binding site. In fact, MAP06 H-bonds to the kinase hinge

by its pyridine nitrogen atom (Fig. 8). This interaction is

indeed found in some poses which were not rewarded by

GRIM because of a lower overall GRIMscore. Since

fragments with a dominant hydrophobic character exhibit

simpler interaction patterns, the risk of misaligning the

corresponding graphs to that of larger templates is rela-

tively high, therefore explaining many of the herein

observed failures (Table 4).

Fig. 5 Plotting the GRIMscore versus the rmsd to the X-ray pose for

30 MAP4K4 inhibitors. Lead-like and fragment-like inhibitors are

represented by white circles and gray triangles, respectively

Fig. 6 Predicted versus X-ray pose of the MAP4K4 inhibitor

MAP18. Heteroatoms are colored in blue (nitrogen), red (oxygen),

and green (fluorine). A red arrow indicates the location of the hinge

region (E106, M107, C108) of the kinase. The chemical structures of

inhibitor and template are displayed below the binding poses.

a Predicted (tan sticks) and X-ray poses (cyan sticks) of MAP18

bound to MAP4K4 (white ribbons). b The GRIM pose (tan sticks) has

been selected by interaction pattern similarity to that of PDB template

4zk5 (plum sticks)
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We recall here that all poses were prefiltered before

GRIM scoring for hydrogen-bonding to the hinge region of

the kinase. This filtering step improved the mean rmsd of

the 30 MAP4K4 inhibitors from 3.62 to 3.18 Å. For 21 out

of 30 inhibitors, the filter has no effect since exactly the

same pose was selected by GRIM with or without filtering.

Fig. 7 Predicted versus X-ray pose of the MAP4K4 inhibitor

MAP21. Heteroatoms are colored in blue (nitrogen), and red

(oxygen). A red arrow indicates the location of the hinge region

(E106, M107, C108) of the kinase. The chemical structures of

inhibitor and template are displayed below the binding poses.

a Predicted (tan sticks) and X-ray poses (cyan sticks) of MAP21

bound to MAP4K4 (white ribbons). b The GRIM pose (tan sticks) has

been selected by interaction pattern similarity to that of PDB template

4rvt (plum sticks)

Fig. 8 Predicted versus X-ray pose of the MAP4K4 inhibitor

MAP06. Heteroatoms are colored in blue (nitrogen), red (oxygen),

and yellow (sulfur). A red arrow indicates the location of the hinge

region (E106, M107, C108) of the kinase. The chemical structures of

inhibitor and template are displayed below the binding poses.

a Predicted (tan sticks) and X-ray poses (cyan sticks) of MAP06

bound to MAP4K4 (white ribbons). b The GRIM pose (tan sticks) has

been selected by interaction pattern similarity to that of PDB template

4obp (plum sticks)
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For 4 inhibitors (MAP01, MAP004, MAP12, MAP32), the

filter positively contributes to the selection of better poses.

Notably, the mean rmsd of compound MAP01 could be

decreased from 10.78 to 0.98 Å. Conversely, the filtering

was detrimental in 5 cases, most of the time with a very

marginal rmsd increase. All rmsd values with and without

the hydrogen bond filter are described in Supplementary

Table 5.

Comparative evaluation of GRIM rescoring

The release, by the D3R Grand challenge 2015 organizers,

of results from all contributions permits a comparative

evaluation of our pose selection method with respect to

many others (Fig. 9). Two criteria have been retained to

estimate the accuracy of every method. First, the mean

rmsd of the best possible pose (lowest rmsd to the X-ray

structure) was selected to reflect the overall quality of the

posing algorithm. Second, the mean rmsd of the top-ranked

pose illustrates the capacity of a scoring function to reward

docking solutions that are very close to the true X-ray pose.

Among the 42 contributions to predict the binding pose

of HSP90a inhibitors, GRIM is ranked 3rd when consid-

ering the average rmsd of the top-ranked pose (Fig. 9a).

Seven methods deliver quite accurate answers with a mean

rmsd of the top-ranked pose below 1.5 Å, one method

being slightly better than GRIM (rmsd of 0.85 Å). Since

contributions are anonymous, we are not aware, at the time

this manuscript was written, of the corresponding method

and its sophistication level.

The much more challenging MAP4K4 dataset drew less

attention with 27 answers. The quality of the corresponding

predictions is significantly lower than for the HSP90a
dataset (Fig. 9b). Only 3 contributors predicted the pose of

the 30 MAP4K4 inhibitors with an accuracy below 3.5 Å

when considering the top-ranked pose. GRIM is one of

these 3 methods being ranked second in this challenge

(Fig. 9b). Looking at the accuracy of the best possible pose

clearly highlights a docking problem since deviations to the

X-ray pose remains between 2 and 3 Å for the best methods

(Fig. 9b). Reasons for failures have already been discussed

in the previous section of this manuscript and therefore do

not only concern our docking engine (Surflex-Dock) but

also all other dockers used in this competition.

We do not know whether it is the same method that

slightly outperform GRIM in predicting the pose of both

HSP90a and MAP4K4 inhibitors. Our interaction pattern-

guided pose selection strategy is anyhow quite robust and

accurate, with respect to competitor methods as it ranks 3rd

and 2nd, respectively for the two sets of predictions. As to

be expected, the quality of the results depends on the

preexisting knowledge. When numerous and diverse

interaction patterns are available for a particular target (e.g.

HSP90a dataset), GRIM docking poses are very accurate.

If less information is known (e.g. MAP4K4 dataset), the

quality of the GRIM poses logically deteriorates but still

remains better than that obtained without GRIM rescoring

for the same set of poses. We have not investigated here the

possibility to select more interaction pattern templates (e.g.

from other protein kinases) for posing MAP4K4 inhibitors,

as preliminary GRIM pairwise comparisons between the

eight available MAP4K4-inhibitor complexes and 1548

Table 4 Characteristics of GRIM top-ranked docking poses for 30

MAP4K4 inhibitors

Ligand Proteina Poseb Templatec GRI

Mscored
Tce rmsdf

MAP01 4obp 015 4obq 0.81 0.54 0.98

MAP02 4obq 000 4obq 0.73 0.61 4.35

MAP03 4zk5 010 4obq 0.67 0.51 2.73

MAP04 4u43 005 4obq 0.66 0.35 5.12

MAP05 4obp 003 4obq 0.68 0.46 8.69

MAP06 4obp 008 4obp 0.67 0.39 5.19

MAP07 4zk5 015 4zk5 0.70 0.62 1.73

MAP08 4zk5 000 4zk5 0.70 0.64 0.71

MAP09 4rvt 007 4rvt 0.68 0.30 1.73

MAP11 4obp 007 4obp 0.69 0.59 2.26

MAP12 4u43 008 4rvt 0.67 0.34 4.21

MAP13 4zk5 008 4zk5 0.72 0.60 6.11

MAP14 4obp 007 4obp 0.83 0.50 1.64

MAP15 4obp 001 4obp 0.74 0.47 3.49

MAP16 4zk5 005 4zk5 0.79 0.63 4.52

MAP17 4rvt 014 4rvt 0.71 0.36 3.09

MAP18 4zk5 007 4zk5 0.85 0.64 0.63

MAP19 4zk5 011 4zk5 0.80 0.45 1.33

MAP20 4u43 004 4obq 0.63 0.50 1.03

MAP21 4rvt 006 4rvt 0.65 0.36 0.51

MAP22 4zk5 017 4rvt 0.62 0.24 5.83

MAP23 4zk5 008 4zk5 0.72 0.52 2.29

MAP25 4u43 014 4obq 0.65 0.54 3.67

MAP26 4rvt 001 4rvt 0.63 0.28 2.74

MAP27 4zk5 002 4zk5 0.73 0.51 0.89

MAP28 4u43 003 4obq 0.66 0.32 3.00

MAP29 4zk5 018 4obq 0.66 0.31 4.24

MAP30 4zk5 008 4obp 0.64 0.58 4.12

MAP31 4zk5 014 4zk5 0.64 0.35 6.26

MAP32 4zk5 019 4obq 0.65 0.35 0.98

a Set of protein coordinates used for docking
b Surflex-Dock pose number
c Set of protein–ligand coordinates used as template for graph

matching
d GRIMscore
e 2D chemical similarity (Tanimoto coefficient) between query and

template ligands, calculated from from 166-bit MDL public keys
f Root-mean square deviations (in Å) from the a posteriori released

X-ray pose
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protein kinase-inhibitor complexes (sc-PDB dataset) [37]

were not particularly promising (GRIMscore \0.70). In

some cases however, a protein family-based GRIM scoring

strategy has been shown to be useful [36] and should not be

forgotten. At this point, it should be recalled that selecting

a near-native pose by GRIM matching does not mean that

predicting the binding free energy of that pose with state-

of-the art scoring functions will deliver good results.

Indeed, we could not find any correlation (Pearson

R = 0.19) between the Surflex-Dock score of GRIM-1

poses and experimental binding affinities of 180 HPS90a
inhibitors (stage 2 of the challenge).

Conclusions

The herein presented GRIM method rescores docking

poses by interaction pattern graph similarity to known

protein–ligand X-ray structures. The methodology is both

very simple and intuitive. Basically, the method automa-

tizes the reasoning of a molecular modeler: Does this pose

remind me the binding mode of known ligands for this

protein or its close homologues?

Conceptually, it is different from many shape or tem-

plate-matching docking methods [23–26] recently reported

to outperform free docking in generating reliable poses.

GRIM operates on freely generated docking poses but will

just reward that poses which lead to interaction patterns

similar to known ligands of the same or related target

protein. In ca. 80–90 % of test cases, state-of-the-art

docking engines propose a set of poses out of which at least

one is close to the X-ray solution [12]. GRIM can therefore

be used in addition to any of these dockers to prioritize the

most relevant ones. The method is fast (20 ms/pose on

average) and independent on the docking engine, however

protein–ligand coordinates should be provided in a stan-

dard MOL2 format.

When applied to the a priori prediction of binding poses

for 36 new inhibitors of two different targets, GRIM

compares very favorably with competing methods as it

ranked 3rd and 2nd, for HSP90a and MAP4K4 dataset

respectively, in predicting near native poses. In most cases,

the top-ranked pose as predicted by GRIM is the one that is

the closest to the true solution. As any knowledge-based

method, the accuracy of GRIM depends on existing

experimental data. Depending on the target, the number

and chemical diversity of co-crystallized ligands may vary

quite significantly. GRIM rewards the pose with the closest

interaction pattern to that seen in any other crystal of the

same target, independently of how frequently this pose has

already been obtained experimentally. The more chemi-

cally-diverse ligands co-crystallized with the target (or

close homologues) are available, the higher the probability

of the first GRIM pose being near native. The user should

therefore be aware of the target-dependent applicability

domain of the method, before using it blindly. The corre-

sponding executable (IChem) is available for non-profit

academic research at http://bioinfo-pharma.u-strasbg.fr/

labwebsite/download.html.

Supporting information

List of 180 HSP90a inhibitors to dock, list of 176 PDB

templates for HSP90a-inhibitor complexes, list of 30

MAP4K4 inhibitors to dock, list of 8 PDB templates for

Fig. 9 Comparative evaluation of GRIM (red triangles) with other

approaches (gray dots) in predicting the binding mode of 36 inhibitors

(6 HSP90a inhibitors, 30 MAP4K4 inhibitors) prior to the release of

their protein-bound X-ray coordinates. Posing accuracy is evaluated

by the rmsd of predicted poses to the X-ray solution. a Plotting the

mean rmsd of the top-ranked pose versus the mean rmsd of the

absolute best (lowest rmsd) pose for six HSP90a inhibitors; b Plotting

the mean rmsd of the top-ranked pose versus the mean rmsd of the

absolute best (lowest rmsd) pose for 30 MAP4K4 inhibitors
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MAP4K4-inhibitor complexes, effect of hydrogen-bond

filtering on the quality of GRIM top-ranked poses.
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