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Abstract The performance of the extended solvent-contact

model has been addressed in the SAMPL5 blind prediction

challenge for distribution coefficient (LogD) of drug-like

molecules with respect to the cyclohexane/water parti-

tioning system. All the atomic parameters defined for 41

atom types in the solvation free energy function were

optimized by operating a standard genetic algorithm with

respect to water and cyclohexane solvents. In the param-

eterizations for cyclohexane, the experimental solvation

free energy (DGsol) data of 15 molecules for 1-octanol were

combined with those of 77 molecules for cyclohexane to

construct a training set because DGsol values of the former

were unavailable for cyclohexane in publicly accessible

databases. Using this hybrid training set, we established the

LogD prediction model with the correlation coefficient (R),

average error (AE), and root mean square error (RMSE) of

0.55, 1.53, and 3.03, respectively, for the comparison of

experimental and computational results for 53 SAMPL5

molecules. The modest accuracy in LogD prediction could

be attributed to the incomplete optimization of atomic

solvation parameters for cyclohexane. With respect to 31

SAMPL5 molecules containing the atom types for which

experimental reference data for DGsol were available for

both water and cyclohexane, the accuracy in LogD pre-

diction increased remarkably with the R, AE, and RMSE

values of 0.82, 0.89, and 1.60, respectively. This significant

enhancement in performance stemmed from the better

optimization of atomic solvation parameters by limiting the

element of training set to the molecules with experimental

DGsol data for cyclohexane. Due to the simplicity in model

building and to low computational cost for parameteriza-

tions, the extended solvent-contact model is anticipated to

serve as a valuable computational tool for LogD prediction

upon the enrichment of experimental DGsol data for organic

solvents.

Keywords SAMPL5 � Distribution coefficient � Solvation

free energy � Extended solvent-contact model � Genetic
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Introduction

Partition coefficient (P) refers to the ratio of the equilib-

rium concentration of a substance in organic solvent to that

in water, which is distributed in the mixture of the two

immiscible solvents. Due to the hydrophobicity in organic

solvent layer, logarithm of P (LogP) can represent the

lipophilicity of solute molecules. Because 1-octanol serves

as a prototype of organic solvents, LogP with respect to

1-octanol/water system is used as the most popular

molecular descriptor. LogP values have thus been mea-

sured as an important physicochemical property pertinent

to drug-likeness [1], toxicity [2], blood brain barrier to

reach the central nervous system [3], and ADMET prop-

erties [4–7]. Furthermore, LogP values can also be related

with the molecular permeability with respect to the cell

membrane that has a lipophilic central layer [8–10]. In

addition to the role of a yardstick to measure the molecular

lipophilicities, the usefulness of LogP has also been
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appreciated in estimating the dehydration cost for binding

of a small molecule to the receptor protein [11]. LogP is

thus a representative of the most prevalent molecular

descriptors to quantify the pharmacological properties of

drug candidates.

Due to the necessity in the discovery of new drugs and

materials, a great deal of efforts has been devoted to the

development of the reliable computational methods for

LogP prediction. It was assumed in a large part of the

computational methods that molecular LogP values would

be obtained by summing all the contributions from the

individual atoms or from the dissected fragments [12, 13].

A number of quantitative structure-property relationship

(QSPR) models with reasonable accuracy were also

developed for LogP prediction using a variety of molecular

descriptors [14–18]. LogP values of small organic mole-

cules were also predicted successfully by comparing the

solvation free energies with respect to water and 1-octanol

calculated based on the solvent-accessible surface area

model [19], the extended solvent-contact approach [20],

and 3D density distribution function [21].

Although the usefulness of LogP was well-appreciated in

contemporary drug discovery, its weak correlation has been

observed with the membrane permeability as well as with

the aqueous solubility of some small molecules [22–24].

These discrepancies stem in a large part from the presence

of a polar hydroxyl group in 1-octanol, which would be the

potential source of error in mimicking the hydrophobic

environment [25, 26]. Hence, the logarithm of distribution

coefficient (LogD) with respect to the cyclohexane/water

partitioning system may serve as a good alternative for the

general-purpose molecular descriptor because cyclohexane

is an absolutely lipophilic solvent with no polar moiety.

Actually, LogD differs from LogP in that the former is

measured under consideration of all the possible ionization

and tautomerization states of a substance instead of taking

into account only a single tautomeric form [27]. LogD

proved be the better descriptor than LogP in particular for

the molecules capable of establishing the intermolecular or

intramolecular hydrogen bonds [28].

Like LogP, LogD has been estimated with reasonable

accuracy with various computational methods based on the

parametrizations of molecular surface area [29–31],

molecular interaction fields [32, 33], and solubility-diffu-

sion theory [34]. Driven by the successful predictions of

molecular solvation free energy and LogP [20, 35, 36], we

address the usefulness of the solvent-contact model in esti-

mating the molecular LogD values through the participation

in SAMPL5 blind prediction challenge for distribution

coefficient. To improve the solvation free energy function

required for computing the ratio of solute concentrations

with respect to cyclohexane and water, we augmented the

number of atomic parameters to cope with various chemical

environments encountered in 53 SAMPL5 molecules. This

modification would have the effect of enhancing the accu-

racy in predicting the solvation free energy and LogD

because the electronic structures and bonding patterns

peculiar to drug-like molecules in SAMPL5 dataset can be

described appropriately by the extension of atom types. The

fundamental assumptions to calculate molecular LogD with

the extended solvent-contact model are presented and dis-

cussed. We also address the limitations to practical appli-

cability inherent in the extended solvent-contact model, and

suggest the reasonable methods for further improvement.

Theory and computational methods

When the solute molecules diffuse passively across the two

immiscible solvents, the ratio of equilibrium concentrations

of the solute in the two solvents yields the partition coef-

ficient (P). The P value of a solute molecule (S) with

respect to cyclohexane/water partitioning system can be

defined as follows.

P ¼ ½S�chx
½S�wat

ð1Þ

Because P is expressed in the form of equilibrium coefficient

for the diffusion of a solute molecule from water to cyclo-

hexane, its LogP can be related with the difference in sol-

vation free energies (DDG0) with respect to the two solvents.

Here, the solvation free energy (DGsol) refers to the free

energy change for the transfer of a solute molecule from the

gas phase to solvent. LogP of a molecule can thus be related

with DDG0 as follows when the latter is given in kcal/mol.

LogP ¼ �DDG0

1:364
ð2Þ

whereas P is measured from the concentrations of a single

neutral form, D is defined with respect to all the forms of a

solute molecule available in the two solvents. D should

therefore be expressed with the summations running over

all the possible ionization and tautomerization states a

solute molecule.

D ¼
P

i ci½Ti�chxP
k ck½Tk�wat

ð3Þ

Here, ci and Ti represent the activity coefficient and the

concentration of a single ionization or tautomerization state

of the solute molecule in each solvent, respectively.

When a solute molecule with low ionization constant

dissolves into the two solvents to form dilute solutions, D

can be approximated to P because the D value would be

dominated by a single tautomeric form of the solute. We

note in this regard that SAMPL5 molecules involve only

weakly or hardly ionizable moieties such as carboxylic
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acid, amine, and phenol with the ionization constant

smaller than 10-4. The LogD value of each SAMPL5

molecule can thus be estimated by the difference between

DGsol in water and that in cyclohexane.

LogD ¼ DGwat
sol � DGcyx

sol

1:364
ð4Þ

Here, DGsol
wat and DGsol

cyx refer to the solvation free energies

of the solute at 298.15 K in water and in cyclohexane,

respectively.

To calculate the LogD values using Eq. (4), we con-

structed the molecular solvation free energy functions

based on the extended solvent-contact model as detailed in

the previous papers [35, 36].

DGsol ¼
Xatoms

i

Si Omax
i �

Xatoms

j 6¼i

Vje
�

r2
ij

2r2

 !

ð5Þ

Here, Gaussian envelope function with respect to the

interatomic distances (rij’s) between solute atoms is intro-

duced to define the occupied volume to which the approach

of solvent molecules is restricted. Si, Oi
max, and Vi param-

eters represent the atomic solvation energy per unit vol-

ume, maximum atomic occupancy, and atomic fragmental

volume, respectively. Oi
max and Vi values are related with

the volume of a solute atom in the isolated state and that in

molecules, respectively. The negative and positive signs of

Si parameter indicate the stabilization and destabilization of

the solute atom, respectively, as a consequence of the

interactions with solvent molecules. These three atomic

parameters assigned to each atom type should be deter-

mined for the solvation free energy function to be used in

LogD calculations. To optimize all the atomic parameters

with respect to water and cyclohexane, a standard genetic

algorithm was employed with the training set comprising

the molecules for which experimental DGsol data were

available for both solvents. As widely adopted in the lit-

erature, the r value in Eq. (5) was set equal to 3.5 Å during

the parameterizations.

With respect to partitioning the two-solvent system, the

cyclohexane phase contains only 0.04 % of water at

298.15 K [37] in contrast to 4 % in 1-octanol/water system.

Such an exceptionally high purity is not surprising because

cyclohexane is the hydrophobic molecule with no polar

group. Therefore, the experimental data for training set

molecules were adopted without a composition-weighted

correction as the reference DGsol values to optimize the

atomic parameters in the solvation free energy function.

Preparation of training set

As a preliminary step to optimize the atomic parameters in

the solvation free energy function, we had to prepare the

training set containing a sufficient number of molecules

whose experimental DGsol values were available for both

water and cyclohexane. In contrast to the abundance of

LogP values for a variety of organic molecules, the rarity

of experimental LogD data for cyclohexane/water parti-

tioning system made it difficult to establish a proper

training set. Because the experimental DGsol data for

cyclohexane were also insufficient to cope with all

SAMPL5 molecules, the training set was constructed by

combining the molecules with DGsol values for cyclohex-

ane and water with those for which DGsol data were

available for 1-octanol and water. This was inevitable due

to the rarity of experimental DGsol data even for the other

hydrocarbon solvents such as hexane. Actually, such a

combination was the only way to optimize the atomic

parameters of the atom types missing in the molecules for

which the experimental DGsol values in cyclohexane were

available. 1-Octanol is likely to serve as an effective sur-

rogate for cyclohexane because it categorizes into a

hydrophobic solvent. Indeed, 1-octanol has often been used

as a simplified model system for lipid [38] because of high

lipophilicity with the low dielectric constant of 10.3 due to

the presence of a long hydrocarbon chain.

A total of 92 molecules were collected to construct the

training set, the structures of which are illustrated in Fig. 1.

The DGsol values in cyclohexane for 77 elements served as

the reference data for parameterization while those for the

rest 15 molecules were approximated with the corre-

sponding DGsol values in 1-octanol. This minor subset

included the molecules containing the atom types for sp2

carbon, amide nitrogen, and sulfur. The DGsol values of

most elements in the training set with respect to cyclo-

hexane, water, and 1-octanol were extracted from Min-

nesota Solvation Database of version 2012 [39], while

those of the remaining molecules including sp2 carbon,

planar and amide nitrogens with 3 substituents, and sp2

sulfur with two substituents were retrieved from literature

[40, 41].

Definition of atom types

The contributions of individual atoms to solvation free

energy vary even among the same elements due to the

diverse chemical environments with which the atoms in

molecule are faced. The atom types should therefore be

assigned under consideration of the detailed atomic prop-

erties including the hybridization state, electronegativity,

and the number of substituents. For example, the specific

atom types should be defined for the functional groups with

characteristic electronic structure such as carbonyl carbon,

phenolic oxygen, and the hydrogen atoms attached to

varying heteroatoms. A total of 41 atom types were

assigned in this study to discriminate the differences in the
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Fig. 1 Chemical structures of the selected molecules in the training set for the optimization of atomic parameters in the solvation free energy

function. Asterisks indicate the molecules for which the experimental DGsol values in 1-octanol were referenced instead of those in cyclohexane
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interactions with solvent among the atoms contained in 53

SAMPL5 molecules. The number of atom types reduced to

33 when the fifteen molecules without DGsol values for

cyclohexane were excluded, which exemplified their

necessity in the optimization of solvation free energy

function. All atom types were designated in Sybyl MOL2

format for simplicity in discriminating the similar ones.

Optimization of atomic parameters

The molecular structures in the training set and in SAMPL5

dataset were fully optimized with ab inito quantum chem-

ical calculations at B3LYP/6-31G** level of theory to

prepare the atomic coordinates required to compute the

solvation free energies. All the atomic parameters defined

for 41 atom types were then determined with respect to

cyclohexane and water to estimate the LogD values of

SAMPL5 molecules based on the extended solvent-contact

model. Because the atomic fragmental volume (Vi)

parameters revealed a bad convergence during the simul-

taneous optimization with Oi
max and Si values, they were

optimized in separate using a standard genetic algorithm as

described in the previous papers [35, 36]. Due to the con-

vergence problem, Vi values were allowed to vary among all

the atoms even with the same atom type. This criterion was

necessary because the volumes of individual atoms depen-

ded on the overall structure of a solute molecule.

The optimization of Vi parameters started with calcu-

lating the volumes (Vmol’s) of all the solute molecules.

Each molecule was placed in a 3-D box whose length,

width, and height corresponded to the maximum distances

along the three axes for the coordinate system of molecular

van der Waals volume. To construct the van der Waals

volume, atomic radii of carbon, nitrogen, oxygen, sulfur,

hydrogen, fluorine, chlorine, and bromine atoms are set to

1.53, 1.45, 1.36, 1.70, 1.08, 1.30, 1.65 and 1.80 respec-

tively. Monte Carlo simulations were then carried out to

calculate the Vmol value by randomly selecting the grid

points in the 3-D box embedding the solute molecule. More

specifically, the Vmol value was obtained by the product of

the box volume (Vbox) and the ratio of the number of trials

to select a point in the molecular van der Waals volume

(Nhits) to the total number of trials (Ntrials). All the Vmol

values of the solute molecules were thus calculated with

the following equation.

Vmol ¼ Vbox �
Nhits

Ntrials

ð6Þ

Using the calculated Vmol values, the Vi parameters were

optimized by operating the standard genetic algorithm.

This began with the definition of a generation with 100

vectors comprising the Vi parameters for all the atoms in

molecules, which was followed by the removal of 50 with a

bias toward preserving the most fit with the lowest error.

The empty 50 vectors were then filled with the point

mutations to alter the value of one of the parameters with

probability 0.01, and with the cross breeds with probability

0.6 to select some parameters from one vector to replace

the elements of another vector of the top 50. The 50 new

vectors created in this way were then evaluated together

with the top 50. This cycle was repeated as many times as

desired. To evaluate the 100 vectors, we used the error

hypersurface (Fv) defined by the sum of the absolute values

of the differences between the Vmol value and the sum of Vi

values of a solute molecule.

FV ¼
Xmolecules

k

Vk
mol �

Xatoms

i

Vi

�
�
�
�
�

�
�
�
�
�

ð7Þ

After the parameterizations of Vi, Oi
max and Si values for

all the atom types were optimized concurrently using the

genetic algorithm to make the solvation free energy func-

tion suitable for calculating the DGsol values for cyclo-

hexane and water. These second parameterizations began

with the construction of a generation consisting of 100

vectors whose elements were Oi
max and Si parameters for all

the available atom types. In the second step, 50 of 100

vectors were made empty with a bias toward the best fit

with the lowest error. These vacant 50 vectors were filled

again with the new elements generated by processing those

of the remaining 50 vectors. The new vector elements were

obtained by the point mutations with probability 0.01 to

alter the Oi
max and Si values as well as by the cross breeds

with probability 0.6 to exchange the corresponding ele-

ments in the top 50 vectors. The newly generated vectors

were then combined with top 50 to be evaluated together.

This procedure was repeated until the convergence crite-

rion was met. The evaluation of each vector was carried out

using the error hypersurface (Fs) given by summing over

the differences between the DGsol values of the training set

molecules measured from experiment (DGexp
i ) and those

calculated with the solvation free energy function (DGcalc
i ).

This fitness function can be written in the following form.

Fs ¼
Xmolecules

i

DGi
exp � DGi

calc

�
�
�

�
�
� ð8Þ

The optimizations tended to converge approximately

after 100000 iterations for Vi and 1000 for Oi
max and Si

values.

Results and discussion

Chemical structures of the selected SAMPL5 molecules are

shown in Fig. 2. We note that SAMPL5 dataset has a wide

spectrum of shape and size with molecular weights (MWs)
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ranging from 170 to 810 amu in comparison to that of

SAMPL4 which included only the small molecules with

MW lower than 280 amu. This indicates that more rigorous

computational methods would be required in SAMPL5

prediction challenge than those adopted for SAMPL4

molecules to get similar achievements in performance.

Nonetheless, the augmentation of new atom types should

be minimal in the extended solvent-contact model lest the

optimization leads to overtraining due to the excessive

atomic parameters.

It should also be noted that several SAMPL5 molecules

can exist in different tautomeric forms. Although the

accuracy in LogD prediction would be enhanced by con-

sidering the structural multiplicity, we used only the major

tautomeric form of each SAMPL5 molecule for computa-

tional simplicity. For example, the enol form was adopted

when the ring system involving the –OH moiety satisfied

the aromaticity conditions as in SAMPL5_50,

SAMPL5_56, and SAMPL5_83, whereas the keto form

was selected in the other cases.

LogD values of SAMPL5 molecules are expected to be

similar to LogP ones because they include only weakly or

hardly ionizable groups such as carboxylic acid, amine, and

phenol moieties, which belong to a weak acid/base with the

ionization constant smaller than 10-4. All SAMPL5

molecules were therefore assumed to be neutral in this

study to make it straightforward to determine their solva-

tion free energies. Furthermore, the experimental LogD

values of all SAMPL5 molecules were measured at the

concentrations lower than 0.1 mM. It is difficult to form

the solute dimer in such dilute solutions, which would have

the effect of further reducing the difference between LogD

and LogP values of SAMPL5 molecules. Taken together,

LogD values of SAMPL5 molecules may be estimated with

the solvation free energy functions optimized for water and

cyclohexane.

To calculate the DGsol values of each SAMPL5 mole-

cule in water and cyclohexane, all atomic parameters in the

solvation free energy function were optimized with respect

to both solvents using the experimental data for 92 training

set molecules. Table 1 lists the optimized Oi
max and Si

values for 41 atom types introduced to describe all the

atoms in SAMPL5 molecules under a variety of chemical

circumstances. Vi parameters for all the atoms in SAMPL5

molecules are presented in Supplementary Materials. They

have to be presented in separate from Oi
max and Si param-

eters because they can vary among the atoms with the same

atom type. Despite the complexity in parametrizations, the

Oi
max and Si values tend to vary in a manner consistent with

general atomic properties. For example, the Oi
max parame-

ters of the second-period atoms (C, N, O, and F) range from

270 to 400 irrespective of the solvent as compared to those

of hydrogen atoms smaller than 250. In comparison, most

Oi
max values of sulfur and bromine atoms exceed 400. This

trend can be understood in terms of the conceptual simi-

larity of the Oi
max parameter to the atomic volume.

The Si parameters appear to vary significantly with the

atom types even among the same elements whereas the

Oi
max values for the atoms in the same period are relatively

similar. For instance, the Si value of carbonyl carbon

(C.CO_2) with respect to water is even more negative than

those of alkyl and aromatic carbons. This may be related

with the accumulation of positive charge on the carbonyl

carbon, which stems from the electron withdrawal by the

adjacent carbonyl oxygen. As can be expected from the

large differences in physicochemical properties between

the two solvents, the Si parameters for water are quite

different from those for cyclohexane. We note in this

regard that all the Si values corresponding to carbon atoms

converge to the negative values in cyclohexane as a con-

sequence of reflecting the attractive van der Waals inter-

actions between solute carbon atoms and the solvent. On

the other hand, the Si values of carbon atoms become

positive or less negative in water due to the weakening of

hydrophobic interactions with solvent.

Consistent with the major contributions of nitrogen and

oxygen atoms to molecular solubility in polar solvents,

their Si values for most atom types are optimized to be

highly negative in water. Actually, the interactions of polar

solute atoms with water molecules are expected to be

attractive because they can be stabilized in aqueous solu-

tion not only by the long-range electrostatic interactions

with bulk solvent but also by the local hydrogen bonds with

solvent molecules. However, most Si values of nitrogen and

oxygen atoms become much less negative or positive with

the change of solvent from water to cyclohexane. This can

be understood in the context of the weakening of solute-

solvent interactions due to the lack of polarity in solvent

molecules. In case of hydrogen atoms, the Si parameters

tend to be more negative as the adjacent atom changes

from carbon to polar atoms, which can also be attributed to

the facilitation of the electrostatic interactions with solvent.

Using the Vi, Oi
max, and Si parameters of all 41 atom

types optimized with 92 training set molecules, the solva-

tion free energies of SAMPL5 molecules were calculated

for water and cyclohexane to produce the ultimate LogD

values. The correlation diagram of experimental versus

calculated DGsol values of 92 molecules in the training set

and that of experimental versus calculated LogD values of

53 SAMPL5 molecules are shown in Figs. 3 and 4,

respectively. All DGsol values for the molecules in the

bFig. 2 Chemical structures of the selected molecules included in

SAMPL5 dataset. The structures of all SAMPL5 molecules are

presented in Supplementary Materials
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training set and SAMP5 dataset are provided in Supple-

mentary Material. Although a good correlation is observed

between experimental and computational solvation free

energies of training set molecules with the correlation

constant (R) larger than 0.96, the prediction accuracy

decreases significantly in the estimation of LogD data for

the SAMPL5 molecules with the associated R value of

0.55. The average error (AE) and root mean square error

Table 1 Optimized Oi
max and Si

parameters for 41 atom types in

SAMPL5 molecules

Atom type Description Oi,max (Å3) Si (kcal/mol Å3)

c-Hexane Water c-Hexane Water

C.3_1 sp3 carbon with 1 substituent 320.6 330.0 -2.857 0.492

C.3_2 sp3 carbon with 2 substituents 318.3 342.1 -3.492 0.651

C.3_3 sp3 carbon with 3 substituents 328.6 341.3 -4.127 0.397

C.3_4 sp3 carbon with 4 substituents 303.2 304.0 -2.937 -0.079

C.2_1* sp2 carbon with 1 substituent 317.5 308.7 -0.667 -0.397

C.2_2* sp2 carbon with 2 substituents 307.1 334.1 -3.254 0.048

C.2_3* sp2 carbon with 3 substituents 315.1 346.0 -2.460 -1.651

C.1_2 sp carbon with 2 substituents 323.8 281.1 -4.444 0.651

C.ar_2 Aromatic carbon with 2 substituents 323.8 323.2 -2.778 -0.667

C.ar_3 Aromatic carbon with 3 substituents 334.1 304.0 -3.889 -2.000

C.CO_2 Carbonyl carbon with 2 substituents 306.3 325.4 -7.063 -8.413

N.1_1 sp nitrogen with 1 substituent 336.5 326.2 -0.079 -10.238

N.3_2 sp3 nitrogen with 2 substituents 354.3 303.2 -8.095 -11.191

N.3_3 sp3 nitrogen with 3 substituents 318.3 301.1 -4.048 -13.730

N.ar Aromatic nitrogen 271.4 344.2 -5.079 -9.905

N.pl_1 Planar nitrogen with 1 substituent 398.4 315.9 3.143 -15.000

N.pl_2 Planar nitrogen with 2 substituents 315.9 340.5 -1.667 -13.095

N.pl_3* Planar nitrogen with 3 substituents 396.8 320.6 -13.683 -4.349

N.am_1 Amide nitrogen with 1 substituent 339.7 300.0 2.079 -8.810

N.am_2* Amide nitrogen with 2 substituents 360.3 321.4 -3.571 -0.476

N.am_3* Amide nitrogen with 3 substituents 327.0 342.9 -12.429 -14.048

O.3_1 sp3 oxygen with 1 substituent 270.0 315.9 0.556 -14.603

O.3_2 sp3 oxygen with 2 substituents 350.8 307.9 -1.730 -11.825

O.pl_1 Planar oxygen with 1 substituent 285.9 312.7 -1.190 -15.873

O.pl_2 Planar oxygen with 2 substituents 387.3 297.8 -1.508 -4.841

O.es_1 sp3 oxygen in carboxylic acids 382.5 300.8 1.032 -6.349

O.es_2 sp3 oxygen in esters 393.7 336.5 -0.333 2.619

O.2 sp2 oxygen 330.2 331.7 0.333 -6.429

S.12* Sulfur with 12 valence electrons 441.7 431.0 -9.048 -14.921

S.3_2* sp3 sulfur with 2 substituents 439.7 400.8 -3.714 -5.159

S.pl Planar sulfur 379.4 397.5 -2.302 -1.111

F Fluorine 325.4 301.0 1.349 1.746

Cl Chlorine 361.3 402.9 -2.937 0.317

Br Bromine 484.1 465.7 -0.238 0.476

H.C Hydrogen bonded to carbon 158.6 157.9 0.714 -0.159

H.N3 Hydrogen bonded to sp3 nitrogen 164.3 238.7 0.079 -11.191

H.Np Hydrogen bonded to planar nitrogen 221.1 228.9 -6.571 -0.540

H.Na Hydrogen bonded to amidic nitrogen 246.8 206.5 -9.429 -11.619

H.O3 Hydrogen bonded to planar oxygen 243.7 236.5 -3.095 -6.905

H.Op Hydrogen bonded to sp3 oxygen 234.1 236.2 -3.810 -1.698

H.Oa Hydrogen bonded to carboxylic acid group 183.3 168.3 0.079 -6.508

Asterisk indicates the atom type missing in the molecules with DGsol values for cyclohexane
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(RMSE) amount to 1.53 and 3.03, respectively, which rank

33th and 17th among 62 participants in SAMPL5 predic-

tion challenge for the unitless LogD values.

With respect to the modest accuracy in LogD prediction,

we note that the training set could not be constituted

completely with the molecules for which the experimental

DGsol data were available for both water and cyclohexane

because they lacked some atom types present in SAMPL5

molecules. For example, the atom types for sp2 carbon

(C.2_1, C.2_2, and C.2_3) were missing in the molecules

with the experimental DGsol values for cyclohexane.

Therefore, the roles of the elements of training set pos-

sessing the sp2 carbon had to be played by the molecules

with the experimental DGsol values for 1-octanol. The same

was true of the training set molecules containing the atom

types of N.pl_3, N.am_2, N.am_3, S.12, and S.3_2. These

vicarious selections of the training set molecules can lead

to the incomplete optimization of the solvation free energy

function for cyclohexane, which would culminate in the

impairment of accuracy in LogD predictions. Indeed, the

largest differences between the experimental and calcu-

lated LogD values are observed in SAMPL5_074 and

SAMPL5_080 as indicated in Fig. 4, both of which contain

at least two atom types missing in the molecules with the

experimental DGsol data for cyclohexane.

We now turn to the second prediction challenge for

LogD values with the subset of SAMPL5 molecules for

which all the atomic parameters can be fully optimized

with the reference DGsol data for cyclohexane. By com-

paring the new results with those for all SAMPL5 mole-

cules, it would be possible to address the influence of

replacing the DGsol values for cyclohexane with those for

1-octanol on the accuracy in LogD prediction. This com-

parative analysis started with the reoptimization of solva-

tion free energy functions using only the training set

molecules for which experimental DGsol data were avail-

able for cyclohexane. Accordingly, we excluded some

SAMPL5 molecules containing the atom types missing in

the new training set. As a consequence, 77 and 31 mole-

cules remained in the training set and SAMPL5 test set,

respectively, along with the decrease in the number of atom

types from 41 to 33.

Table 2 lists the newly optimized atomic parameters

using the modified training set with the same procedure as

described in the previous section. The Si parameters for

water and the Oi
max values for both solvents remain strongly

correlated with those in the parameterizations with the full

training set (Table 1). The R values associated with the

comparisons of the new and previous Si (water), Oi
max

(cyclohexane), and Oi
max (water) parameters amount to

Fig. 3 Correlation diagrams for the experimental versus calculated

solvation free energies of 92 molecules in the training set with respect

to A cyclohexane and B water. Indicated in red circles are the training

set molecules for which the experimental DGsol values in 1-octanol

were referenced

Fig. 4 Correlation diagram between the experimental and calculated

LogD values of 53 SAMPL5 molecules whose atomic parameters are

optimized with 92 training set molecules. The upper and the lower

red circles indicate SAMPL5_80 and SAMPL5_74, respectively,

which reveal a large deviation between the experimental and

calculated LogD values
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0.86, 0.79, and 0.88, respectively. Some general tendencies

are therefore also found in the newly optimized Oi
max and Si

parameters of varying atom types. For example, the Si
values of most carbon atoms are negative and positive in

cyclohexane and in water, respectively. The electronega-

tive nitrogen and oxygen atoms have highly negative Si
values with respect to water, which is consistent with their

major contributions to the stabilization of a parent mole-

cule in aqueous solution. However, the newly optimized Si
values with respect to cyclohexane appear to become quite

different from those obtained with the full dataset with the

associated R value of 0.13. This indicates that the calcu-

lated DGsol values of SAMPL5 molecules for cyclohexane

can vary significantly due to the removal of the training set

molecules lacking the reference DGsol data for cyclohex-

ane, which would in turn have the effect of changing the

results of LogD prediction in a large part.

The correlation diagrams of experimental versus calcu-

lated DGsol values of 77 training set molecules with 33

atoms types are shown in Fig. 5. Both R values for

cyclohexane and water remain similar to those obtained

with the original training set comprising 92 molecules and

41 atom types (Fig. 3). As shown in Fig. 6, however, the

accuracy in LogD prediction appears to be improved

remarkably with the increase of R value from 0.55 to 0.82.

We note that the R value becomes close to the top-ranked

Table 2 Optimized Oi
max and Si

parameters for 33 atom types in

SAMPL5 molecules for which

the experimental DGsol values

are available for cyclohexane

Atom type Description Oi,max (Å3) Si (kcal/mol Å3)

Water 1-Octanol Water 1-Octanol

C.3_1 sp3 carbon with 1 substituent 366.5 350.0 -1.587 1.778

C.3_2 sp3 carbon with 2 substituents 382.4 302.9 -1.905 1.746

C.3_3 sp3 carbon with 3 substituents (1) 303.8 293.8 -0.714 0.984

C.3_4 sp3 carbon with 4 substituents 319.7 339.7 -2.302 0.190

C.1_2 sp carbon with 2 substituents 325.4 330.2 -2.143 1.048

C.ar_2 Aromatic carbon with 2 substituents 315.6 348.9 -2.619 -0.206

C.ar_3 Aromatic carbon with 3 substituents 341.3 334.9 -2.190 -0.968

C.CO_2 Carbonyl carbon with 1 substituents 336.5 350.0 -1.476 -4.921

N.1_1 sp nitrogen with 1 substituent 342.1 302.4 -1.667 -12.937

N.3_2 sp3 nitrogen with 2 substituents 315.6 344.4 -2.460 -6.905

N.3_3 sp3 nitrogen with 3 substituents (1) 309.5 314.4 -0.873 -14.191

N.ar Aromatic nitrogen 324.8 375.2 -3.413 -5.000

N.pl_1 Planar nitrogen with 1 substituent 314.3 309.5 -12.302 -15.000

N.pl_2 Planar nitrogen with 2 substituents (2) 366.7 346.0 -5.079 -9.921

N.am_1 Amide nitrogen with 1 substituent (1) 385.7 322.2 -3.413 -7.143

O.3_1 sp3 oxygen with 1 substituent 279.5 337.6 0.111 -6.984

O.3_2 sp3 oxygen with 2 substituents 331.7 342.1 -1.286 -9.286

O.pl_1 Planar oxygen with 1 substituent 341.4 301.1 -5.000 -15.079

O.pl_2 Planar oxygen with 2 substituents (2) 331.7 378.9 -2.048 -3.492

O.es_1 sp3 oxygen in carboxylic acids (2) 295.7 315.1 -1.778 -5.587

O.es_2 sp3 oxygen in esters 307.9 313.5 -1.222 1.349

O.2 sp2 oxygen 396.8 349.0 -2.492 -6.667

S.pl Planar sulfur 354.8 393.3 -3.730 -5.397

F Fluorine 328.9 306.7 0.810 1.571

Cl Chlorine 340.6 383.8 -2.619 0.651

Br Bromine 520.0 445.7 -2.000 -1.556

H.C Hydrogen bonded to carbon 185.6 183.3 -0.476 -1.333

H.N3 Hydrogen bonded to sp3 nitrogen 220.6 193.3 0.571 -16.349

H.Np Hydrogen bonded to planar nitrogen 260.0 186.3 3.524 -1.937

H.Na Hydrogen bonded to amidic nitrogen 243.3 198.6 -5.524 -16.571

H.O3 Hydrogen bonded to sp3 oxygen 231.0 231.7 -3.730 -15.524

H.Op Hydrogen bonded to planar oxygen 223.8 216.7 2.810 -4.095

H.Oa Hydrogen bonded to carboxylic acid group 240.0 222.1 1.524 -7.667

Numbers in parenthesis indicate the number of occurrences in the training set
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one (0.84) in SAMPL5 blind prediction challenge for

LogD. This accuracy enhancement is apparently attributed

to the exclusion of the training set molecules without the

reference DGsol values for cyclohexane. In particular, the Si
parameters for cyclohexane seem to be optimized better

than before by limiting the elements of training set to the

molecules for which the experimental DGsol data are

available, which leads to the better prediction of DGsol

values for cyclohexane and culminates in the accuracy

enhancement in LogD predictions. This result exemplifies

the importance of constructing a proper training set for the

extended solvent-contact model to be useful for predicting

the physicochemical properties of drug-like molecules.

Listed in Table 3 are the LogD values of SAMPL5

molecules calculated with and without the DGsol data for

1-octanol in the training set in comparison with the cor-

responding experimental results. Consistent with the

increase in R value, both AE and RMSE decrease from

1.53 and 3.03 to 0.89 and 1.60, respectively, due to the

modification of the training set. It is remarkable to note that

the RMSE value becomes lower than that of the best scored

one in the SAMPL5 blind prediction challenge for LogD.

Although it makes little sense to compare our new com-

putational results with those obtained with the full

SAMPL5 dataset, it can at least be argued that the extended

solvent-contact model would be one of the most efficient

methods for LogD prediction upon the availability of suf-

ficient experimental DGsol data for cyclohexane.

With respect to the improvement of the accuracy in

LogD prediction, the Si parameters of the planar nitrogens

bonded to aromatic rings appear to change most signifi-

cantly in the optimizations with the new training set. For

example, the Si values of N.pl_1 and N.pl_2 for cyclo-

hexane decrease from 3.143 and -1.667 (Table 1) to

-12.302 and -5.079 (Table 2), respectively, due to the

exclusion of the molecules lacking the reference DGsol data

for cyclohexane in the training set. The highly negative Si
values of planar nitrogens can be understood in the context

that their hydrophobic interactions with cyclohexane

molecules would be facilitated along with the delocaliza-

tion of lone-pair electrons into the adjacent aromatic ring,

which has the effect of decreasing the polarity on the

nitrogens. In this regard, the Si values seem to be more

negative in cyclohexane than in 1-octanol because the

former is more hydrophobic than the latter. Because N.pl_1

and N.pl_2 are the most abundant heteroatoms in the

SAMPL5 dataset, a significant enhancement in LogD pre-

diction is anticipated by the better optimization of their Si
values with respect to cyclohexane. Indeed, the deviations

between the experimental and calculated LogD values of

Fig. 5 Correlation diagrams for the experimental versus calculated solvation free energies with respect to A cyclohexane and B water for 77

training set molecules for which experimental DGsol values are available for both solvents

Fig. 6 Correlation diagrams between the experimental and calculated

LogD values of 31 SAMPL5 molecules for which all atomic

parameters can be optimized using 77 training set molecules with

experimental DGsol data for cyclohexane. The upper and the lower

red circles indicate SAMPL5_065 and SAMPL5_081, respectively,

which reveal a large deviation between the experimental and

calculated LogD values
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Table 3 Comparison of experimental and calculated LogD values of SAMPL5 molecules

Compound ID LogDexp LogDcalc

Training with cyclohexane

and 1-octanol data

Training with cyclohexane

data only

SAMPL5_002 1.40 2.02 NA

SAMPL5_003 1.90 1.36 1.86

SAMPL5_004 2.20 4.02 3.87

SAMPL5_005 -0.86 -0.06 NA

SAMPL5_006 -1.02 1.87 NA

SAMPL5_007 1.40 2.04 3.46

SAMPL5_010 -1.70 -1.89 -1.00

SAMPL5_011 -2.96 -2.72 -1.49

SAMPL5_013 -1.50 -0.15 NA

SAMPL5_015 -2.20 -3.40 -2.29

SAMPL5_017 2.50 2.32 2.56

SAMPL5_019 1.20 1.09 1.93

SAMPL5_020 1.60 2.22 1.20

SAMPL5_021 1.20 4.15 NA

SAMPL5_024 1.00 3.33 2.52

SAMPL5_026 -2.60 -0.32 -0.64

SAMPL5_027 -1.87 -3.74 -1.06

SAMPL5_033 1.80 4.92 NA

SAMPL5_037 -1.50 -4.61 NA

SAMPL5_042 -1.10 -0.11 NA

SAMPL5_044 1.00 -0.37 0.09

SAMPL5_045 -2.10 -0.29 NA

SAMPL5_046 0.20 -0.35 NA

SAMPL5_047 -0.40 -0.58 -0.99

SAMPL5_048 0.90 -0.07 0.33

SAMPL5_049 1.30 -0.34 0.60

SAMPL5_050 -3.20 0.82 NA

SAMPL5_055 -1.50 -3.37 -2.20

SAMPL5_056 -2.50 -0.67 -2.00

SAMPL5_058 0.80 4.67 NA

SAMPL5_059 -1.30 -1.20 -0.44

SAMPL5_060 -3.90 -2.46 -2.01

SAMPL5_061 -1.45 -0.57 -0.50

SAMPL5_063 -3.00 0.25 -3.14

SAMPL5_065 0.70 6.48 3.44

SAMPL5_067 -1.30 3.80 1.86

SAMPL5_068 1.40 2.02 4.40

SAMPL5_069 -1.30 0.81 -0.85

SAMPL5_070 1.60 6.05 NA

SAMPL5_071 -0.10 4.43 NA

SAMPL5_072 0.60 3.680 2.66

SAMPL5_074 -1.90 -8.64 NA

SAMPL5_075 -2.80 0.17 -1.83

SAMPL5_080 -2.20 6.61 NA

SAMPL5_081 -2.20 -1.95 -4.11

SAMPL5_082 2.50 5.77 NA
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SAMPL5_015, SAMPL5_027, and SAMPL5_065 includ-

ing the planar nitrogens appear to decrease significantly

from 1.20, 1.87, and 5.78 to 0.09, 0.81 and 2.74 (Table 3),

respectively, along with the modification of the training set.

Despite the considerable accuracy enhancement in

LogD prediction by modifying the training set, a large

discrepancy between experimental and computational

results is still observable for some molecule such as

SAMPL5_065 and SAMPL5_081 as indicated in Fig. 6.

We note in this regard that several atoms types (C.3_3,

N.3_3, N.pl_2, N.am_1, O.pl_2, and O.es_1) appear only

once or twice in the training set due to the rarity of

experimental DGsol data for cyclohexane. Therefore, it

seems to be difficult for the atomic parameters to be fully

optimized in such a way to reflect various chemical cir-

cumstances around the atoms in molecules during the

parameterizations. The low occurrences of the six atom

types in the training set are likely to serve as one of the

major error sources in LogD prediction because they are

present in a number of SAMPL5 molecules.

It is thus found to be a drawback of the extended sol-

vent-contact model to require a sufficient amount of

experimental data for the optimization of solvation free

energy function. However, this requirement seems not to

be severe because LogD values of 31 SAMPL5 molecules

were estimated with reasonable accuracy using only 77

training set molecules. The characteristic feature that dis-

criminates the extended solvent-contact model from the

other computational methods lies in that one can calculate

the molecular LogD values straightforwardly with the

solvation free energy functions and the atomic coordinates

of solute molecules. This is in contrast with quantitative

structure-property relationship (QSPR), quantum mechan-

ical, and statistical simulation methods that require a high

computational cost for calculating the molecular descrip-

tors, the electronic structures, and the trajectories in con-

figurational space, respectively. Because of the simplicity

in model building and little computational burden for

parameterizations, the extended solvent contact model is

expected to serve as one of the most efficient computa-

tional methods for LogD prediction upon the enrichment of

experimental DGsol data for organic solvents.

With respect to the accuracy enhancement in LogD

prediction, it also noteworthy that the solvation free energy

function in Eq. (5) lacks the entropic term. Although the

determination of molecular solvation entropy had been

considered very difficult for a long time, it proved recently

to be estimated with accuracy by means of combining the

free energy perturbation method and the scaled particle

theory to calculate the electrostatic and hydrophobic con-

tributions of solvent-solute interactions, respectively [42].

Because both enthalpic and entropic contributions to the

solvation free energy are experimentally measurable, the

potential parameters in the two terms can be optimized

independently using the corresponding reference data. This

dual parameterization would warrant the better prediction

of solvation free energies than the single parameterization

because more diverse experimental data can be referenced.

Our future studies will focus on the improvement of LogD

prediction accuracy through the modification of solvation

free energy function by implementing the solvation entropy

term.

Conclusions

We addressed the applicability of the extended solvent-

contact model to the calculation of molecular LogD values

through the participation in SAMPL5 blind prediction

challenge. After defining the atomic parameters for 41

atom types to describe a total of 53 SAMPL5 molecules,

the solvation free energy function was optimized with

respect to water and cyclohexane using 92 training set

molecules to obtain the DGsol values required to calculate

Table 3 continued

Compound ID LogDexp LogDcalc

Training with cyclohexane

and 1-octanol data

Training with cyclohexane

data only

SAMPL5_083 -1.90 -2.40 NA

SAMPL5_084 0.00 3.95 3.17

SAMPL5_085 -2.20 2.55 NA

SAMPL5_086 0.70 5.08 NA

SAMPL5_088 -1.90 0.52 NA

SAMPL5_090 0.80 1.89 3.77

SAMPL5_092 -0.40 6.21 NA

AE 1.53 0.89

RMSE 3.03 1.60
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LogD. Due to the deficiency of experimental data for

cyclohexane, the reference DGsol values of 15 training set

molecules were replaced with those for 1-octanol. The

LogD values of SAMPL5 molecules were predicted with

modest accuracy with the R, AE, and RMSE values of 0.55,

1.53, and 3.03, respectively, for the comparison of exper-

imental and computational results. The incomplete opti-

mization of the atomic Si parameters with respect to

cyclohexane proved to be the major source of error in

LogD prediction. The R, AE, and RMSE values could be

improved remarkably to 0.82, 0.89, and 1.60, respectively,

when the predictions were made for 31 SAMPL5 mole-

cules containing the atom types for which the experimental

reference DGsol data were available for cyclohexane. This

considerable enhancement in performance stemmed from

the better parameterization of Si values by limiting the

element of training set to the molecules with experimental

DGsol data for cyclohexane. Most significant improvements

in LogD prediction were observed for the SAMPL5

molecules including the planar nitrogens whose attractive

van der Waals interactions with cyclohexane could be

described appropriately only with the Si values optimized

by using the modified training set. Judging from the sim-

plicity in model building and from the low computational

cost for parametrizations, the extended solvent-contact

model is anticipated to serve as a valuable computational

tool for LogD prediction upon the enrichment of experi-

mental DGsol data for cyclohexane.
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