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Abstract In protein structure prediction, a considerable

number of models are usually produced by either the

Template-Based Method (TBM) or the ab initio prediction.

The purpose of this study is to find the critical parameter in

assessing the quality of the predicted models. A non-re-

dundant template library was developed and 138 target

sequences were modeled. The target sequences were all

distant from the proteins in the template library and were

aligned with template library proteins on the basis of the

transformation matrix. The quality of each model was first

assessed with QMEAN and its six parameters, which are

C_b interaction energy (C_beta), all-atom pairwise energy

(PE), solvation energy (SE), torsion angle energy (TAE),

secondary structure agreement (SSA), and solvent acces-

sibility agreement (SAE). Finally, the alignment score

(score) was also used to assess the quality of model. Hence,

a total of eight parameters (i.e., QMEAN, C_beta, PE, SE,

TAE, SSA, SAE, score) were independently used to assess

the quality of each model. The results indicate that SSA is

the best parameter to estimate the quality of the model.

Keywords Protein structure prediction � QMEAN �
Secondary structure agreement

List of abbreviations
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PE All-atom pairwise energy

SE Solvation energy
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TBM Template-based method

CASP Critical assessment of protein structure

prediction

Introduction

Predicting the three-dimensional structure of a protein

based on its amino acid sequence is important for under-

standing protein function in several biological activities.

The Critical Assessment of protein Structure Prediction

(CASP) is the current gold standard for predictive protein

modeling and classifies the prediction methods into three

main approaches [1]: homology modeling [2, 3], threading

[4–6], and ab initio predictions [7–9]. All three approaches

generate a large number of candidate models, which are

then assessed for quality.

Homology modeling and threading share many simi-

larities and are known as Template-Based Modeling

(TBM). These predictive methods use a protein structure

library to identify a ‘‘best fit’’ target sequence to an

unknown protein. In contrast, ab initio modeling conducts a

conformational search under the guidance of a designed

energy function. This energy function first calculates the

energy of the searched conformation according to a certain
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force field (e.g., amber). If the calculated energy is low, the

conformation is conserved; if the calculated energy is high,

the conformation is abandoned. This procedure usually

generates a number of possible conformations (structure

decoys), and final models are selected among these [7–9].

Determining a predictive structure by TBM consists of

four steps. First, known structures (templates) are searched

for sequences closely related to the target sequence. Sec-

ond, the target sequence is aligned to the template struc-

ture. These two steps are critical for TBM [10].Third, the

structural framework is built by copying the structure of the

template protein in the aligned regions or by satisfying the

spatial restraints from templates (for example, the distance

between two atoms cannot be less than 0.1 nm). Finally,

the unaligned loop regions are constructed and side-chain

atoms are added.

The quality of the generated protein model is dependent

on the selected template [11, 12]. Usually, the final choice of

template is determined by the statistical significance of the

alignment score between the query (target protein) and the

template sequences [13]. There are four categories that

determine a goodmatch between structure and sequence: (1)

a significant sequence match with significant structural

match, (2) a significant sequence match with non-significant

structural match, (3) a non-significant sequence match with

significant structural match, and (4) a non-significant

sequence match with non-significant structural match [14].

This suggests the fact that a significant sequence match (e.g.,

small E-value) does not necessarily result in structures

similarities; on the other hand, non-significant sequence

alignments might result in similarities in the protein struc-

ture. These facts tell us that the alignment score may not

correlate with the chosen template’s quality, especially for a

distant homolog and, therefore, it is important to identify

reliable scoring functions to determine the quality [15].

The disconnect between alignment score and template

quality suggests that the current protein modeling methods

may not necessary select the best model when searching a

template library. To test this hypothesis, we searched the

protein ‘‘d1bmta1’’ (SCOP database, http://scop.mrc-lmb.

cam.ac.uk/scop/) against a non-redundant database in

which one protein was selected for each family in the

SCOP database. The MaxSub score (determined using

Eq. 1) from the best model was 0.603, while the score for

the best alignment was only 0.173 (Li J and Fang H,

unpublished observations). MaxSub is defined as:

MaxSub ¼

Pn
i¼1

1

1þ di
dð Þ2

q
ð1Þ

and the full description of the formula is provided in [14].

The above data suggest that identifying the model

closest to the native conformation (i.e., its MaxSub score)

will result in an accurate protein structure prediction. This

should be the case for both the template-free approach

[16, 17] and the template-alignment approach [18, 19].

There have been several studies that targeted the devel-

opment of algorithms to address this issue (i.e., estimating

the quality of the predicted model) and these have been

summarized by Benkert et al. [20, 21].

QMEAN [20], which uses a composite score consisting

of a linear combination of six parameters, is one of the best

prediction methods currently in use. The six parameters are

C_b interaction energy (C_beta), all-atom pairwise energy

(PE), solvation energy (SE), torsion angle energy (TAE),

secondary structure agreement (SSA), and solvent acces-

sibility agreement (SAA). A higher quality model can be

derived from the comprehensive evaluation of the existing

score parameters in QMEAN when compared to prediction

methods using simply an alignment score or its derived

statistics (i.e., E value only).

In this study, we used QMEAN to assess the quality of

the protein models generated by the method in our lab [22].

Since the six QMEAN parameters represent different fea-

tures of a protein, we also used the individual parameter

scores to separately assess the quality of the models.

Interestingly, we found that SSA has a higher probability of

predicting the quality of the protein model than the other

five parameters.

Materials and methods

Datasets

Based on SCOP-1.67, we built a non-redundant template

database composed of globular proteins. Each template

protein in the database derived from different protein

families present in the SCOP database. We selected one

protein from each family; since there are 2160 families in

SCOP-1.67, the database was composed of 2160 template

proteins. Due to a large difference between any two

selected proteins (generally, the sequence identities

are\30 %) and the lack of redundancy, the database

constructed was defined as non-redundant. One-hundred-

thirty-eight query proteins distantly related to the template

database were selected from distinct families for analysis.

Moreover, the 138 proteins selected belong to the four

classes of globular proteins (i.e., all a, all b, a/b, a ? b
structures) [23].

Alignment and assessment of the models

Each query protein was aligned with the above template

database on the basis of the BLOSUM62 transformation

matrix with the dynamic program method; models were
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then generated according to the alignment. First, each

query protein sequence was aligned with the sequence of

the templated protein. The sequence identity was calcu-

lated as the number of identical residues (between the

target sequence and the templated protein sequence) divi-

ded by the number of total residues of the shorter of two

sequences.

Afterward, the backbone structure of the template pro-

tein, obtained after alignment with the target protein, was

copied as the predicted structure of target protein. Since

there are 2160 proteins in template database and, in theory,

each alignment between the query sequence and template

protein sequence can generate one model, 2160 models

were generated. The alignment quality was calculated

using the TMscore algorithm (http://bioinformatics.buffalo.

edu/TMscore) [6], which compared the predicted model

structure with its experimental structure and then produced

MaxSub value.

Details of the TMscore algorithm are described in Li

and Fang [22]. The alignment between template protein

sequence and target protein sequence includes aligned

region and gap (unaligned) region. The backbone structure

of the target protein is achieved by copying the backbone

structure of template protein into corresponding aligned

regions. If a loop of the template protein is exactly in the

alignment region (the sequence alignment region between

the template protein and the predicted protein), that loop of

the template protein could be the loop structure of the

predicted protein.

Here, MaxSub is used to estimate the quality of the

model because it is independent of the protein size. The

quality of each model in this study was also assessed using

QMEAN (http://swissmodel.expasy.org/qmean/cgi/index.

cgi). For each model, the MaxSub score, the QMEAN

score, and the scores from each of the QMEAN’s six

parameters were collected.

Results

Relationship between MAXSUB and C_beta, PE,

SE, TAE, SSA, and SAA parameters; QMEAN

and alignment score

Figure 1 shows the relationship between MaxSub and eight

parameters (C_beta, PE, SE, TAE, SSA, SAA, QMEAN,

and alignment score) for the randomly selected protein

‘‘d1bmta1’’. We determined that SSA had the strongest

correlation with MAXSUB compared to the other param-

eters (Fig. 1e). Table 1 summarizes the results from the

analysis of the eight parameters using a t test. The t value

of SSA was significantly higher than that of the other seven

parameters tested. These results indicate that SSA

significantly correlates with MaxSub. Moreover, as shown

in Table 1, the alignment score was not significantly dif-

ferent than that according to QMEAN. However, the cor-

relation between these two parameters (alignment score

and QMEAN) was significantly higher than of the other

five QMEAN parameters (C_beta, PE, SE, TAE, and

SAA). From the correlation coefficient results, SSA was

significantly higher than the others.

MaxSub score of selected models

We then identified the near-native model for each target

protein based on the MaxSub score of selected models. We

investigated the performance of the aforementioned eight

parameters using three criteria: the sum of MaxSub, the

number of correct predictions [21], and the t value

(Table 2). Table 2 shows that the sum of MaxSub scores

based on SSA is the highest; followed by C_beta, PE, and

QMEAN. Next, we investigated the number of correct

models, which required a MaxSub score[0.1 [21, 24].

From higher to lower score, the parameters can be listed as

SSA, PE, TAE, C_beta, and QMEAN. Using the t-test, we

found the t-values for quality of those models selected by

SSA compared with those selected by SE (2.473), TAE

(2.905), SAA (4.488), QMEAN (2.215), and alignment

score (3.050) were all larger than t (137, 0.005). This

indicates that SSA performs best in identifying the near-

native protein model when compared to SE, TAE, SAA,

and QMEAN. The t value between QMEAN and SAA is

2.944, indicating that QMEAN is significantly better than

SAA in identifying the near-native structure. Finally, the t-

value between alignment score and C_beta (-2.059) and

PE (-2.005) indicates that the performance of C_beta and

PE is superior to the alignment score. Moreover, the t-value

between alignment score and SAA was 2.132, which was

larger than t (137, p = 0.05), indicating that the alignment

score is not better than SAA in assessing the quality of the

predicted model. Hence, SSA is a best parameter to esti-

mate the quality of a predicted model.

Discussion

TBM generates the model for the alignment of the query

sequence with the template protein sequence on the basis of

the score matrix or the position specific score matrix (i.e.,

profile). In general, the number of models obtained is

equivalent to the number of alignments. The best models are

selected according to their alignment score or E value [2–6].

Unlike TBM, a successful ab initio modeling procedure

could help answering the basic questions of how and why a

protein adopts a specific structure out of many possibilities.

Of note, most current template-free modeling methods still
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rely on template-based methods by using local sequence

matching of fragments present in the database [25]. Similar

to TBM, the ab initio prediction usually produces a con-

siderable amount of candidate models. To identify the high

quality models among the large number of candidate

models is very important, and requires accurate evaluation

of model quality.

The secondary structure of a protein is very close to its

tertiary structure (i.e., its native structure). A number of

researchers have produced hypotheses in order to under-

stand the relationship between secondary structure predic-

tion and tertiary structure. Rost [26] summarized the areas

of concern for secondary structure prediction as: regions

likely to undergo structural change, proteins that need to be

R=-0.2389

R=-0.2615

R=-0.4119

R=-0.2817

R=0.6844

R=0.5278

R=0.1017

R=0.1130

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Fig. 1 Relationship between 8 parameters and MAXSUB for protein

d1bmta1. a C_beta interaction energy (C_beta); b all-atom pairwise

energy (PE); c solvation energy (SE); d torsion angle energy (TAE);

e secondary structure agreement (SSA); f solvent accessibility

agreement (SAA); g QMEAN; h alignment score (Score)
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classified based on secondary structure predictions from

genome analysis, and predictions from the sequence to the

2D and 3D structures. Ortiz et al. [27] successfully used

secondary structure predictions as one component of their

3D structure prediction method. Eyrich et al. [28] mini-

mized the energy of arranging the predicted rigid sec-

ondary structure segments. Lomize et al. [29] also started

protein structure predictions from secondary structure

segments. Chen et al. [30] suggested using secondary

structure predictions to reduce the complexity of molecular

dynamics simulations. Samudrala et al. [31] combined

secondary structure-based simplified presentations with a

particular lattice simulation, attempting to enumerate all

possible folds [31, 32].

The work summarized above demonstrates that pre-

dicting the protein secondary structure is essential for the

prediction of the protein tertiary structure (topology). In

this study, our results revealed that SSA is better suited for

evaluating the predictive model quality (Fig. 1e). This

algorithm may play an indispensable role in protein

structure prediction. However, there is some bias in our

experiments, which may overestimate the performance of

SSA. One source of bias is the specified class of protein

secondary structure (helix, sheet, and coil). Helix and sheet

are considered regular structures; however, the protein fold

consists mainly of coil. If the coil structural detail is pre-

dicted well, then measurement of SSA will exhibit better

performance and identify a high quality model. Therefore,

the drawback of using SSA is the requirement of structural

details of the coil region.

Conclusions

Our analysis shows that SSA is the best parameter in

assessing the quality of structural models, followed by

C_beta, PE, and QMEAN. SSA is an essential parameter

when choosing a predictive protein model template.
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