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Abstract Drug–target interactions (DTIs) are central to

current drug discovery processes and public health fields.

Analyzing the DTI profiling of the drugs helps to infer drug

indications, adverse drug reactions, drug–drug interactions,

and drug mode of actions. Therefore, it is of high impor-

tance to reliably and fast predict DTI profiling of the drugs

on a genome-scale level. Here, we develop the TargetNet

server, which can make real-time DTI predictions based

only on molecular structures, following the spirit of multi-

target SAR methodology. Naı̈ve Bayes models together

with various molecular fingerprints were employed to

construct prediction models. Ensemble learning from these

fingerprints was also provided to improve the prediction

ability. When the user submits a molecule, the server will

predict the activity of the user’s molecule across 623

human proteins by the established high quality SAR model,

thus generating a DTI profiling that can be used as a feature

vector of chemicals for wide applications. The 623 SAR

models related to 623 human proteins were strictly evalu-

ated and validated by several model validation strategies,

resulting in the AUC scores of 75–100 %. We applied the

generated DTI profiling to successfully predict potential

targets, toxicity classification, drug–drug interactions, and

drug mode of action, which sufficiently demonstrated the

wide application value of the potential DTI profiling. The

TargetNet webserver is designed based on the Django

framework in Python, and is freely accessible at http://

targetnet.scbdd.com.

Keywords Web server � SAR models � Drug–target

interaction � Multi-target SAR � Naı̈ve Bayes

Introduction

Drug–target interactions (DTIs) are central to current drug

discovery processes and public health fields [1, 2]. In drug

discovery process, one of the challenges is to identify the

potential targets for drug-like compounds. Once the target

is successfully identified, several receptor-based drug

design methods could be easily used to optimize the

structures of compounds, aiming at improving the biolog-

ical activities of these compounds. A lot of efforts have

been invested for studying various targets in both academic

institutions and pharmaceutical industries. However, it is

time-consuming and expensive to determine whether a

chemical and a target are to interact with each other in a

cellular network purely by means of experimental tech-

niques. Although some computational methods were

developed in this regard based on the knowledge of the 3D
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(dimensional) structure of protein, unfortunately their

usage are quite limited because the 3D structures for most

targets such as many GPCRs are still unknown. Further-

more, analyzing the DTI profiling of the drugs helps to

infer drug indications [3], adverse drug reactions [4–6],

drug–drug interactions [7, 8], and drug mode of actions [9,

10], etc. Therefore, it is of high importance to reliably and

fast predict DTI profiling of the chemicals on a genome-

scale level.

Currently, two computational approaches are generally

used for studying drug–target relations. (1) The inverse- or

reverse-docking approach predicts the interactome of

chemicals toward a representative collection of proteins

based on various molecular docking programs [11, 12]. For

example, Li et al. [11] developed a web server called Tar-

FisDock to identify drug targets from 698 prepared poten-

tial targets in advance. Kharkar et al. [12] reviewed the

state-of-the-art and future prospects of the reverse docking

for drug repositioning and drug rescue. Minho et al. pro-

vided large-scale reverse docking profiles by expanding the

scope of target space to a set of all protein structures cur-

rently available, and developed several new applications

such as predicting the druggability of protein targets and

protein function prediction based on docking profile simi-

larity [13]. However, a serious problem for docking is that it

cannot be applied to proteins whose 3-D structures are

unknown. Additionally, the single DTI prediction by

docking programs may need to cost seconds even several

minutes. Thus, the docking of a chemical toward multiple

proteins needs to cost several hours, which seriously limits

its wide applications. (2) Various chemogenomics methods

simultaneously consider chemical information and protein

information to infer chemical-protein associations [14–17].

For example, Nagamine et al. [18] built a statistical model

for predicting DTIs based on 519 approved drugs and their

associated 29 targets, by using amino acid sequences, two-

dimensional chemical structures and mass-spectrometry

data. He et al. [19] established classification models for

predicting DTI network using chemical functional groups

and biological features. Yu et al. [20] made a systematic

prediction of multiple DTIs from chemical, genomic and

pharmacological data, by using support vector machine and

random forest. Xiao et al. [21] developed a sequence-based

classifier based on two-dimensional fingerprints of com-

pounds and the pseudo amino acid composition of proteins

to predict the interactions between GPCRs and drugs in

cellular networking. However, these approaches usually

have relatively low prediction accuracies when the number

of proteins or the space of DTI data becomes very large

[22]. Recently, a variety of statistical methods have been

increasingly developed to predict DTIs by integrating

multiple evidence sources [23–34]. Yamanishi et al. [25]

proposed a bipartite graph learning method to predict true

interacting pairs from the integration of chemical and

genomic spaces. Bleakley et al. [27] proposed a bipartite

local model by transforming edge-prediction problems into

binary classification problems. Xia et al. [29] used a semi-

supervised learning method to predict DTIs from hetero-

geneous biological spaces. Jocab et al. [30] proposed a

kernel-based learning framework that constructed the

pairwise kernel to measure the similarity between drug–

target pairs. However, the drawback of the pairwise kernel

is that there will be a large number of samples to be clas-

sified (i.e., drugs multiplied by the number of targets) which

poses remarkable computational complexity. To avoid this

problem, more recently van Laarhoven et al. [31] developed

a Gaussian interaction profile kernel for predicting DTIs.

Mizutani et al. [34] related DTI network with drug side

effects using sparse canonical correlation analysis.

We developed an open web service called TargetNet to

net or predict the binding of multiple targets for any given

molecule, following the spirit of multi-target SAR

methodology. TargetNet simultaneously constructs a large

number of SAR models based on current chemogenomics

data to make future predictions. 623 Naı̈ve Bayes models

together with various molecular fingerprints were

employed to construct prediction models for 623 proteins.

Ensemble learning from these fingerprints was also pro-

vided to improve their prediction ability. When the user

submits a molecule, the server will predict the activity of

the user’s molecule across 623 proteins by the established

high quality SAR model for each protein, thus generating a

DTI profiling that can used as a feature vector for wide

applications. The 623 SAR models related to 623 proteins

were strictly evaluated and validated by several model

validation strategies, resulting in the AUC scores of

75–100 %. We applied the generated DTI profiling to

successfully predict potential targets, toxicity classifica-

tion, drug–drug interactions, and drug mode of action,

which sufficiently demonstrated the wide application value

of the potential DTI profiling. We recommend DTI pro-

filing to analyze and represent various complex molecular

data under investigation. Further, we hope that the package

will be helpful when exploring questions concerning target

identification, candidate drug screening, drug effect eval-

uation, and poly-pharmacology or multi-target characteri-

zation of candidate chemicals [35].

Methods

Preparation of the library drugs and targets

We used BindingDB database as our training datasets.

BindingDB is a public, web-accessible database of mea-

sured binding affinities, focusing chiefly on the interactions
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of proteins considered to be candidate drug–targets with

ligands that are small, drug-like molecules [36]. Activity

data were filtered to keep only activity end-point points that

had half-maximum inhibitory concentration (IC50), half-

maximum effective concentration (EC50) or Ki values.

Herein, to ensure that enough number of molecules could

be used in model building, we previously selected those

targets with larger than 200 biological activity data. Fol-

lowing this procedure, 109,061 compounds associated with

623 target proteins remained with 115,257 activity end-

points, which were used for model building. The proteins

were divided to five classes including enzymes (276)

containing kinases (85), ion channels (9), receptors (255),

transporter (14) and others (69). The crosslink information

related to these targets could be found in the Targets sec-

tion in the TargetNet website. The list of associated pro-

teins is included in Supplementary Information S1.

Preparation of the positive and negative set

For those compounds with more than one activity values,

we took the mean value of their activity values as the final

activity value. A compound was considered active when the

mean activity value was below 10 lM. All compounds

higher than 10 lM are considered inactive. Following this

split, maybe some human proteins have very little number

of negative samples. To balance the number between pos-

itive samples and negative samples for each human protein,

we randomly selected certain number of compounds from

other human proteins to generate the negative samples for

these human proteins. That is to say, the negative samples

we used consist of two parts: truly inactive samples and

randomly selected unknown interactions. The number of

these selected negative samples together with inactive

samples should be basically equal to the number of the

active samples for these human proteins. These prepared

positive set and negative set were used for the subsequent

model building. The SMILES formats of the compounds

involved in the positive set and negative set for each human

protein could be downloaded from the TargetNet website.

Molecular representation

We used molecular substructure fingerprints to describe the

information of molecular structure instead of commonly

molecular descriptors such as topological, constitutional,

geometrical, quantum chemical properties. Substructure

fingerprints directly encode molecular structure in a series

of binary bits that represent the presence or absence of

particular substructures in the molecular [37]. It has the

potential to keep the overall complexity of molecules,

although it divides the whole molecule into lots of frag-

ments. And it does not need reasonable three-dimensional

conformation of molecules and thereby does not lead to

error accumulation for the description of molecular struc-

tures. In addition, it gives a direct relationship between

molecular structure and property [38]. In the study, several

commonly used molecular fingerprints are used to con-

struct the substructure dictionaries, including FP2, Day-

light-like, MACCS, Estate, ECFP2, ECPF4 and ECFP6.

The FP2 fingerprint is a path-based fingerprint which

indexes small molecule fragments based on linear seg-

ments of up to 7 atoms. Each remaining fragment is

assigned a hash number which is used to set a bit in a 1024

bit vector. The Daylight-like fingerprints are hashed fin-

gerprints encoding each atom type, all augmented atoms

and all paths of length 2–7 atoms, giving a total string of

1024 bits. The MACCS fingerprint uses a dictionary of

MDL keys, which contains a set of 166 mostly common

substructure features. There are referred to as the MDL

public MACCS keys. There is a one-to-one correspondence

between each SMARTS pattern and bit in the MACCS

fingerprint. For each SMARTS pattern, if its corresponding

substructure is present in the given molecule, the corre-

sponding bit in the fingerprint is set to 1; conversely, it is

set to 0 if the substructure is absent in the molecule.

Electrotopological State (E-state) fingerprints represent the

presence/absence of 79 E-state substructures [39]. The

ECFP2, ECFP4 and ECFP6 fingerprints are in the family

called Morgan fingerprints by setting the diameter of the

atom environment to 2, 4 and 6, which is known as circular

fingerprints. The fingerprints are calculated by the PyDPI

which is a Python package developed for calculating var-

ious molecular descriptors and fingerprints [40].

Naive Bayesian classifiers

A series of high confidence SAR models were built using

BindingDB (see Fig. 1). Naı̈ve Bayes models were built

with different fingerprint representations for 623 proteins.

The Naı̈ve Bayes method for predicting DTI profiling was

chosen as it provided both good performance for noisy data

sets and a high speed of calculation [41–43]. Bayes’ the-

orem describes the probability of the event A based on the

condition B that might be related to the event. It is stated

mathematically as the following equation:

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ

Naive Bayes classifiers are a class of probabilistic

classifiers based on applying Bayes’ theorem with strong

independence assumptions. The probability model of

classification is a conditional model PðCjF1; . . .; FnÞ over

a dependent class variable C with a number of classes,

conditional on feature from F1 to Fn. Herein, C presents

the target active class of a molecule: active class (?) or
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inactive class (-). F1 to Fn represent the calculated

values for the feature values (molecular fingerprints).

While Bayes’s theorem is used, the equation is decom-

posed as

P þjF1; . . .; Fnð Þ ¼ PðF1; . . .; FnjþÞP þð Þ
P F1; . . .; Fnð Þ

In plain English, using Bayesian probability terminol-

ogy, the above equation can be represented as

posterior ¼ prior � likelihood

evidence

where PðF1; . . .; FnjþÞ is the conditional probability of a

particular compound being classified as target active; P þð Þ
is the prior probability extracted from a set of compounds

in the training set; P F1; . . .; Fnð Þ is the marginal probability

of the calculated descriptors that will occur in the training

set. Then, we raised an assumption that each feature, Fi is

independent from every other feature Fj. The mathematical

procedure to train a Naive Bayesian classifier was descri-

bed previously. An advantage of the Naı̈ve Bayesian

classification is that a small amount of training data is

needed to estimate the parameters necessary for classifi-

cation. And features can contain lots of zeros while the

models can get good estimates. Moreover, Naı̈ve Bayes

classification can process lots of data, learn fast, and be

tolerant of random noise [42, 43]. The Naı̈ve Bayes clas-

sifiers were developed in scikit-learn which is a python

package for machine learning.

Performance evaluation

For each model, we applied fivefold cross validation and

external validation to evaluate the prediction performance

of models. For fivefold cross validation, the data set is split

into five roughly equal-sized parts firstly, and then we fit

the model to four parts of the data and calculate the error

rate of the other part. The process is repeated five times so

that every part can be predicted as a validation set. To

observe the stability of models, we repeated the cross

validation program ten times to report standard deviations

of each statistics. For the external validation, the data were

split into two parts for the validation step: compounds were

clustered and assigned a cluster number. Clusters with an

odd number were assigned to the test set, and the clusters

with an even number were assigned to the training set.

Models were built with the training set, and the test set was

scored. Finally, a model was built with all data and scored

against itself—the training set and whole set should pro-

vide similar validation statistics. Statistics on the perfor-

mance of the models were reported, including commonly

used ones in classification schemes: the sensitivity (SE),

specificity (SP), the accuracy (ACC), Matthews correlation

coefficient (MCC) and F1-score values.

SE ¼ TP

TP þ FN

SP ¼ TN

TN þ FP

Fig. 1 The algorithmic

workflow of the TargetNet web

server
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ACC ¼ TP þ TN

TP þ FP þ TN þ FN

MCC ¼ TP � TN � FN � FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FNð Þ TP þ FNð Þ TN þ FNð Þ TN þ FPð Þ
p

F1 ¼ 2TP

2TP þ FP þ FN

The above statistics were calculated for both test sets

and cross-validation sets. Herein, to obtain the best model

performance, we compared 7 types of molecular finger-

prints when establishing the prediction models. To obtain

the better prediction ability, we also ensemble all finger-

print models to obtain the average output (see Fig. 2). In

addition, the receiver operating characteristic (ROC) curve

was plotted. The ROC analysis provides an overall score

and does not need to specify a cut-off for distinguishing

active from inactive compounds. The area under the

receiver operating characteristic curve (AUC) provides an

indication of the ability of the model to prioritize active

compounds over inactive compounds. The ROC curve is

the plot of the true positive versus the false positive rate.

Results

Model evaluation

For each protein, we constructed and evaluated one SAR

model based on several model validation criteria. To obtain

high performance SAR models, we compared the predic-

tion ability of seven molecular fingerprints. Figure 3 shows

the box plot of AUC scores of 623 target models based on

seven molecular fingerprints. Clearly, our constructed SAR

models for 623 proteins based on different molecular fin-

gerprints all obtained reasonable prediction performance

on the whole. Three ECFP fingerprints based on different

diameters seem to give the better prediction. Among three,

the Naı̈ve Bayes model using ECFP4 yields the best pre-

diction. The models based on ECFP4 fingerprint obtained

the prediction accuracies of 70–99.8 %, the AUC scores of

75.9–100 %, the MCC scores of 0.42–1.00, F scores of

68.7–100 %, respectively. To further compare the predic-

tion ability of seven molecular fingerprints and observe the

prediction performance of 623 targets, we also count the

target number in which the AUC scores is higher than some

threshold. Figure 4 shows the plot of target number versus

AUC score for seven molecular fingerprints. Clearly, the

ECFP4 fingerprints obtained the best prediction again. For

example, 97.3 % of the models based on ECFP4 finger-

prints obtained the AUC scores higher than 90 %. From

these prediction statistics, we can see that these SAR

models are reliable and robust, and could be used for

predicting new molecules. Furthermore, all 623 SAR

models and used datasets relating to 623 proteins could be

downloaded from the TargetNet website. They can freely

be applied to various study problems conducted by the

users. For more detailed information, the user could refer to

the Documentation section in the website.

Application 1: predicting potential target proteins

for the given molecule

As an example, we submitted the drug bromocriptine to

TargetNet for a prediction test. The server predicts that

bromocriptine might interact with a new protein D(1A)

dopamine receptor (Uniprot ID: Q95136). Bromocriptine

Fig. 2 The algorithmic workflow of ensemble prediction in the TargetNet web server
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mesylate is a semisynthetic ergot alkaloid derivative with

potent dopaminergic activity. It is indicated for the man-

agement of signs and symptoms of Parkinsonian Syn-

drome. After checking the related literature, we obtained

the binding affinity between bromocriptine and D(1A)

dopamine receptor (Ki = 1.444 lM). Moreover, we also

found that most of the approved targets for bromocriptine

are predicted in the top 30 associations. This case study

demonstrates that our server could predict potential targets

to a certain extent.

Application 2: in silico toxicity prediction by DTI

profiling

We used the DTI profiling as the feature vector to perform

the toxicity prediction. Three data sets from Distributed

Structure-Searchable Toxicity database network were

employed as the benchmark data to evaluate the perfor-

mance of DTI profiling [38] (Supplementary Information

S2). Herein, we used Random Forest (RF) to construct the

classification models. These models obtained AUC scores

Fig. 3 Box plot of AUC scores

of 623 target models based on

seven molecular fingerprints

Fig. 4 The plot of target

number versus AUC score for

seven molecular fingerprints

418 J Comput Aided Mol Des (2016) 30:413–424
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of 0.82, 0.78, and 0.88, respectively (see Fig. 5a). These

prediction results are comparable to even better than those

from FP2 fingerprint (see Table 1), which indicating the

predictivity of the DTI profiling representation. It should be

noted that despite these two representations yield the

similar accuracy, as observed in the EPAFHM data, their

sensitivity and specificity are very different, which indi-

cated that the information included in two representations

should be different. To further compare two molecular

representations, we counted the accurately predicted

chemicals from two representations, and then compared

their differences (see Fig. 5b). One can clearly see that the

accurately predicted molecules are not totally same for DTI

profiling and FP2 fingerprint. That is to say, although they

obtained the similar prediction accuracy, the accurately

predicted molecules for each representation are still dif-

ferent from each other. This seems to indicate that different

molecular representations preferred different molecules

accurately predicted. Maybe the combination of two

molecular representations should continue to improve the

prediction performance by considering their complemen-

tarity. The application study demonstrates that the DTI

profiling generated by TargetNet could be used as a new

molecular representation, instead of the traditional chemi-

cal structural representation, for various studies, such as

structure–activity relationship (SAR), absorption, distribu-

tion, metabolism, elimination and toxicity (ADMET) pre-

diction, virtual screening, and so on.

Application 3: in silico DDI prediction by DTI

profiling

Drug–drug interactions (DDIs) may cause serious side-ef-

fects that draw great attention from both academia and

industry [44, 45]. Since some DDIs are mediated by

unexpected drug–protein interactions, it is reasonable to

analyze the DTI profiling of the drugs to predict their DDIs.

Herein, we used RF combined with the DTI profiling by

TargeNet to construct the DDI prediction model. The used

DDI data consist of 1125 drugs and 6743 drug–drug

interactions, and could be found in Supplementary Infor-

mation S3. We applied RF to construct the classification

model. In this study, all real drug–drug interaction pairs

(i.e., 6743 DTIs) are used as the positive samples. For

negative examples we select random, non-interacting pairs

from these drug molecules. They are constructed as fol-

lows: (1) separate the pairs in the above positive samples

into single drugs; (2) re-couple these singles into pairs in a

way that none of them occurs in the corresponding positive

dataset. To overcome the bias caused by unbalanced

problems, we randomly picked the negative pairs formed

above until they reached the number one time as many as

the positive pairs. We evaluated three levels of model

performance: the DDI associations with two drugs included

in the training set (Level 1), the DDI associations with only

one drug included in the training set (Level 2), and the DDI

associations with two drugs not included in the training set

(Level 3). To well control the DDI associations, we

employed leave-one-out cross validation to evaluate the

model. Table 2 lists the prediction statistics based on the

DTI profiling for three validation levels. For Level 1, the

model obtained the best prediction performance, and gave

the accuracy of 90.8 %, the sensitivity of 92.8 %, and the

specificity of 88.8 %, respectively. For Level 2, the model

gave the accuracy of 71.6 %, the sensitivity of 74.5 %, and

the specificity of 68.6 %, respectively. For Level 3, the

model gave the accuracy of 68.9 %, the sensitivity of

62.9 %, and the specificity of 75.1 %, respectively. For

Fig. 5 The prediction results of three toxicity datasets. a The ROC curves of three toxicity datasets based on fivefold cross validation. b Venn

diagram for toxicity predictions using DTI profiling and FP2 fingerprint, respectively
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Level 1, two drugs associated with the predicted interac-

tions are also included in the training set, and therefore its

prediction is relatively easy. For Level 2, one of two drugs

associated with the predicted interactions is in the training

set, and therefore its prediction is harder than that from

Level 1. Clearly, the predictions from Level 3 are the most

difficult since two drugs associated with the predicted

interactions are not in the training set. This conclusion is

similar to that from Part et al. [46, 47], who discussed the

flaw and importance of the evaluation schemes of pair-

input computational predictions on the protein–protein

interaction data sets. The model validation from three

levels demonstrated that the DTI profiling by TargetNet

could be used as the effective representation to evaluate the

DDIs in the clinical trial and drug discovery process.

Application 4: identify network of drug mode

of action by DTI profiling

Drug mode of action (MOA) of novel compounds has been

predicted using chemical structural features, phenotypic

features, or genome-wide expression profiles [9, 48]. As we

all know, the molecular targets of drugs are directly related

to their MOAs. Here, we draw a ‘‘drug network’’ based on

the DTI profiling calculated by TargetNet. We first calcu-

lated the DTI profiling from 909 drugs, and then calculated

the Pearson correlation coefficients between any two drugs,

and finally visualized the drug–drug network according to

the anatomical therapeutic chemical classification (ATC)

system. Figure 6 shows the network where each node

corresponds to a drug, and two nodes are connected by an

edge, if the corresponding similarity coefficient is larger

than a predefined threshold (the similarity threshold of 0.97

for this network). The width of an edge is proportional to

the similarity between the drugs connected by the edge.

The network consists of 494 drugs and their corresponding

835 associations (see Supplementary Information S4 for

these associations). In the network, drugs with similar

MOAs are connected or lie in the same community. Firstly,

we checked if the first level of ATC from two connected

drugs is the same. From Fig. 6, one can clearly see that 327

edges from 835 edges indicate the same ATC level. This

seems to indicate that the first level in ATC could reflect

drug MOAs to a certain extent. For example, two drugs

flunisolide and fluocinonide have the similar DTI profiling

with a similarity coefficient of 0.987. We found that the

principle mechanism of action of two drugs is to activate

the glucocorticoid receptors. However, the flunisolide is a

corticosteroid often prescribed as treatment for allergic

rhinitis, and has been approved as aeroBid, nasalide, and

nasarel, while fluocinonide is a topical glucocorticoid used

in the treatment of eczema. Likewise, two drugs medrysone

and methylprednisolone have also the very similar DTI

profiling with the similarity coefficient of 0.993. Medry-

sone is used as the treatment of allergic conjunctivitis,

vernal conjunctivitis, episcleritis, and epinephrine sensi-

tivity, while methylprednisolone is used as adjunctive

therapy for short-term administration in rheumatoid

arthritis. According to our literature search, we found that

they are thought to act by the induction of phospholipase

A2 inhibitory proteins, collectively called lipocortins. It is

postulated that these proteins control the biosynthesis of

potent mediators of inflammation such as prostaglandins

and leukotrienes by inhibiting the release of their common

Table 1 The prediction performance of three toxicity datasets based on DTI profiling and FP2 fingerprint

Methods Datasets ACC SE SP F1 MCC AUC

DTI profiling CPDBAS 0.746 ± 0.003 0.775 ± 0.002 0.715 ± 0.003 0.608 ± 0.002 0.491 ± 0.003 0.815 ± 0.003

EPAFHM 0.713 ± 0.004 0.728 ± 0.002 0.698 ± 0.003 0.593 ± 0.002 0.426 ± 0.003 0.782 ± 0.003

FDAMDD 0.807 ± 0.002 0.819 ± 0.002 0.792 ± 0.002 0.621 ± 0.003 0.611 ± 0.002 0.877 ± 0.003

FP2 fingerprint CPDBAS 0.725 ± 0.004 0.754 ± 0.004 0.693 ± 0.003 0.601 ± 0.003 0.448 ± 0.004 0.818 ± 0.004

EPAFHM 0.715 ± 0.004 0.686 ± 0.003 0.744 ± 0.004 0.579 ± 0.003 0.431 ± 0.003 0.782 ± 0.003

FDAMDD 0.795 ± 0.002 0.814 ± 0.002 0.770 ± 0.001 0.619 ± 0.002 0.585 ± 0.002 0.881 ± 0.002

ACC accuracy, SE sensitivity, SP specificity, MCC Matthews correlation coefficient, AUC the area under ROC curves

Table 2 Prediction statistics of DDI data based on different validation levels

Validation ACC SE SP F1 MCC AUC

Level 1 0.918 ± 0.001 0.928 ± 0.002 0.888 ± 0.001 0.650 ± 0.003 0.817 ± 0.002 0.969 ± 0.001

Level 2 0.716 ± 0.001 0.745 ± 0.001 0.686 ± 0.002 0.598 ± 0.002 0.432 ± 0.003 0.776 ± 0.002

Level 3 0.689 ± 0.005 0.629 ± 0.003 0.751 ± 0.005 0.557 ± 0.007 0.382 ± 0.005 0.761 ± 0.004

ACC accuracy, SE sensitivity, SP specificity, MCC Matthew’s correlation coefficient, AUC the area under ROC curves
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precursor, arachidonic acid. This shows the predictive

ability of the network since similarity measures are com-

puted using only the DTI profiling without knowledge of

the MOAs of the drugs. The application study demonstrates

that the DTI profiling by TargetNet could be used for

identifying the drug mode of action (MOA) to some extent.

TargetNet web service

To share our results with pharmacologists and chemists,

we finally constructed a web-based prediction server:

TargetNet. The TargetNet webserver is freely accessible

at http://targetnet.scbdd.com. It is running upon Linux/

Fig. 6 Drug network obtained by selecting a threshold of 0.97 for the similarity. Each node represents a compound. Two nodes are linked by an

edge if their similarity is higher than the predefined threshold. The first level in ATC is indicated by different colors
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Apache/Django platform and supported by background

Python language, which enables multiple accesses

simultaneously. Figure 7 shows the server workflow

showcasing TargetNet prediction. The TargetNet can be

accessed by selecting ‘Webserver’ link. Users are

required to submit a molecular structure or a molecular

file with SMILES format. An example drug molecule and

file is provided for a quick test. When a user molecule is

submitted, the prediction model for each protein will be

called, and thus the prediction scores of this drug toward

all proteins in the database are calculated via 623 estab-

lished SAR models with selected performance statistics.

The user can also select different performance statistics

(e.g., AUC, accuracy, MCC and F score) to determine the

number and prediction ability of models. Depending on

the number of the submitted molecules, the process time

ranges from seconds up to several minutes. Generally

speaking, the process time for one molecule calculation is

about 5–10 s. Users can also track the real-time calcula-

tion process online. For convenience, the user is allowed

to draw a drug molecule via JME editor. Examples with

standard input formats are also provided to guide the

users.

Currently, the TargetNet web service has been applied

by more than 500 visits from 39 different countries regis-

tered since October 20, 2015. In the 3 months, our Tar-

getNet webserver runs well, and there is no problem of

failure for the needs from users. For more details, the editor

could refer to the live statistics in the right corner of our

TargetNet homepage.

The user will be able to view the following outputs:

1. DTI probabilities of user’s molecule with 623 proteins

in library. The result table includes ‘‘Details’’, ‘‘Uni-

prot_ID’’, ‘‘Protein’’ and ‘‘Probability’’. The user can

also look over the detailed information for each human

protein as needed and conveniently type in a keyword

to look for a certain item in the results through the

‘Search’ button. The final prediction results can be

downloaded as different formats.

2. The Lipinski’s rule of five for user’s molecule together

with the molecular structure.

Discussion

We compared TargetNet with two current methods that can

yield the DTI profiling. The first is the inverse- or reverse-

docking approach, which predicts the interactome of drugs

toward a representative collection of target proteins based on

various molecular docking programs. TargetNet has two

advantages over inverse- or reverse-docking: (1) the calcu-

lation speed of TargetNet is faster than that from inverse- or

reverse-docking. As we all know, the single drug–target

interaction prediction by docking programs may cost seconds

even several minutes. Thus, the docking of a drug toward

Fig. 7 The server workflow showcasing TargetNet prediction
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multiple proteins needs to cost several hours, which seriously

limits its wide applications. (2) The proteins used in the

inverse- or reverse docking must have explicit 3D protein

structures and the binding pockets, while the proteins in

TargetNet can be arbitrary as long as they have enough

interactive compounds confirmed experimentally. The sec-

ond is the chemogenomics approach, which considers drug

information and protein information to infer drug–target

associations. The computational chemogenomics approaches,

however, have relatively low prediction accuracy when the

number of target proteins or the space of DTI data becomes

large [22]. Herein, TargetNet only used the chemical struc-

tural information to differentiate active from non-active for

the given protein, based on the SAR principle. Therefore,

TargetNet is more flexible and applicable. Furthermore, we

also compared our TargetNet with several popular web ser-

vers which are established to predict DTIs or potential drug

targets by using different methodologies. For instance,

DINIES is a web server for predicting unknown drug–target

interaction networks from various types of biological data in

the framework of supervised network inference [49]. How-

ever, the DINIES method requires the detailed side-effect

information or/and protein amino acid sequence which is

applicable only to marketed drugs for which side-effect

information is available, while TargetNet only needs chem-

ical structures, and therefore is more easy-to-use and flexible.

Additionally, their method integrates multiple heterogeneous

data to calculate the interaction, which is usually time-con-

suming, while TargetNet only needs about 5–10 s to cope

with one molecule, and thereby its computational speed is

faster than DINIES. CDRUG is a web server used for pre-

dicting anticancer activity from chemical structures of

compounds encoded by the Daylight fingerprint [50]. Tar-

getNet conducts certain 623 SAR models and calculated

seven types of fingerprints, and has certain targets and more

fingerprints than CDRUG. Compared to the CPI-Predictor

proposed by Tand et al., the dataset used in two methods is

very different although they are all based on SAR method-

ology. The CPI-Predictor mainly focuses on the GPCRs from

GPCR SARfari database and kinases from kinase SARfari

database, and then constructs their SAR models based only

on the MACCS fingerprint. TargetNet mainly focuses on the

Binding databases, and involves five classes of targets

mentioned in the Methods section. Furthermore, TargetNet

systematically compared seven types of molecular finger-

prints or substructure fragments, and found that ECFP4 fin-

gerprint is more predictive than the other fingerprints

including MACCS. SwissTargetPrediction is a web server to

infer the targets of bioactive small molecules based on the

combination of 2D and 3D similarity values with known

ligands. Compared to SwissTargetPrediction based on simi-

larity, TargetNet applied SAR methodology to infer DTIs.

However, it is worth noting that the performance of

TargetNet largely depends on the quality of each SAR model

related to each protein. Those factors influencing the quality

of SAR models will directly influence the prediction ability

of TargetNet, and then influence the efficiency of DTI pro-

filing, such as the size and diversity of datasets, model

quality, molecular structural representations, etc. In the pro-

cess of building SAR models, we have sufficiently consid-

ered several factors to obtain the high-quality SAR models.

For example, the size of each dataset is limited to be not less

than 200, and the diversity analysis of the dataset is also

visualized. Furthermore, a series of model validations and

evaluations are performed to ensure the reliability of models.

Conclusions

i. TargetNet server can predict DTI profiling for the

user’s drug across 623 proteins in the database,

which is supported by the prediction statistics from

cross validations, independent validations, and

applications.

ii. TargetNet can help to infer drug indications, adverse

drug reactions, drug–drug interactions, and drug

mode of actions, and will have wide applications in

drug discovery process.

iii. The DTI profiling by TargetNet could be considered

as a new molecular representation for various drug

discovery studies.
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