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Abstract Dropout is an Artificial Neural Network (ANN)

training technique that has been shown to improve ANN

performance across canonical machine learning (ML) data-

sets. Quantitative Structure Activity Relationship (QSAR)

datasets used to relate chemical structure to biological activity

in Ligand-Based Computer-Aided Drug Discovery pose

unique challenges for ML techniques, such as heavily biased

dataset composition, and relatively large number of descrip-

tors relative to the number of actives. To test the hypothesis

that dropout also improves QSAR ANNs, we conduct a

benchmark on nine large QSAR datasets. Use of dropout

improved both enrichment false positive rate and log-scaled

area under the receiver-operating characteristic curve

(logAUC) by 22–46 % over conventional ANN implemen-

tations. Optimal dropout rates are found to be a function of the

signal-to-noise ratio of the descriptor set, and relatively

independent of the dataset. Dropout ANNs with 2D and 3D

autocorrelation descriptors outperformconventionalANNs as

well as optimized fingerprint similarity search methods.

Keywords Artificial Neural Network (ANN) � Dropout �
Quantitative Structure Activity Relationship (QSAR) �
BioChemicalLibrary (BCL) � Machine learning (ML) �
Ligand-Based Computer-Aided Drug Discovery (LB-

CADD)

Background and significance

Quantitative Structure Activity Relationship (QSAR)

models are an established means of Ligand-Based Com-

puter-Aided Drug Discovery (LB-CADD), i.e. finding

novel compounds that bind to a particular protein target,

given a dataset of known binders and non-binders [1].

Physicochemical properties are encoded using spatial and

topological representations (descriptors) of the local atomic

environments within the molecule. To model the non-linear

relation between chemical structure and biological activity

for a particular protein target, a machine learning method,

such as an ANN, is trained to predict binding or activity at

a particular protein target.

Neuronal dropout [2] has been repeatedly demonstrated

to improve ANN performance on classification tasks

including speech recognition and handwritten digit classi-

fication [3, 4]. With the dropout training technique, a

fraction of neurons is effectively silenced (set to zero)

during each training epoch. Dropout is known to improve

the generalizability of ANNs by preventing co-adaptation

of hidden-layer neurons [2]. With this training feature, each

hidden neuron must build an independent mapping from

feature space onto output space. Thereby, dropout in the

hidden layer helps to prevent ANNs from memorizing the

input data (overtraining). In previous QSAR ANN models,

overtraining effects have been mitigated by model selec-

tion—selecting the ANN from those generated during

training that performed best on a monitoring dataset, or

early-termination—stopping training when overtraining is

evident against a separate monitoring dataset [1, 5–10].

Dropout is thought to produce better generalizing ANNs

that circumvent the necessity for model selection [2].

Dropout is often employed in large ANNs with several

hidden layers, known as ‘‘deep’’ ANNs. The effects of
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dropout have not been investigated extensively in ANNs

with a single hidden layer, and when using heavily class-

biased datasets and inhomogenous descriptor sets (de-

scriptors with unrelated units) that are commonplace in

QSAR modeling. Dropout has been used in previous QSAR

modeling in the context of large multi-task QSAR setting

that is uncommon in practice [11]. Dropout was used by the

winning entry in a Merck-sponsored QSAR competition.

However, it remains unclear how much dropout con-

tributed to this success, and whether the results will extend

to other targets [12]. In the present work, using the

BioChemicalLibrary (BCL) [6], we explore whether the

success of dropout extends to single-layer, single-target,

QSAR models in LB-CADD. We systematically optimize

the fraction of neurons dropped in the hidden (Dhid) and

input (Dinp) layers prior to each forward-propagation pass

starting from typical values Dhid = 50 % and Dinp = 0 %

[2].

Methods

Dataset preparation

To mitigate ligand biases and other dataset-dependent

effects, we employ an established QSAR benchmark

comprised of nine diverse protein targets. The datasets each

contain at least 100 confirmed active molecules and more

than 60,000 inactive molecules [6]. The datasets were re-

curated to eliminate a few dimers and higher-order

molecular complexes that had previously been included in

the virtual screening, and to add molecules that were pre-

viously excluded due to difficulties in calculating descrip-

tors. Structural duplicates and duplicates created during the

process of curation (e.g. due to desalting) were also re-

checked and eliminated when present [13]. SMILES strings

for all active and inactive molecules are available on www.

meilerlab.org/qsar_benchmark_2015 (Table 1).

Conformations were generated with Corina version 3.49

[14], with the driver options wh to add hydrogens and r2d

to remove molecules for which 3d structures cannot be

generated.

Three descriptor sets used to encode chemical

structure

To understand whether dropout is broadly useful for ANN-

based QSAR ML methods, three descriptor sets were used.

These descriptor sets differ in size, encoding (binary vs.

floating point), conformational dependence, as well as

redundancy and orthogonality (Table 2).

The benchmark descriptor set (BM) includes scalar,

topological, and conformation-dependent molecular

encodings Scalar descriptors include those described in [6],

with the addition of number of rings, aromatic rings, and

molecular girth. Topological and conformational descrip-

tors include 2D and 3D-autocorrelations of atomic prop-

erties used in [6]. In total, the benchmark set contains 3853

descriptors, 11 of which are scalar, 770 are 2D/topological,

and 3072 are 3D (Table 2). The descriptor set differs from

that used in Butkiewicz et al. [6] primarily with the

introduction of an enhanced 2D and 3D-autocorrelations

descriptor that accounts for atom property signs [15, 16],

and the use of min and max to compute binned-values for

2D and 3D autocorrelations, in addition to the traditional

use of summation. The BM descriptor set was used for

most testing because its size and information content are

most similar to commercially-available descriptor sets such

as DRAGON [17] and CANVAS [18].

The short-range (SR) descriptor set differs from the

benchmark set primarily in that the maximum distance

considered for the 3D-autocorrelations was reduced from

12 to 6 Å. For faster training, the SR set used a smaller set

of atom properties (6 vs. 14), which preliminary testing

suggested were sufficient to reproduce the performance of

the full set. In total, the SR descriptor set contains 1315

Table 1 Datasets used in the benchmark

Protein class—target PubChem SAID # Active molecules (%) # Inactive molecules

GPCR—Orexin1 Receptor Antagonists 435008 233 (0.11) 217925

GPCR—M1 Muscarinic Receptor Agonists 1798 187 (0.30) 61646

GPCR—M1 Muscarinic Receptor Antagonists 435034 362 (0.59) 61394

Ion channel—Kir2.1 K? channel inhibitors 1843 172 (0.06) 301321

Ion channel—KCNQ2 K? channel potentiators 2258 213 (0.07) 302192

Ion channel—Cav3 T-type Ca2? inhibitors 463087 703 (0.70) 100172

Transporter—choline transporter inhibitors 488997 252 (0.08) 302054

Kinase inhibitor—serine/threonine Kinase 33 Inhib. 2689 172 (0.05) 319620

Enzyme—Tyrosyl-DNA Phosphodiesterase Inhib. 485290 281 (0.08) 341084

The PubChem Summary ID (SAID) is used to refer to the datasets throughout this manuscript
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Table 2 Complete list of descriptors in the BM and SR descriptor sets

Scalar descriptors Descriptor set

Molecular weight

# hydrogen bond donors and acceptors BM and SR

LogP—octanol/water coefficient [19]

Total charge of molecule

# of rotatable bonds

# of aromatic rings

# of rings

TPSA—total polar surface area of molecule [20]

Bond girth—maximum # of bonds between two atoms

Girth—wsidest diameter of molecule (Å)

# of atoms in largest and smallest rings SR

# of atoms in aromatic rings

# of bridge atoms in fused rings

# of bridge atoms in fused aromatic rings

Min, Max, Std, Absolute sum of r charges [21]

Min, Max, Std, Absolute sum of V charges [22]

2DAs

11 bonds—12 values for each atom property

Binning Kernel Atom properties Descriptor set

Sum Identity (1), Polarizability [23], VdW Surface Area BM

Max, Min Polarizability, VdW Surface Area BM

Sum Identity (1), IsInAromaticRing, IsAromaticRingBridgeAtom, VCharge on Hydrogen, r charge on Hydrogen SR

Signed 2DAs

BM: 11 bonds—36 values/atom property

SR: 5 bonds—18 values/atom property

Binning

Kernel

Atom properties Descriptor

set

Sum, Max r charge, V-charge, polarizability BM and SR

Max VdW-SA, VdW-SA weighted r charge, V-charge, and polarizability BM

Sum p charge, r ? p charge, VdW-SA weighted r charge, V-charge, and polarizability; VdW-SA, discretized r
charge (Q\-0.15, -0.15\Q\ 0.15, Q[ 0.15), discretized p charge (Q\-0.1, -0.1\Q\ 0.1,

Q[ 0.1), discretized V-charge (Q\-0.25, -0.25\Q\ 0.25, Q[ 0.25)

BM

Sum, Max Identity, r charge on heavy atoms, V-charge on heavy atoms SR

3DAs

BM: 0.25 Å bins, 12 Å max—48 values/atom property

SR: 0.25 Å bins, 6 Å max—24 values/atom property

Binning Kernel Atom properties Descriptor set

Sum, Max, Min Identity (Sum only), polarizability, VdW SA, VdW-weighted polarizability BM

Sum, Max IsInAromaticRing, IsAromaticRingBridgeAtom, VCharge on hydrogen, r charge on hydrogen SR

Signed 3DAs

BM: 0.25 Å bins, 12 Å max—144 values/atom property

SR: 0.25 Å bins, 6 Å max—72 values/atom property

Binning Kernel Atom properties Descriptor set

Sum, Max r charge, V-charge, IsH (1 for H, -1 for heavy atoms) BM and SR

Sum, Max p charge, r ? p charge, VdW-weighted r, p, r ? p, and V-charge BM
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descriptors: 24 scalar, 235 topological (2D-autocorrela-

tions), and 1056 spatial (3D-autocorrelations).

A QSAR-tailored variant of the PubChem Substructure

Fingerprint descriptor set [24], referred to here-after as the

substructure (SS) descriptor set, was used to determine

whether dropout benefits a binary, fingerprint-based

descriptor set. This set contains all but a few of the 881

binary values in the PubChem substructure fingerprint,

v1.3. The omitted bits of the fingerprint contain transition

metals for which we lack Gasteiger atom types, which is a

requirement for the SR and BM sets. Secondarily, when

counting rings by size and type, we considered saturated

rings of a given size distinctly from aromatic rings of the

same size. Lastly, we added sulfonamide to the list of

SMARTS queries due to their frequency in drug-like

molecules. In total, the SS set contains 922 binary-valued

descriptors.

Substructure searching with fingerprint descriptors

The Schrodinger Canvas software suite was used to create

MolPrint2D and MACCS fingerprints and search for

nearest matches. MolPrint2D was used with ElemRC atom

types, consistent with the optimal settings found in a recent

benchmark [18]. The closest match for each molecule in a

dataset was identified using the Buser metric as imple-

mented in the Canvas package.

ANN training

Simple propagation [25] was used with g (learning rate) of

0.05. The learning rate g scales the weight adjustment

computed during back propagation before applying it to the

ANN weights. The momentum parameter a scales the

second derivative of the weight change, which is used to

accelerate stochastic descent [25], and is tested in this

study at values of either 0 or 0.5. In multi-layer ANNs,

a C 0.5 is thought to improve the sampling of ANN weight

space [2]. Thirty-two neurons in a single-hidden layer were

used throughout the benchmark except where otherwise

noted.

Dropout was implemented as in [2] in the machine

learning module of the BCL software, source and exe-

cutables for which are available free of charge for aca-

demic use from www.meilerlab.org/bcl_academic_license.

After training the ANN, the weights matrix for each layer

is multiplied by 1 - di, where di is the fraction of neurons

dropped in layer i, for scaling purposes. The dropout mask

and weights were updated after every feature presentation

(online-learning).

The output layer contained neurons with sigmoidal

activation output to the range [0, 1]. Experimental pKd or

pIC50 values were scaled via min-max scaling to [0.1, 0.9]

to avoid transfer function saturation.

The benchmark was conducted on the Advanced Com-

puting Center for Research and Education (ACCRE) at

Vanderbilt University, consuming approximately 500,000

CPU hours.

ANN performance evaluation

ANN performance was evaluated by computing the area

under the log-linear receiver operating characteristic curve

(logAUC) [26] between false positive rates (FPR) of 0.001

and 0.1, to focus on early detection of actives. The logAUC

values are normalized by the integral of the ideal true-

positive rate curve over the same FPR range, such that an

optimal classification model obtains a logAUC of 1, while a

naı̈ve model obtains a logAUC of
r
0:1

0:001
xd log10 x

r
0:1

0:001
1d log10 x

¼ r
�1

�3
10udu

r
�1

�3
1du

�

0:0215 � logAUC values are averaged across each of the 20

models in a 5 9 4-fold cross-validation on its test set, and

across the nine datasets in the benchmark.

ANN performance was further assessed by computing

enrichment at 1 % FPR (Enr1), averaged across all 20

models in a given cross-validation.

To obtain confidence intervals and standard deviations

for each metric, each test set was bootstrap sampled (with

replacement) 200 times. logAUCs and enrichments were

computed for each sample, and across all samples the

average and standard deviations was computed. The

standard deviation of mean metric values across the

Table 2 continued

Signed 3DAs

BM: 0.25 Å bins, 12 Å max—144 values/atom property

SR: 0.25 Å bins, 6 Å max—72 values/atom property

Binning Kernel Atom properties Descriptor set

Sum, Max r charge on heavy atoms, V-charge on heavy atoms, polarizability SR

For signed 2DAs and 3DAs, unsigned atom properties (Polarizability, Identity, VdW Surface Area) were multiplied by -1 for hydrogen atoms,

to enhance the information content of these descriptors
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benchmark datasets was computed using the equation:

rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

P9

i¼1
r2
i

92

r

, where ri
2 is the variance of the metric on

the ith dataset [27]. T tests of paired results on the

benchmark sets was performed with normalization by the

maximum logAUC obtained for a given dataset [28].

Performance metrics and confidence intervals were com-

puted using BCL v3.4, model:ComputeStatistics applica-

tion. Paired t tests were performed with scipy, version

0.16.0.

Cross-validation

Five-fold cross-validation was used throughout the present

investigation. Specifically, by splitting the dataset into

fifths, training on four of the parts (e.g. the training set),

and making predictions on the test set. Each of the five

parts was a test set for one set of four models. The

logAUCs and enrichments for each model in a cross-vali-

dation on its test set were averaged.

For conventional ANNs, model selection required a

second partitioning of the training dataset to compose a

monitoring dataset. To reduce bias from an arbitrary choice

of the monitoring dataset, four models were trained per test

set using a disparate chunk of the training data instead as a

monitoring set. When not using a monitoring dataset, the

full training set was used to train four ANNs with different

starting random seeds.

Optimization of training parameters for dropout

and conventional ANNs

For evaluation of the dropout method, we tested 24 com-

binations of ANN training and regularization features and

parameters for each of the nine datasets in the presence and

absence of dropout. The options tested included input

scaling method, shuffling [29], active:inactive presentation

ratio (A:Iratio), and model selection. The options were tes-

ted at selected combinations of input dropout rate (Dinp: 0.0

and 0.25) and hidden dropout rate (Dhid: 0.0, 0.25, 0.5,

0.75). An unbiased evaluation of the improvements offered

by dropout required testing each type of ANNs under

optimal training conditions.

QSAR datasets conventionally suffer from class imbal-

ance (active/inactive) due to the selectivity of the protein

targets themselves. Often\0.1 % of the compounds in the

primary screen exhibit significant activity. Class imbalance

beyond a roughly 10:1 ratio between the majority and

minority class are known to decrease AUC metrics [30].

Previous QSAR modeling techniques have upsampled

actives when training ANNs such that every presentation of

an inactive molecule to the ANN was followed by the

presentation of an active molecule (A:Iratio = 1:1), with

each active molecule being presented thousands of times

for each inactive [6, 7, 31]. We here considered whether a

lower A:Iratio would better preserve ANN generalization for

either dropout or conventional ANNs.

Overtraining is often mitigated by tracking performance

of each ANN during training on a monitoring dataset,

which is distinct from both the training and test sets.

Training is halted when no improvement is seen after a

specified number of iterations, or a specified maximum

number of iterations is reached, and the best performing

model on the monitoring dataset is selected as the final

model (model-selection). Dropout ANNs used in image-

processing and related applications appear immune to

overtraining and so a monitoring dataset is ordinarily

unnecessary when training them. We test whether model-

selection is beneficial for dropout ANNs used for QSAR

datasets. The influence of scaling was investigated by

rescaling to [-1,1] using min-max scaling (x0 ¼ 2x�xmin�xmax

xmax�xmin
)

of inputs [6], or Z score scaling (x0 ¼ x�l
r ) [29].

Utility of each ANN setting F was measured by

DlogAUC = max(logAUC) - max(logAUC(F)), where

logAUC(F) is the set of models trained with setting F, and

similarly DENR1 for enrichment at 1 % FPR. DlogAUC
and DENR1 account for the interdependency of optimal

options by taking the difference between the best logAUC

for any options set and the best logAUC observed for an

options set with a particular option. Significance was

assessed by performing a paired t-test between

max(logAUC) and max(logAUC(F)) on all models trained

with a given setting.

Results and discussion

Dropout prevents overtraining in QSAR ANNs

independent of backpropagation method

A set of ANNs for each of the benchmark datasets for 1000

iterations was trained using either dropout (Dhid: 0.5, Dinp:

0.25) or no dropout, with the SR descriptor set (Fig. 1), to

test for convergence and overtraining. Dropout success-

fully prevented overtraining even out to 1000 epochs,

which is far beyond the maximum of 36 epochs required to

achieve convergence on any of the benchmark datasets.

The ability of dropout to prevent overtraining is consistent

with results from literature on well-balanced datasets [2, 4].

Use of momentum (a = 0.5) led to a small increase in

overtraining in conventional ANNs used for QSAR. Like-

wise, a was set to 0 for a conservative estimate of the

benefit of dropout for all parameter optimizations.

Batch update—updating weights after computing the

gradient across the whole dataset—with simple back-
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propagation learning has been suggested to be more pow-

erful than online learning (where weights are updated every

iteration), based on theoretical considerations [32]. We

tested batch update on this QSAR benchmark with learning

rate set to 12
DatasetSize

. At rates above 30
DatasetSize

, ANNs often

failed to train beyond the first epoch. This sensitivity to the

learning rate has been noted previously as a weaknesses of

batch update [33]. Convergence required approximately

900 epochs, despite using a of 0.9 to improve convergence

rate. ANNs trained with batch update were not significantly

better than ANNs trained online, and their slow rate of

convergence made them unsuitable for benchmarking the

extensive ANN features tested in this benchmark. Previous

work has found that batch update is usually inferior to

online learning in convergence rate across a host of

applications [33, 34]. While the optimal independent

logAUC were *2 % larger for conventional batch ANNs

than conventional online-learning ANNs, this difference is

neither significant nor does it persist when model selection

is used.

Resilient propagation (RProp) is an alternative to simple

propagation that utilizes second order derivative informa-

tion in an attempt to accelerate convergence [35]. We

found that under dropout conditions, RProp gave equiva-

lent results to simple propagation, yet required over 1000

iterations to converge. When using RProp, the dropout

mask was updated after every feature presentation, while

the weights were updated only after each epoch (Table 3).

Optimized training conditions for dropout

and conventional ANNs

A grid search was conducted over 192 combinations of

ANN training and regularization features and parameters

for each of the nine datasets. The options tested included

input scaling method, shuffling, active:inactive presenta-

tion ratio (A:Iratio), and model selection. The options were

tested at selected combinations of input dropout rate (Dinp:

0.0 and 0.25) and hidden dropout rate (Dhid: 0.0, 0.25, 0.5,

0.75). The optimal options differed significantly for the set

of ANNs trained without dropout (Dinp= Dhid = 0) vs.

those trained with any dropout, but did not differ within the

set of ANNs trained with different dropout rates (p[ 0.1).

Fig. 1 Average logAUC by training epoch for dropout and conven-

tional networks. Conventional ANNs converge within 10 iterations on

all datasets and over-train afterwards. Dropout ANNs converge within

25 iterations on all datasets, reach higher logAUC values and do not

over-train, even after 1000 iterations. Using momentum (a) improves

convergence at the expense of slightly lower logAUC. Batch update

and resilient propagation exhibit slower convergence but similar

overtraining without dropout, and reach essentially the same peak

performance as observed with online-learning

Table 3 Options optimization

results
Parameter Value max logAUC Fð Þð Þ max Enr1 Fð Þð Þ

Dropout ANN Conventional ANN Dropout ANN Conventional ANN

Scaling MinMax 0.33 0.30 30 27

Z-Score 0.37** :10 % 0.30 35** :14 % 28

Model Selection Yes 0.34 0.30* :6.2 % 31 28* :7.0 %

No 0.37** :8.4 % 0.28 35** :11 % 26

A:Iratio 1:100 0.35 0.30* :3.4 % 33 28

1:10 0.37** :2.8 % 0.29 35* :3.3 % 27

1:1 0.35 0.28 33 27

Shuffling Yes 0.37 0.30 35 28

No 0.37 0.29 35 27

Reported logAUC Fð Þ is subject to a standard deviation of ±2.1–2.9 % of the reported value (0.007–0.009),

assessed using bootstrap resampling as described in ‘‘Methods’’ section. Enr1 Fð Þ are similarly subject to a

standard deviation of ±3.0–3.4 % (0.7–1.0). Significance is reported at at p\ 0.05 (*), or p\ 0.025 (**).

Percentage improvement is computed from raw data before rounding
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The BM descriptor set was used throughout the options

grid search.

Z score scaling proved critical for dropout ANN per-

formance. The importance of scaling may be related to the

definition of dropout. When a neuron is ‘‘dropped,’’ its

output value is set to 0. If 0 is an unusual value due to a

skewed descriptor distribution, as can occur with MinMax

scaling, the ANN may have difficulty making use of the

descriptor. For example, if a descriptor x satisfies

x 2 0; 1½ �; lx ¼ 0:9; lx;actives ¼ 0:5; rx;actives ¼ 0:1, then

when the descriptor is presented to the ANN (rescaled to

the range [-1, 1]), a dropped input will be equivalent to an

active input, and the ANN will be unable tell whether the

descriptor was dropped or came from an active compound.

Z score scaling (x0 ¼ x�l
r ) is thought to mitigate the influ-

ence of outliers in the data [29], though our results indi-

cated no significant improvement in results for

conventional ANNs (Table 4).

A:Iratio of 1:1 consistently yielded inferior results in this

benchmark for both dropout and conventional ANNs. For

conventional ANNs, a 1:100 ratio provided a small benefit

(*2–3 %) over a 1:1 or 1:10 ratio. Dropout ANNs showed

a similar improvement with a 1:10 ratio. A lower ratio also

reduces training time significantly (1.99 faster for a 1:10

ratio).

Our results indicated a significant improvement in both

logAUC and Enr1 for individual dropout ANNs lacking

model selection. As expected, conventional ANNs showed

a small improvement using model selection. ANNs

employing either hidden dropout or input-layer dropout

were significantly better than equivalent ANNs trained

without dropout (p\ 0.001).

logAUC is more robust than enrichment to bootstrap

resampling

Based on bootstrapping of independent results, reported

logAUC is subject to a standard deviation of ±2.2–3.3 %

(M: 2.5 %, SD: 0.2 %) of the base value. Enr1 was subject

to a significantly larger bootstrap error of ±2.6–5.2 % (M:

3.1 %, SD: 0.4 %) (p\ 0.01). This verifies that logAUC is

more robust to minor changes in dataset composition and

model ranking. Limitations of enrichment as an objective

function have been noted elsewhere [36], but it remains

useful for comparison with other methods. When reporting

percentage improvements, logAUC is used except where

otherwise noted.

Dropout optimization

A grid search for optimal Dinp and Dhid values was con-

ducted for the benchmark datasets. ANNs were trained

with dropout rates (Dhid and Dinp) sampled between 0 and

0.5 (for Dhid) or 0.95 (for Dinp) at a step size of 0.05. The

upper limit of 0.5 was chosen for Dhid based on the options-

based grid-search, wherein we noted that Dhid of 0.25

usually provided modestly better results than 0.5, and

significantly better than Dhid of 0.75 (p\ 0.05) (Table 5).

The optimization of Dinp and Dhid across the benchmark

datasets is shown in Fig. 2. The global optimum is at 60 %

Dinp and 25 % Dhid, though the results are generally robust

to Dinp between 0.4 and 0.7 and Dhid between 0.1 and 0.5.

Dependence of logAUC on Dinp and Dhid for each

dataset. The numbers next to each dataset ID indicate the

value of logAUC at Dinp = Dhid = 0, followed by the

maximal logAUC value. The logAUC at the dataset-specific

optima of Dinp and Dhid averages 2.5 % higher than that

obtained using the overall optimal parameters (Dinp = 0.6,

Dhid = 0.25), however, the differences in optimal dropout

values are not significantly different across the datasets,

relative to uncertainty in the logAUC value itself (p[ 0.1).

Importantly, this suggests that the dropout optimization

need not be repeated for novel QSAR targets using this

descriptor set (Table 6).

In the input layer (where the descriptors are fed in),

dropout hinders the ability of the ANN to describe complex

functions. The descriptor sets employed here incorporated

several hundred descriptors with substantial redundancy. In

such a setting, dropout in the input layer prevents the ANN

from relying on any two particular descriptors being pre-

sent at the same time. We anticipated that it would be

useful when training with dropout to include several rep-

resentations of each molecular property. For example,

atomic charge could be represented using either VCharge

[22] or r/p-charge computed by partial equalization of

orbital electronegativity [21]. Thereby, the omission of any

particular representation of a given property was not

detrimental to the description of the molecule.

Table 4 Optimized training

conditions for dropout and

conventional ANNs

Parameter Optimum for dropout ANNs Optimum for conventional ANNs

Scaling Z score Z score

Model selection No Yes

Active:inactive ratio 1:10 1:100

Shuffling Yes Yes
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Importance of descriptor set to optimal dropout

fractions and comparison with fingerprint methods

Dinp was assessed for the BM, SR, and SS descriptor sets,

while keeping Dhid fixed to the optimal value of 0.25.

The performance of ANNs trained without dropout for

each descriptor set was analyzed both with and without

model selection. Both the SS and SR descriptor sets were

relatively insensitive to Dinp between 0.05 B Dinp B 0.6,

while the BM set showed a strong dependence on Dinp with

a maximum at 0.6. Figure 3 shows the results. The SR

descriptor set, with optimized dropout parameters, was

4.8 % better compared to the BM descriptor set overall,

while the SS set averaged 11.3 % worse. At Dinp[0.6, the

performance of the SR and SS sets declined rapidly.

The impact of the descriptor set on the optimal ANN

Dinp motivated a similar test for Dhid, with Dinp fixed at

0.05. Figure 4 depicts the results. The curves for Dhid are

substantially similar (R2[ 0.8 for all pairs), suggesting

that Dhid can be optimized for ANN architecture indepen-

dently of the dataset. In all three datasets, the region

0.2\Dhid\ 0.6 is optimal.

While the SR descriptor set was best used in conjunction

with a very low input dropout rate (Dinp,optimal = 0.05), the

BM set required a high rate of input dropout (Dinp,optimal

= 0.60).Moreover, the relatively small SR set outperformed

the BM set. The sets differ in spatial boundaries for 3DA

calculation as well as atom properties, raising the question of

which of these changes is responsible for the increase in

Dinp,optimal. Using the BM set’s atom properties with the SRs

3DA extent, logAUC decreased insignificantly (*1.5 %,

p[ 0.1) relative to results on the SR set. The different atom

properties between the BM and SR sets was, likewise, not a

significant factor in altering the sensitivity of the descriptor

set performance to Dinp.

We propose that the optimal Dinp is indicative of the

signal to noise ratio in the descriptors. Sensitivity to Dinp

was much greater in the BM set (0.5\Dinp,optimal\ 0.75,

?9.1 % improvement in logAUC from optimizing Dinp[0)

than the SS or SR sets (0.0\Dinp,optimal\ 0.65, 2.4 %

improvement in logAUC from optimizing Dinp[0). The

descriptors in the BM set that are not in the SS set are

heavily dependent on the specific molecular conformation

that was used, in particular due to the 3DA bins beyond

6 Å (only present in the BM set). For a molecule with

typical flexibility, a pair of atoms at 10 Å in the average

conformation may be anywhere between 8 and 12 Å

depending on the rotamer, so there is substantial uncer-

tainty involved when assigning these atom pairs to one of

the 0.25 Å bins of a 3DA. The SS set is purely fragment-

Table 5 Improvements in logAUC observed across the three

descriptors with dropout

Average model results

ANN parameters

Dinp 0 0 0.6

Dhid 0 0 0.25

Model selection - ? -

A:I ratio 1:10 1:100 1:10

logAUC

Descriptor set

BS 0.26 0.30** ?16 % 0.37** ?46 %

SR 0.29 0.33** ?14 % 0.39** ?35 %

SS 0.26 0.27* ?2.6 % 0.33** ?26 %

Enr1

Descriptor set

BS 27 28* ?2.6 % 35** ?31 %

SR 28 31** ?12 % 37** ?33 %

SS 25 25 31** ?23 %

Similarity search fingerprint

logAUC Enr1

MACCS 0.24 23

MolPrint2D 0.33 33

Italicized numbers show the improvement relative to the baseline

conditions of no dropout or model selection and a 1:10 A:I presen-

tation ratio. Significance is reported at at p\ 0.05 (*), or p\ 0.01

(**). Reported logAUC is subject to a standard deviation of

±2.4–2.9 % of the reported value (0.008–0.009), assessed using

bootstrap resampling as described in ‘‘Methods’’ section

Fig. 2 Optimization of input and hidden layer dropout rates,

averaged over the benchmark datasets. Optimum is at Dinp = 0.6,

Dhid = 0.25, with an average logAUC of 0.377. The weakest

performance is seen with Dinp = Dhid = 0 (e.g. no dropout), with

an average logAUC of 0.255
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Fig. 3 Per-dataset optimization

of logAUC. Title bar for each

dataset indicates ID-logAUC of

the dataset trained without

dropout ? logAUC after

dropout rate optimization

Table 6 Per-dataset logAUCs and Enr1 for selected ANN training parameters, and comparison with results from similarity searches using

MACCS and MolPrint2D fingerprints

logAUC/Enr1 by training condition

Average model results

ANN parameters Fingerprints

Dinp 0 0 0.6 0.05 MACCS with Tanimoto similarity MolPrint2D with Buser similarity

Dhid 0 0 0.25 0.25

Model sel. ? ? - -

A:I ratio 1:1 1:100 1:10 1:10

Scaling MinMax Z Score Z score Z score

Shuffle - ? ? ?

Descriptor set BM BM BM SR

Dataset

1798 0.16/15 0.19/17 0.23/22 0.26/23 0.14/14 0.20/21

1834 0.35/34 0.36/34 0.44/43 0.44/43 0.26/22 0.34/31

2258 0.36/37 0.35/34 0.44/44 0.48/48 0.25/24 0.38/37

2689 0.39/42 0.44/43 0.55/55 0.56/57 0.41/45 0.52/54

435008 0.22/15 0.22/19 0.31/26 0.30/28 0.17/12 0.28/28

435034 0.20/17 0.22/16 0.28/22 0.30/26 0.18/18 0.22/19

463087 0.20/19 0.26/21 0.35/30 0.40/34 0.25/21 0.32/29

485290 0.33/33 0.35/33 0.41/40 0.44/44 0.26/26 0.38/36

488997 0.21/25 0.28/27 0.39/38 0.38/37 0.31/29 0.41/42

Average 0.27/26 0.30/27 0.37/36 0.39/38 0.24/23 0.34/33

The first column corresponds to the options used in [6], the second is the optimal conventional ANN. The third column is the optimal training

condition for the BM descriptor set. The fourth column is the optimal SR and SS descriptor set results. MACCS and MolPrint2D fingerprint

search methods provided for comparison (final two columns)
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based and thus none of the descriptors has significant

uncertainty, and so the optimal Dinp is\ 0.25.

The influence of the dataset on the optimal dropout

parameters has further implications for the design of novel

descriptors. In particular, benchmarking novel descriptors

may require optimizing Dinp for each descriptor set on a

benchmark dataset, to enable fair comparison across

descriptor sets with differing levels of uncertainty. For

large QSAR datasets ([60 K compounds) with 800–3800

descriptors, as used in this study, Dinp of 0.5 and Dhid of

0.25 appear to be good starting points. Dinp[ 0.6 may be

appropriate for descriptors sets with more than 4 k values

and for descriptors associated with high degrees of uncer-

tainty, such as long distance 3DAs.

Our benchmark suggests the utility of optimizing drop-

out parameters for well-established benchmark descriptor

sets for QSAR such as WHIM, CPSA, and 3D-Morse [37].

ANN training may benefit from setting input dropout

probabilities for each descriptor column according to the

uncertainty in their value. This should be less important for

canonical machine learning problems such as number

recognition, where every descriptor has the same units (e.g.

pixel intensity) and levels of uncertainty. Nevertheless,

there is evidence that variable levels of dropout can

improve ANN regularization even on traditional MNIST-

style benchmarks [38]. For 3D-conformational descriptors,

it may be fruitful to use the conformational ensemble for

each ligand to derive the probability that each 3D-de-

scriptor column is substantially different from its nominal

value as an input-specific dropout probability.

Probing the role of input dropout on AID435034

For further analysis of the role of input dropout,

AID435034 was chosen as a representative dataset based

on the similarity of its’ Dinp, Dhid heatmap and the

benchmark average.

The SR descriptor set was padded with as many Gaus-

sian-noise descriptor columns as it has true descriptors to

form the SR ? Noise set. We optimized Dinp for the

SR ? Noise set, with Dhid fixed at 0.25. Figure 5 shows

that with Dinp = 0, less than half the original performance

of the original SR set is recovered (0.13 vs. 0.29). The

optimized value of Dinp shifts from 0.05 for the SR

descriptor set to 0.85 in the SR ? Noise set. The added

noise also leads to a significantly greater dependence of

logAUC on Dinp, with only a 3.1 % gain in logAUC in the

base SR set from optimizing Dinp vs. leaving it at 0, while

with the added noise columns a 67 % increase in logAUC.

The SR ? Noise set performed 34 % worse after opti-

mization of Dinp than the SR set. We posit that the addition

of noise columns is particularly detrimental to QSAR

datasets due to the small number of actives and the prob-

ability that, given a large enough number of noise columns,

one of them by chance has a significant correlation with

activity for a few actives in a given dataset.

The effect of redundant descriptors on the optimal Dinp

was investigated by duplicating every descriptor in the SR

descriptor set (SR92). Optimizing Dinp yielded a curve

with the same peak logAUC as in the SR set on

AID435034, but with the overall curve shifted by ?5 %

(Fig. 5). The same magnitude of shift was also observed

when optimizing the duplicated BM descriptor set on

AID435034 (data not shown).

Lastly, the effects of zero-padding the SR descriptor set

were considered by doubling the SR descriptor set size by

padding it with zeros (Fig. 5: SR ? 0 s). The resulting

curve is qualitatively indistinguishable from the results on

the unperturbed SR set. The lack of effect of zero-padding

columns on the optimal input dropout rates additionally

Fig. 4 Dependence of Dinp optimization on descriptor set.

Dhid = 0.25 for all descriptor sets. BM—Benchmark descriptor set,

SS substructure descriptor set, SR short-range descriptor set

Fig. 5 Dependence of Dhid optimization on descriptor set. Optimal

values of Dinp used for each descriptor set from Figs. 2 and 4

(Dinp = 0.05 for SS & SR, Dinp = 0.6 for BM)
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supports the notion that Dinp,optimal is primarily a function

of the signal-to-noise ratio in the dataset (Fig. 6).

Comparison with fingerprint methods

Dropout ANNs trained on MACCS keys improved logAUC

by 38 % relative to simple similarity searches, and 26 %

relative to conventional ANNs. MolPrint2D fingerprints

using the optimal settings and comparison metric proved

superior to conventional ANNs trained with the SR

descriptor set, but inferior to dropout ANNs by *18 % in

logAUC. Nevertheless, MolPrint2D fingerprints were

superior in training dropout ANNs on one dataset

(AID488997). It may prove fruitful to use the MolPrint2D

fingerprints as additional descriptors to train ANNs in

future work, based on the results with dropout ANNs using

MACCS keys. These results further validate a smaller

benchmark that found similar improvement using ANNs on

fingerprint-style descriptors [5]. We expect, however, that

fingerprint-type will be relatively limited in terms of

identifying novel active scaffolds, a purpose for which we

anticipate that conformational and electrostatic descriptors

such as those used here will have a clear advantage.

Sensitivity to choice of atom properties

For the BM descriptor set, we used atom properties from

prior studies [6, 39], specifically: Identity, Polarizability,

Electronegativities (r, p, lone-pair) and partial charges (r,
p, r?p, VCharge) for use in 2DA and 3DA functions [21,

40, 41]. The charge properties can take on positive and

negative values, and likewise were used exclusively in the

sign-sensitive 2DA and 3DAs [15].

For the SR descriptor set, a reduced set of four atom

properties was used: r charge, VCharge,

1; Hydrogen

�1; Heavy Atom

�

,
1; In an aromatic ring

�1; Not in an aromatic ring

�

.

Testing proved that this set yielded slightly better (1.5 %

on average logAUC) performance than that of the BM set,

while being substantially smaller in size. Testing with

sixteen different sets of up to twenty different atom prop-

erties produced logAUC that remained within 5 % of this

optimal set so long as the set contained r charge and

1; Hydrogen

�1; Heavy Atom

�

or a similar descriptor capable of

describing hydrogenation and steric bulk (results not

shown), suggesting that our results are relatively insensi-

tive to atom properties. The additional atom properties that

were tested included splitting charges based on whether

they were associated with a heavy or light atom, as well as

simpler versions of the charges where each atomic charge

was converted to 0, -1, or ?1 depending on specific cut-

offs derived from the distribution of each of the charge

types. While these descriptors improved results on specific

datasets by up to 10 % in some cases, the improvements

did not hold across the benchmark.

Caveats and limitations

ANNs trained in this study had a single hidden layer with

32 neurons. To understand the relative influence of neural

architecture on our results, we used our optimized param-

eters to train a larger ANN, keeping other parameters set to

their optimal values from the benchmark. Using a hidden

layer size of 256 neurons resulted in an insignificant

change (p[ 0.1) in logAUC values (?1.3 % ± 3.2 %)

across the benchmark datasets. While larger ANNs or

additional hidden layers could improve the outcomes of

this study, this exploration leads us to expect that the

benefit of larger ANNs will be small relative to the use of

dropout itself.

ANNs were trained to one hundred iterations. For ANNs

without dropout, optimal performance was obtained

between 2 and 49 iterations (l = 14, r2 = 15) using the

SR descriptors, depending on the dataset. With an input

and hidden layer dropout fraction of 25 %, convergence to

within 99 % of the final logAUC required between 8 and 26

iterations (l = 15, r2 = 6). Increasing the input dropout

rate to 50 % further increased the number of iterations for

convergence to an average of 35 (range 20–69). Input

dropout rates of 75 % and higher likewise may require

more than one hundred iterations converge to within 1 %

of their optimal logAUC on some datasets. Given that this

is well above the optimal input dropout rate found in this

study for all descriptor sets, it appears unlikely that our

Fig. 6 Effect of artificial descriptor set defects on Dinp optimization.

SR short range descriptor set, SR ? Noise SR descriptors and an equal

number of Gaussian noise columns, SR92 SR descriptors, repeated

(all descriptors represented twice), SR?0s SR descriptors, with all

descriptors paired with an all-0 column
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optimization would differ significantly if performed with

further iterations.

Conclusions

When training ANNs on large QSAR datasets, dropout is

important in both the input and hidden layers. Compared to

conventional ANNs trained with no model selection or early

termination, dropout ANNs improves logAUC by an average

of 36 %, and enrichment by 29 %. Compared to ANNs

trained with model selection, dropout ANNs still outper-

forms conventional ANNs by an average of 22 % across the

descriptors sets considered here. Dropout ANNs outper-

formed optimized similarity searching methods based on

MolPrint2D fingerprints by 18 %. The dropout technique

thus places ANNs at the forefront of QSAR modeling tools.

Applying dropout to the ANN hidden layer at the frac-

tions prescribed by this benchmark will provide a starting

point for further optimization on QSAR datasets of com-

mercial and academic interest, and further highlight the

need for widespread dissemination of contemporary

machine learning techniques into broader disciplines.
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