
Vol.:(0123456789)1 3

J Comput Aided Mol Des (2017) 31:213–218 
DOI 10.1007/s10822-016-0006-1

DockingApp: a user friendly interface for facilitated docking 
simulations with AutoDock Vina

Elena Di Muzio1 · Daniele Toti1 · Fabio Polticelli1   

Received: 4 November 2016 / Accepted: 22 December 2016 / Published online: 6 January 2017 
© Springer International Publishing Switzerland 2017

Keywords  Molecular docking · Virtual screening · Drug 
repurposing · Graphic interface · Wrapper · AutoDock Vina

Introduction

Collective efforts, such as the Drugs for Neglected Dis-
eases initiative  [7], can dramatically speed up the devel-
opment of novel drugs at a significantly lower cost. Fur-
thermore, repurposing of Food and Drug Administration 
(FDA)-approved drugs allows to bypass the expensive and 
time-consuming toxicity assays and clinical trials, greatly 
reducing the time needed to bring a repurposed drug to the 
market. In this framework, docking simulations play a cen-
tral role in the drug development pipeline. However, dock-
ing techniques are not readily accessible to researchers out-
side the structural bioinformatics field, and therefore their 
potential cannot be fully exploited in community-driven 
drug discovery initiatives. In the attempt of overcoming the 
technical difficulties of docking simulations, over the last 
few years some plug-ins were developed to facilitate them.

Two PyMOL [13] plug-ins exist for docking simulations 
using AutoDock Vina [14]. The one from the Lill research 
group is restricted to a Linux environment and requires 
additional software installation  [6], while the one origi-
nally developed under Linux by [12] has been adapted for 
its use in a Windows environment, though apparently tested 
only on Windows XP. Other examples include AUDocker 
LE, an AutoDock Vina GUI available under Windows [11] 
and focused on large scale virtual screening tasks, and 
DOVIS 2.0, a parallel virtual screening tool for Linux clus-
ters based on AutoDock 4.0 [5]. An AutoDock Vina inter-
face for setting up docking simulations is also available as 
part of the UCSF Chimera molecular visualization pro-
gram [10], although it appears more suited to expert than 

Abstract  Molecular docking is a powerful technique 
that helps uncover the structural and energetic bases of 
the interaction between macromolecules and substrates, 
endogenous and exogenous ligands, and inhibitors. Moreo-
ver, this technique plays a pivotal role in accelerating the 
screening of large libraries of compounds for drug devel-
opment purposes. The need to promote community-driven 
drug development efforts, especially as far as neglected dis-
eases are concerned, calls for user-friendly tools to allow 
non-expert users to exploit the full potential of molecular 
docking. Along this path, here is described the implemen-
tation of DockingApp, a freely available, extremely user-
friendly, platform-independent application for perform-
ing docking simulations and virtual screening tasks using 
AutoDock Vina. DockingApp sports an intuitive graphical 
user interface which greatly facilitates both the input phase 
and the analysis of the results, which can be visualized in 
graphical form using the embedded JMol applet. The appli-
cation comes with the DrugBank set of more than 1400 
ready-to-dock, FDA-approved drugs, to facilitate virtual 
screening and drug repurposing initiatives. Furthermore, 
other databases of compounds such as ZINC, available also 
in AutoDock format, can be readily and easily plugged in.

E. Di Muzio and D. Toti have contributed equally to this work.

 *	 Fabio Polticelli 
	 fabio.polticelli@uniroma3.it

	 Elena Di Muzio 
	 elena.dimuzio@uniroma3.it

	 Daniele Toti 
	 daniele.toti@computationalbiology.it

1	 Department of Sciences, Roma Tre University, Rome, Italy

http://orcid.org/0000-0002-7657-2019
http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-016-0006-1&domain=pdf


214	 J Comput Aided Mol Des (2017) 31:213–218

1 3

novice users. Recently, another PyMOL plug-in, the NRG-
suite, has been described, which allows to perform dock-
ing simulations in real time using FlexAID [2]. Of note, the 
latest PyMOL executables are commercial products and the 
only officially-supported approach for building and install-
ing PyMOL from the source code is under an open-source 
environment such as Linux.

Here we present DockingApp, a freely-accessible, 
platform-independent application for setting up, perform-
ing and analyzing the results of docking simulations using 
AutoDock Vina in a painless and extremely user-friendly 
way. The application comes with a pre-built library of 
more than 1400 ready-to-dock, FDA-approved drugs for 
virtual screening and drug repurposing initiatives. In addi-
tion, other, much larger databases of small molecule com-
pounds can be easily plugged into DockingApp, such as the 
renowned ZINC database [4], available in pdbqt AutoDock 
format at the URL http://zinc.docking.org/pdbqt/.

Methodology

As briefly stated in the Introduction, DockingApp is born 
as a user-friendly software application meant to allow a 
variety of differently-skilled users to perform docking sim-
ulations, with high confidence on the results produced and 
minimal effort for setup and configuration. The former fea-
ture is guaranteed by relying upon the state-of-the-art dock-
ing program AutoDock Vina, which is the “engine” used 
by DockingApp to carry out the actual docking simulation; 
the latter feature is provided by a user-friendly graphical 
interface that on one hand hides all the complexity behind 
AutoDock Vina’s usage, and on the other hand allows for 
a convenient browsing of the results both in tabular form 
and via a three-dimensional visualization of the receptor 
and the identified docking poses. All of this was made pos-
sible by the development of a platform-independent graphi-
cal user interface or “wrapper” (developed in Java), whose 
purpose is to both acquire the user’s input and process the 
docking results, and by a Python program that is launched 
“behind the scenes” and is responsible of interacting with 
the included AutoDock Vina in the user’s behalf. Further 

details of the application are described in the following 
subsections.

Initial configuration

DockingApp requires a minimal configuration effort, 
related to the selection of the number of CPU cores to be 
used for AutoDock Vina’s execution and the specification 
of the installation directory of MGLTools [1, 8], which is a 
free Python library available for most platforms (Windows, 
Linux, OSX etc.) and is required for the software to run. 
The appropriate MGLTools distribution is already included 
for the respective operating system in DockingApp’s pack-
ages. This setup can be done via the “Initial settings” panel 
(Fig. 1), which is automatically loaded at startup when the 
application is run for the first time, and can be recalled at a 
later date as the user needs. The default value for the num-
ber of CPU cores is set at half of the detected cores on the 
system; besides, DockingApp tries to automatically detect 
the location of MGLTools’ installation directory on the sys-
tem via a heuristic search, and if found, the corresponding 
field is populated with the identified directory.

Execution of docking and virtual screening jobs

DockingApp provides the user with the possibility of 
carrying out docking simulations on a given receptor, 
either against a single ligand (via the “Docking” panel) 
or a library of small molecules (via the “Virtual Screen-
ing” panel). In the former case, the user needs to specify 
the receptor and the ligand to be docked either as .pdb or 
.pdbqt files, whereas in the latter, instead of a single ligand, 
the user needs to select a folder containing the molecules 
the input receptor will be screened against in .pdbqt format 
(see Fig. 2). The automatic conversion of the input receptor 
and ligand from the .pdb to the .pdbqt file format, required 
by AutoDock Vina to run, is performed by DockingApp by 
using the prepare_receptor4.py and prepare_
ligand4.py MGLTools scripts, respectively.

Regardless of the type of execution chosen, the user is 
given the chance to choose a “Grid type” and a “Docking/
VS type” (Fig. 2). As a matter of fact, the search-space grid 
can be either automatically computed by the application 

Fig. 1   DockingApp’s Initial 
settings panel

http://zinc.docking.org/pdbqt/


215J Comput Aided Mol Des (2017) 31:213–218	

1 3

to encompass the whole receptor molecule, as in a “blind 
docking” run, or manually specified by the user via the 
selection of a set of grid-bounding residues. In the former 
case DockingApp automatically calculates the grid center 
as the geometric center of all the atoms of the receptor’s 
structure. In the latter case the grid center is calculated in a 
similar manner using the set of atoms of the manually spec-
ified residues. Once the grid center is set, the system cal-
culates the monodimensional distances between the center 
and each atom along the three x, y and z axes. The size of 
the grid box along the x, y and z axes is then computed by 
doubling the maximum value of the relative mono-dimen-
sional distances along each dimension, adding to these val-
ues 5 Å to ensure that the grid box encloses all the atoms 

of either the receptor’s structure or of the subset of residues 
chosen by the user.

Docking/virtual screening (VS) can be either “rigid” 
or “flexible”: in the latter case, the user needs to choose 
the flexible residues of the input receptor. Specific panels 
are provided for the selection of the grid-bounding resi-
dues and for the flexible residues, featuring comboboxes 
where residues can be either selected from the provided 
drop-down lists or directly typed in the auto-completable 
text fields, as depicted in Fig.  3. For a default execution, 
the grid is automatically computed and the docking/VS is 
rigid, and thus the user needs only to select the input recep-
tor and the input ligand (in the case of one-to-one docking) 
or the input database (for virtual screening; one is provided 

Fig. 2   Input panel for Dock-
ingApp’s virtual screening 
execution

Fig. 3   Input panel for DockingApp’s docking execution, where the 
user has chosen to manually specify the docking grid by selecting the 
appropriate grid-bounding residues, as shown in the corresponding 
subpanel. Here, the user can select any number of residues, either by 
browsing their list from the input receptor or by starting to type their 

name in the text fields and taking advantage of the autocomplete fea-
tures provided for convenience. A similar subpanel is displayed when 
the user opts for a “flexible” docking, allowing the user to select the 
flexible residues



216	 J Comput Aided Mol Des (2017) 31:213–218

1 3

by DockingApp as described below), minimizing the com-
plexity of the simulation. In the case of a flexible docking, 
the prepare_flexreceptor4.py MGLTools script is 
used by DockingApp, in a transparent fashion with respect 
to the user, to prepare the additional input file required by 
AutoDock Vina for flexible docking simulations.

Once all the selections are made and confirmed, Dock-
ingApp starts the corresponding execution by launching the 
included AutoDock Vina, which is responsible of perform-
ing the selected docking/virtual screening operations. Spe-
cifically, this is done by using a Python script, which inter-
acts and exploits MGLTools to produce the configuration 
files needed by AutoDock Vina and then launches the 
actual call to the latter, in a completely transparent fashion 
with respect to the user. Obviously, virtual screening execu-
tions may take a long time to complete based on the pro-
cessing power of the machine used and the processor cores 
available, especially when screening against a large set of 
molecules; it must be noted that DockingApp must be kept 
open during the process. At the present time, a dataset of 
1466 FDA-approved small molecules is provided bundled 
with the application. Such dataset was downloaded from 
DrugBank [15] and was originally composed of 1584 small 
molecule drugs. Since each compound was represented in 
two dimensions, i.e. its atomic coordinates were given in a 
bidimensional reference system instead of a three-dimen-
sional one, a procedure to convert the bidimensional coor-
dinates to three-dimensional ones was carried out. For this 
purpose the MolConverter1 utility was used. Afterwards, 
the resulting PDB files were in turn converted to the .pdbqt 
format via the aforementioned prepare_ligand4.py 
MGLTools script. It must be noted that, of the original 
1584 molecules, 118 could not be converted due to 
“unknown atom type” errors encountered during the pro-
cess (e.g. platinum, arsenic, etc.). The resulting set is pro-
vided within the “input/LigandDatabase” folder of the 
application to be used for virtual screening analyses. As 
already mentioned, other databases of small molecules in 
.pdbqt format can be easily plugged into DockingApp by 
just placing them in a corresponding folder within the input 
directory.

Visualization of results

Results produced by the docking/virtual screening process 
are made available by DockingApp via an interface show-
ing several elements.

1  https://www.chemaxon.com/products/marvin/molconverter/.

Firstly, a table is displayed listing the identified poses 
with their corresponding affinity values2, RMSD upper and 
lower bounds, the corresponding ligand and file name, as 
well as an additional value dubbed SILE (Size-Independent 
Ligand Efficiency). The latter has been introduced by [9] in 
order to provide a measure of the docking energy unbiased 
by the size of the respective molecule, useful to evaluate 
the potential effectiveness of a compound as a drug and to 
guide the drug-design optimization process. The SILE is 
defined as follows:

where N denotes the number of heavy atoms in the consid-
ered molecule.

Secondly, a panel for filtering the results by different 
criteria is provided beside the results table, as detailed in 
Fig. 4. Finally, a three-dimensional view of the input recep-
tor is shown, with the identified docking poses highlighted 
in different colors, whose display can be turned on or off by 
the corresponding checkboxes in the table records.

Results can be saved by the user as .dck files (Dock-
ingApp’s file format) to be stored and re-opened at a later 
date at the user’s convenience. A screenshot of the results 
displayed after a virtual screening execution is shown in 
Fig. 4.

Technology, requirements and availability

DockingApp is a 64-bit stand-alone software application 
developed in Java SE 7 and Python, with a Java Swing 
Graphic User Interface (GUI). It embeds AutoDock 
Vina and the JMol visualization program  [3], and can be 
run locally on any major 64-bit OS equipped with a suit-
able Java Virtual Machine (JVM). Packages for Linux, 
Mac OSX and Windows are provided, each including the 
required MGLTools distribution (ver. 1.5.6) for the corre-
sponding operating system. DockingApp is available for 
download at the following URL: http://www.computatio-
nalbiology.it/software.html. DockingApp is provided via a 
GPL license and its source code is available upon request 
to the authors.

Conclusion

In this work the implementation and features of Dock-
ingApp has been described, which is a Java-based 

2  It must be noted that affinity is the term used in the Autodock Vina 
output to indicate the predicted binding energy (lower values indicat-
ing tighter binding).

SILE =

affinity

N0.3

https://www.chemaxon.com/products/marvin/molconverter/
http://www.computationalbiology.it/software.html
http://www.computationalbiology.it/software.html


217J Comput Aided Mol Des (2017) 31:213–218	

1 3

Fig. 4   Screenshot of DockinApp’s output window for a virtual 
screening execution. Users can turn on or off the differently-colored 
poses in the three-dimensional visualization by simply checking/
unchecking their corresponding checkboxes. The table of the results 
can be reordered by different sorting parameters by clicking on their 
corresponding table header. Besides, the “Filters” panel enables the 
user to dynamically filter those results below a certain affinity thresh-
old, or those with a given affinity difference with respect to the best 

pose, or simply those that exceed a certain maximum number of 
records, and/or those results involving specific ligands. Furthermore, 
three-dimensional visualization is provided via a full-fledged JMol 
window retaining all JMol’s functionalities, including the input con-
sole for specifying further commands in the JMol syntax. The dock-
ing grid used in the process, displayed as a red cubic wireframe, can 
be toggled on and off via its corresponding checkbox. Results can be 
also saved in DockingApp’s file format and re-opened when needed



218	 J Comput Aided Mol Des (2017) 31:213–218

1 3

AutoDock Vina “wrapper” that can be used to speed up 
and facilitate docking simulations and the analysis of their 
results in an intuitive, painless and user-friendly fash-
ion. With DockingApp, even “naive” users, non expert in 
structural bioinformatics, can perform docking simulations 
and virtual screening tasks, thus increasing the number of 
researchers working in the biomedical field who can take 
advantage of these techniques for the development of new 
drugs. Finally, the extremely user-friendly character of 
DockingApp makes it also an excellent tool to be used in 
educational settings to teach the basics of molecular dock-
ing and attract students towards the structural bioinformat-
ics field.

References

	 1.	 Dallakyan S (2010) MGLTools. http://mgltools.scripps.edu/
	 2.	 Gaudreault F, Morency LP, Najmanovich RJ (2015) NRGsuite: a 

PyMOL plugin to perform docking simulations in real time using 
FlexAID. Bioinformatics 31(23):3856–8

	 3.	 Hanson RM (2010) Jmol-a paradigm shift in crystallographic 
visualization. J Appl Crystallogr 43:1250–1260

	 4.	 Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG 
(2012) ZINC: a free tool to discover chemistry for biology. J 
Chem Inf Model 52(7):1757–68

	 5.	 Jiang X, Kumar K, Hu X, Wallqvist A, Reifman J (2008) DOVIS 
2.0: an efficient and easy to use parallel virtual screening tool 
based on AutoDock 4.0. Chem Central J 2:18

	 6.	 Lill MA, Danielson ML (2011) Computer-aided drug design 
platform using PyMOL. J Comput Aided Mol Des 25:1319

	 7.	 Maxmen A (2016) Busting the billion-dollar myth: how to slash 
the cost of drug development. Nature 536:388–390

	 8.	 Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, 
Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: 
automated docking with selective receptor flexiblity. J Comput 
Chem 16:2785–2791

	 9.	 Nissink JW (2009) Simple size-independent measure of ligand 
efficiency. J Chem Inf Model 49(6):1617–1622

	10.	 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt 
DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization 
system for exploratory research and analysis. J Comput Chem 
25(13):1605–1612

	11.	 Sandeep G, Nagasree KP, Hanisha M, Kumar MMK (2011) 
AUDocker LE: a GUI for virtual screening with AUTODOCK 
Vina. BMC Res Notes 4:445

	12.	 Seeliger D, de Groot BL (2010) Ligand docking and binding site 
analysis with PyMOL and Autodock/Vina. J Comput Aided Mol 
Des 24:417422

	13.	 The PyMOL Molecular Graphics System, Version 1.8. 2016. 
Schrdinger, LLC

	14.	 Trott O, Olson AJ (2010) AutoDock Vina: improving the speed 
and accuracy of docking with a new scoring function, efficient 
optimization and multithreading. J Comput Chem 31:455–461

	15.	 Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Sto-
thard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive 
resource for in silico drug discovery and exploration. Nucleic 
Acids Res 34(Database issue):668–672, 16381955

http://mgltools.scripps.edu/

	DockingApp: a user friendly interface for facilitated docking simulations with AutoDock Vina
	Abstract 
	Introduction
	Methodology
	Initial configuration
	Execution of docking and virtual screening jobs
	Visualization of results
	Technology, requirements and availability

	Conclusion
	References


