
Vol.:(0123456789)1 3

J Comput Aided Mol Des (2017) 31:201–211 
DOI 10.1007/s10822-016-0005-2

Exploring the stability of ligand binding modes to proteins 
by molecular dynamics simulations

Kai Liu1 · Etsurou Watanabe1 · Hironori Kokubo1 

Received: 19 August 2016 / Accepted: 22 December 2016 / Published online: 10 January 2017 
© Springer International Publishing Switzerland 2017

Keywords Molecular dynamics simulation · Protein–
ligand binding prediction · Docking · Structural stability · 
Computer-aided drug design

Introduction

Drug discovery is known as a highly time-consuming and 
expensive process. Facing the grand challenge in front of 
pharmaceutical industry, Paul et al. demonstrate that target 
selection is one of the two key approaches to improve R&D 
efficiency and reduce the huge costs, especially those of 
Phase II and Phase III [1]. The target selection, which is at 
the early stage of drug discovery, highlights the importance 
of the predication and validation of druggable targets. Dur-
ing this lead compound generation period, in silico technol-
ogies, especially docking and scoring in virtual screening, 
play an essential role for their relatively higher efficiency 
and lower costs as compared with traditional experiment 
[2–4].

Although the docking and scoring are widely used, 
they still fall short of the robust reliability requirement 
from drug discovery [5–7]. Consequently, a tremendous 
amount of efforts have been made to improve the perfor-
mance of both the docking power and scoring functions. 
In order to evaluate the various docking software, many 
benchmarking databases have been developed, such as 
the Community Structure Activity Resource (CSAR) [8] 
and Directory of Useful Decoys (DUD) [9] and Com-
parative Assessment of Scoring Functions (CASF) [10]. 
Recently, Lagarde et al. have well reviewed the evaluation 
of these data sets [11]. In addition, many researches have 
examined the various docking software and scoring func-
tions [5, 6, 12–14]. The scoring functions can be largely 
responsible for the failure of pose prediction, especially 
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for the self-docking case, in which the native ligand is 
docked back to its cognate protein [15, 16]. However, 
the sampling problem (including solvation and entropic 
effects), which has been highlighted by MM/GB(PB)
SA calculations based on simulation snapshots [17–21], 
can also be one reason of the incorrect pose predictions. 
Unfortunately, the sampling problem of MM/GB(PB)
SA calculation is not clearly illustrated, and the neces-
sary number of snapshots, for example, is still a contro-
versial issue. Although the statistical precision of MM/
GB(PB)SA can be achieved by a large number of inde-
pendent snapshots obtained from a long time molecular 
dynamics (MD) simulation, some studies have shown 
that calculation based on single minimized structures can 
give as good or even better result as MD in some cases 
[22–24]. The single snapshot calculation has emphasized 
the importance of the initial structure, especially for the 
poses from docking software. Therefore, it is necessary 
to examine the stability of initial structure of complex, 
particularly for the structure from docking.

The examination of stability by MD simulation strongly 
relies on the accuracy of the force-field parameters. How-
ever, to the best of our knowledge, it has not been fully 
investigated how much modern MD simulations can main-
tain experimental protein–ligand binding modes properly, 
although some attempts have been made [25, 26]. In this 
article we have systematically investigated the stability of 
ligand binding poses on a set of complexes with drug-like 
ligands by analyzing the ligand conformation and posi-
tional changes under MD simulation. In other words, our 
current interest focuses on the relative stability of various 
correct and incorrect ligand poses under MD simulation. 
As the first step, we focus on self-docking, which means 
the native ligand is docked back to its cognate protein. We 
then evaluate the relative stability of various ligand bind-
ing poses (correct/decoy poses) and examine the possibility 
of filtering out the unfavorable poses by equilibrium MD 
simulations. The calculation based on cross-docking would 
be discussed elsewhere.

The rest of this article is organized as follows. In “Mate-
rials and methods”, the procedures to build a drug-like 
ligand data set and various docking poses are explained. 
The details of MD simulations are also described there. 
In “Result and discussion”, the stabilities of ligand poses 
under MD are evaluated by comparing the root mean 
square deviation (RMSD) values with the corresponding 
poses from docking. It is shown that MD simulations are 
accurate enough to judge most experimental binding poses 
as stable properly, while decoy poses are much less sta-
ble. The possible reasons of some inconsistencies with the 
experimental data are also discussed. Summary and con-
clusion is devoted to the summary and the implications of 
our results for drug design.

Materials and methods

Collection of complexes

The drug-like ligands were initially selected from sc-PDB 
database (release 2013) [27, 28], which provided con-
venient options based on physicochemical properties of 
ligand. We set our criteria for drug-like molecule as listed 
in Table 1 according to Refs [29–33]. Based on these cri-
teria, the ligand data set, which consists of 2345 complex 
structures out of 9283 entries from sc-PDB database, was 
selected for further refinement. Meanwhile, the binding 
affinity of the targets was an indispensable property of our 
interests. Therefore, those PDB files, which lack binding 
information (from the Binding MOAD database, release 
2014 [34, 35]), were discarded. After that, 1039 PDB files 
were obtained.

Considering the expensive cost of our calculations on 
this large number of PDB files, the number of PDB files 
was further refined. We built a prior data set based on the 
cross-checking of our ligand data set with three available 
and widely used data sets for docking: Iridium [36], CSAR, 
and CASF data sets, in which the structure qualities of the 
complexes had been carefully examined. We then obtained 
85 overlapped PDB files, 16 from Iridium data set (highly 
and moderately trustworthy set, release Feb. 13, 2014, 224 
PDB files), 48 from CSAR data set (NRC-HiQ, release 
Sept. 24, 2010 and 2009–2011 update, 466 PDB files), 
and 21 from CASF data set (the core set, release 2013, 195 
PDB files), respectively. The reasons for the low overlap 
(about 10%) among data sets were mainly attributed to: (1) 
The interest of each data set was not the same. For example, 
many small molecules (MW less than 200) were included 
in both CSAR and CASF data set. (2) The completeness of 
each data set was different. Although all the PDB files were 
from Protein Data Bank (PDB) [37], the number of entries 
included in each database was much different.

In addition to the prior data set of these 85 PDB files, 
some candidates from the remaining PDBs were rescued 
to enrich the ligand data set. Along with the general rule 
of thumb for high quality crystal structure selection [8, 10, 

Table 1  The criterion of physicochemical properties of ligand [29–
33]

Descriptor Values

Molecular weight (MW) 200  ≤  MW  ≤ 460
AlogP −1   ≤ AlogP   ≤ 4.2
Rotatable bonds ≤7
Number of rings ≤4
Number of H-bond donor (HBD) ≤4
Number of H-bond acceptor (HBA) ≤8
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36], we further refined the ligand data set based on protein 
structural qualities, such as resolution, completeness of 
residue chains and lower B factor of proteins. Considering 
the efficiency of the calculations by MD, in addition, the 
complexes with large number of amino acids (>500) were 
also discarded. Consequently, 35 PDB files were added to 
our test set, and 120 PDB files were finally collected for the 
following calculation (Supporting Information, Table S1).

Complex preparation and initial poses generation

The structure of each complex, downloaded from PDB, 
was prepared by LigX module of MOE (release 2014. 09) 
[38]. The potential structural problems of amino acid resi-
dues in complex were automatically corrected and capped 
by ACE and NME for two terminals separately. Then the 
complex was protonated and optimized with constraint on 
whole complex by default settings in QuickPrep module 
with AMBER10 EHT force field. In addition, the atomic 
type of protonated ligand was carefully compared with that 
from sc-PDB and PDB. Only cofactor and ions within 6 Å 
from ligand were maintained, and others were removed.

Except the native pose from PDB files, other three dock-
ing poses were generated by Glide docking (version 67011, 
Schrödinger) [39]. All crystal waters were removed for 
docking since it is difficult to know whether these waters 
are displaceable without pre-knowledge. On the other hand, 
all the crystal water molecules were kept for the simula-
tions of the native poses.

Self-docking of Glide standard precision (GlideSP) was 
used to obtain three docking poses for each protein struc-
ture. Except the default settings of GlideSP docking, the 
value of RMSD deviation was set to 2.0  Å. This was set 
as a threshold to enrich various possible binding poses 
[20]. After poses were ranked by Glide gscore, the RMSDs 
(heavy atom only) between generated poses and the native 
pose of ligand from crystal structure were calculated. 
According to the values of RMSD and gscore, three kinds 
of poses were defined (pose0: the closest to the native pose 
and its value of RMSD change is less than 2.0 Å, pose1: 
the smallest gscore pose with the RMSD larger than 2.0 Å 
from both pose0 and the native pose, and pose2: the small-
est gscore pose with the RMSD larger than 2.0 Å from all 
of native, pose0, and pose1). The pose1 and pose2 can be 
considered as two reasonable decoys. We consider that 
2.0  Å is a reasonable threshold to judge the similarity of 
the ligand binding poses.

MD preparation

We here have four different ligand binding poses for each 
complex, named the native pose and other three dock-
ing poses (pose0, pose1 and pose2). The ligand was 

parametrized by RESP charge from Gaussian 09 [40] cal-
culation with HF/6-31G(d) basis set, while the parameters 
(AM1-BCC charges) of cofactor were generated by default 
sqm program [41]. The AMBER14 ff14SB force field 
[42] was employed for amino acid residues. The param-
eters for  Mg2+ and  Zn2+ were from AMBER parm99.dat, 
while those for  Mn2+ and  Ca2+ came from data of Brad-
brook et al. [43]. These parameters have been widely used 
and tested by AMBER user community. For other ions (for 
example,  Ni2+,  Co2+ and  Fe3+), the parameters of 12-6-4 
potential [44] were used. The complex was finally solvated 
in a TIP3P cuboid water box with at least 8 Å away from 
any protein atoms. Note that the crystal water existed only 
in native poses.

We used the same protocol for all MD calculations as 
follows. The particle mesh Ewald molecular dynamics 
simulation (PMEMD) was used for the electrostatic cal-
culation and the SHAKE algorithm was employed for the 
constraint of hydrogen atoms. A default cutoff (8  Å) of 
intermolecular interaction is used to limit direct space sum 
in PMEMD. After 1000 steps of optimization (500 cycles 
of steepest descent and 500 cycles of conjugate gradient 
minimization) with weak constraints (1.0 kcal/(mol Å2)) on 
the heavy atoms of a protein/ligand complex, the whole box 
was again optimized for 1000 cycles without any constraint 
(500 cycles of steepest descent and 500 cycles of conjugate 
gradient minimization). Then, the complex was gradually 
heated to 300 K by Langevin thermostat for 200 ps in NVT 
ensemble with a weak constraint (0.5 kcal/(mol Å2)) on the 
whole complex.

It is important to consider the dependency on initial 
velocities when we judge the stability of the simulations 
[45]. We thus performed five independent simulations with 
different initial velocities since the heating process. For 
each MD run, the box was further equilibrated with the 
same weak constraint (0.5 kcal/(mol Å2)) on the complex 
for 500 ps under 1 atm, controlled by the Berendsen cou-
pling algorithm. Finally, 10 ns production in NPT ensemble 
was performed without any constraint. During the produc-
tion run, the time step and collection interval was set to 2 fs 
and 10  ps, respectively. In order to minimize the human 
fault, all the settings of MD simulations were prepared and 
generated by the script automatically.

Result and discussion

Basic features of the ligand data set

Figure  1 shows the selected properties of ligand mol-
ecules from the collected 120 PDB files. The wide dis-
tributions of these physicochemical properties imply the 
generality of our ligand data set. The diversity of ligand 
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molecules was additionally calculated by Tanimoto simi-
larity, which was only 0.04 for all ligands. The proteins 
in our data set consisted of kinase, enzyme and non-
enzyme and so on. By examining the information from 
DrugBank [46], we found that 49 proteins (41%) were 
known as drug targets, for which small-molecule drugs 
were already on the market, such as the Tyrosine-protein 
kinase JAK2, Heat shock protein HSP 90-alpha, and 
Estrogen receptor I. 39 proteins (32%) were of potential 
pharmaceutical interest and some of them (11 targets) 
were under clinical trials. No record was found for the 
remaining 32 proteins (27%) (Supporting Information 
Table S1). We also accessed the binding affinity of com-
plexes in our data set. The average −log10K of the data 
set was 6.7, which corresponds to the typical activity 
level of lead compound (Because of the different activity 

detection in experimental methods, here the binding affin-
ity is roughly evaluated by −log10K (K = Kd,  Ki or  IC50)).

Initial poses obtained from self‑docking

We obtained three different docking poses for each com-
plex as explained in Materials and Methods. Table 2 shows 
the average RMSD of all docking poses. Compared to the 
native pose, the average RMSD values (docking power) 
of pose0, pose1 and pose2 were 0.7 ± 0.4, 4.2 ± 1.9 and 
5.0 ± 2.0  Å, respectively. The small RMSD deviation of 
pose0 shows that it was actually very close to the experi-
mental pose.

Table 2 also lists the coverage ratio, which was defined 
as the ratio that the closest pose to the native one was 
included in the top N docking poses. We see that only 

Fig. 1  Selected physicochemical properties of the data set
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50/118 complexes (42%) were correctly ranked as the 
best for pose0 (pose0: the closest to the native pose). If 
taking the top 10 poses into consideration, 106/118 cases 
(90%) had the pose0 within these top 10 poses. In con-
trast, 29/120 complexes (24%) of pose1 were incorrectly 
ranked as the best pose based on Glide gscore function. 
Note that RMSDs of pose1 were more than 2.0 Å from the 
native pose. The coverage of pose1 and pose2 in top 10 was 
113/120 (94%) and 99/117 (85%), respectively. These high 
ratios of pose1 and pose2 in top 10 suggest that these poses 
were comparable with pose0 in terms of the docking score. 
Therefore, we consider that these poses are reasonable and 
challenging decoys.

Figure 2 presents the RMSD value distribution of pose0 
for all ligands. Two cases (The RMSD of 2R8Q and 1V7A 
were 3.1 and 2.2 Å, respectively) were excluded for the fol-
lowing analyses on pose0 because their RMSDs were larger 
than our criterion (2.0 Å) for the closeness. The RMSDs of 
pose0 of the remaining 118 PDBs were all less than 2.0 Å. 

It suggests that the correct binding mode was sufficiently 
covered by GlideSP self-docking. For the detailed informa-
tion of all the calculated RMSDs, see Table S3 in Support-
ing Information. Note that there were no pose2 for three 
complexes (2B1Z, 3V49 and 4GS9), because the RMSD 
values of them did not satisfy our criterion mentioned 
above.

Results from MD simulation

We now analyze the stability of complex by MD simula-
tion statistically. In order to measure the statistical stability 
of the system, five independent simulations with different 
initial velocities are performed for each pose, starting from 
the same energy-minimized structure. Because the simula-
tion trajectory depends on the initial velocities [42], it is 
difficult and risky to judge the stability of the ligand bind-
ing mode only from one simulation. Therefore, the binding 
mode is considered to be unstable during the simulation 
only when all five independent simulations fail to keep the 
initial binding modes.

We thus performed 2375 MD simulations in total for 
the four kinds of poses (120 complexes with native pose, 
118 complexes with pose0, 120 complexes with pose1 
and 117 complexes with pose2) with five different veloci-
ties. Among these 2375 MD simulations, more than 97% 
(2318/2375) MD runs have been normally finished. This 
high completion rate indicates the generality and reliability 
of the current protocol for MD simulation. The failed cases 
were attributed to the shake error during the simulations. 
The nature of this error would be due to the unfavorable 
initial geometry of the ligand inside, because all the calcu-
lations on the complexes with the native poses were nor-
mally terminated.

We simply measured the convergences after the 10  ns 
production simulations by the RMSD deviations of protein 
backbone (BB), shown in Fig. 3. We see that after the 10 ns 
production step the complexes were all equilibrated, except 
the only one case of 3QPN with pose2 (the average devia-
tion of its five simulations is 5.1 ± 0.1 Å).

Figure  4 shows the percentage of acceptable MD runs 
for all four kinds of poses by the MD simulations. We 
define a pose as stable (“Acceptable”) by simulation when 
any simulation among the five parallel MD runs has the 
RMSD less than 2.0 Å, where the RMSD of each simula-
tion is the average value of the last 500 snapshots (these 
snapshots come from the last 5 ns, the collection interval 
is 10 ps). The reference structure of the RMSD calculation 
is the first snapshot, which comes from the docking pose 
after the energy-minimization with constraint as described 
in “MD preparation”. Considering even the correct pose 
can experience the unbinding event depending on the initial 
velocity assignment, the RMSD value can be apart more 

Table 2  RMSD and rank of pose0, pose1 and pose2 from Glide 
docking

a TOP N: means the top N poses, ranked by Glide score
b The coverage ratio is the ratio of the closest pose to the native one 
that is included in the TOP N candidates

Pose Rank of 
Glide 
 scorea

Coverage 
 ratiob

Average 
RMSD of all 
PDBs (Å)

Standard 
deviation of 
RMSD (Å)

Pose0 TOP 1 42% (50/118) 0.7 0.4
TOP 5 74% (87/118)
TOP 10 90% (106/118)

Pose1 TOP 1 24% (29/120) 4.2 1.9
TOP 5 87% (104/120)
TOP 10 94% (113/120)

Pose2 TOP 1 0% (0/117) 5.0 2.0
TOP 5 62% (73/117)
TOP 10 85% (99/117)

Fig. 2  Distribution of RMSD values of pose0 from Glide self-dock-
ing
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than 2 Å in that case. Therefore, a pose is judged as unsta-
ble only when all five independent runs have the RMSD 
larger than 2.0 Å.

The analyses based on the first, first three and all five 
MD trajectories were initially compared. As the number 
of MD run increased, the number of acceptable MD also 
increased as it should be. The difference in the acceptable 
number by performing one, three or five simulations should 
be attributed to the overestimation in the protocol. The 
incorrect pose was considered to be stable, for example, if 
the RMSD change of any one among the parallel MD runs 
was accidently less than 2.0 Å. The reason of allowing this 
overestimation was that we would like to include the cor-
rect binding pose (pose0) as much as possible. Instead, 
when only one simulation was performed, more decoys 

were excluded, but the risk of excluding correct bind-
ing pose (pose0) was also increased. At the current step, 
we think that keeping the correct binding poses is more 
important than excluding more number of decoys because 
the remaining decoys can be further discriminated by other 
methods, for example, the more accurate but expensive 
binding free energy methods [47].

In the case of the native poses, about 94% (113/120) 
ligand poses were judged as stable by simulations. We also 
see that about 88% (104/118) of pose0, 63% (75/120) of 
pose1, and 56% (65/117) of pose2 were stable. It is under-
standable that the simulation could maintain the binding 
modes with high probability for the correct binding poses 
(native and pose0). The relatively low stability for the 
incorrect binding modes (pose1 and pose2) is also reason-
able. This finding is interesting because it indicates the pos-
sibility that we can exclude some of wrong binding poses 
only by performing simple equilibrium simulations, while 
keeping the correct poses.

More detail information is available in Tables S3 and S4 
in Supporting Information. Table  S3 lists the stability of 
complexes by MD simulations. We see that the backbone 
and core residues were very stable for most cases, while 
the stability of the ligands differs very much among native, 
pose0, pose1, and pose2 as we have seen in Fig. 4 above. 
This result confirms that protein geometries from the high 
resolution crystal structures are reasonable and the simula-
tions can maintain these structures.

We next examine the failed cases for native poses, where 
the ligand poses were judged as unstable by all five inde-
pendent MD runs. There were only 7 failed cases among 
the 120 native poses by the current defined threshold 
(RMSD <2.0  Å): 4BFZ (2.0  Å, which is the minimum 
RMSD value of ligand under 5 parallel MD runs), 4JP9 
(2.1 Å), 4ANP (2.1 Å), 2BYH (2.4 Å), 4KP5 (3.0 Å), 3IOF 
(3.2 Å) and 1IA1 (4.1 Å). The slightly large RMSD values 
of 4BFZ and 3IOF might be attributed to the flexibility of 
protein side chain, because the RMSDs of core residues of 
these systems were also relatively large (1.4 and 1.7 Å for 
4BFZ and 3IOF, respectively, see Table S4 in Supporting 
Information for details). For the case of 4ANP complex, 
the large fluctuation of ligand may be because of the weak 
strength of binding (−log10K = 3.7).

The intrinsically disordered fragment of a ligand might 
be also one reason. We observed that the flexible pyrimi-
dine group of 4KP5 resulted in the large RMSD change of 
ligand under MD (see Fig. 5a). After excluding the pyrimi-
dine group from RMSD calculation, the RMSD value 
was reduced to 0.9 Å. Because of this flexible pyrimidine 
group, the large RMSD change (1.9 Å) of ligand was also 
found in the corresponding calculation on pose0.

Another reason for the failed cases may be the unsuit-
able parameter of force field. Figure 5 b, c shows the ligand 

Fig. 3  Distribution of the deviation of RMSD for the protein back-
bone (BB) of complexes in all simulations, except pose2 of 3QPN, 
the deviation of which is 5.1 ± 0.1  Å among five parallel runs. For 
the 10  ns production step, the first half (5  ns) are discarded. Then 
the time-scale RMSDs of the backbone (BB) are calculated based on 
the final 500 snapshots (the collection interval is 10 ps). Finally, the 
convergence of the MD simulation is evaluated by the deviation of 
RMSDs of backbone (BB)

Fig. 4  Percentages of acceptable MD runs for all the pose types. The 
acceptable ratio is defined as (the number of poses that was consid-
ered as stable)/(the number of the poses). Detailed values are also 
presented in Table S4 in Supporting Information
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pose changes before and after MD simulation of 4JP9 and 
2BYH, respectively. The differences of poses were due 
to the breaking/forming of the hydrogen bond (H-bond) 
between the ligand and the protein. Especially for the case 
of 2BYH, the dihedral angle N–C–C–C of ligand was 
changed from − 27.4° in crystal structure to −70.5° after 
MD simulation. In the corresponding calculations on the 
complex with pose0, the initial structures of them were 
very close to their native poses (only 0.3 and 0.2  Å for 
4JP9 and 2BYH). But the similar H-bond breaking/forming 
behaviors were again found after MD simulations.

Compared to the result of 1IA1 with pose0, the behavior 
of 1IA1 with native pose was strange. The initial geometry 
of ligand was almost the same between the native pose and 
the pose0 from docking (RMSD = 0.2  Å). After the MD 

simulation, however, the values of RMSD changes were 
4.1 and 1.5 Å for native pose and pose0, respectively. The 
difference in simulation between the native pose and pose0 
was that the crystal water only existed in the native pose. In 
addition, a bridging water molecule between the ligand and 
Ile-112 was only observed in the case of the native pose 
after MD, shown in Fig. 5d. These results suggest that the 
initial position of water molecules (crystal water or water 
generated by AMBER) may be inappropriate.

Because pose0 is the closest to native one in definition, 
similar behavior of pose0 to that of native pose under MD 
should be generally expected. Although, this expectation 
was satisfied for most cases, there were 13 cases, where the 
RMSDs were larger than 2.0  Å. Table  3 lists the RMSD 
values of these cases.

Fig. 5  a Complex of 4KP5 before MD (green) and after MD (final 
snapshot, yellow), b complex of 4JP9 before MD (green) and after 
MD (final snapshot, yellow). The H-bond between ligand and Asp233 
before MD is replaced by the H-bond through bridging water after 
MD. c The H-bond between ligand and Asn97 in 2BYH complex 
(green) is lost after MD, and a new H-bond is formed between ligand 

and THR175 (final snapshot, yellow). The dihedral angle of N–C–C–
C is changed from − 27.4° before MD (in crystal structure) to −70.5° 
after MD. d Complex of 1IA1 before MD (green) and after MD (final 
snapshot, yellow). The bridging water (yellow sphere) was trapped in 
pocket after MD. Complex name is shown at upper right of each fig-
ure, and unit of bond length in (c) is angstrom
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In the cases of 1L2S, 1TOW, and 3EKR, the RMSDs of 
pose0 obtained from the docking were larger than 1.7  Å. 
The fact that these initial poses were not sufficiently close 
to the native poses may have caused the large RMSDs 
(>2.0 Å) after MD runs for these complexes. For the com-
plex of 2AIA, 1DY4, 2HD6, 1H46, 1JJE and 3DD8, the 
larger RMSD changes (>1.6  Å) were observed also in 
the native poses. This suggests that even the native poses 
tended to be unstable under simulations and these behav-
iors may be due to the instability of the binding modes 
itself and/or the insufficient parameters of force field and 
simulation time.

We also compared the RMSDs not only with the initial 
poses of pose0 but also with the native poses in Table 3. 
It is interesting that the RMSDs to the native poses were 
less than 2.0  Å after MD runs in the six systems (1L2S, 
1NR6, 3DD8, 1DY4, 1TOW, and 3QPN) though the cor-
responding RMSDs to the pose0 after docking were large 
than 2.0  Å. This result suggests that the MD simulation 
improved the binding poses obtained from docking, and 
the large RMSDs to pose0 after MD runs were obtained 
because the pose0s were not sufficiently similar to the 
native poses. This result implies that MD simulation can 
improve the docking poses in some cases.

Another possible reason for the failed cases of pose0 
should be the influences of crystal water molecules because 

the crystal waters were kept in the native pose calculations, 
while they were absent for the calculation of pose0 in our 
study (see Method section for detail protocols). We investi-
gated the system of 2QBS as an example, where the RMSD 
of pose0 after MD [2QBS, RMSD = 0.6 Å before MD (from 
docking), RMSD = 5.4  Å after MD] was the largest. We 
found that one important bridging crystal water molecule 
was replaced after MD, shown in Fig. 6a, which caused the 
large RMSD changes after MD. The direct H-bond inter-
action between ligand and arginine residue resulted in the 
large change in the position of the hydrophobic motifs of 
the ligand. To confirm the effect of this water molecule 
we merged the crystal water into the complex structure of 
pose0, and performed the MD simulations similarly. These 
simulations confirmed the importance of this crystal water 
in 2QBS. The carboxylic group maintained at the similar 
position of the crystal structure through the H-bond with 
the bridge water in all 5 MD runs (Fig.  6b). This result 
emphasized the bias to remove the important crystal water 
molecule from the MD for pose0 calculation. The impor-
tant water molecules can be placed before MD simulation 
by the analysis based on the three dimensional reference 
interaction site model (3D-RISM) [48] or grand canonical 
Monte Carlo simulation (GCMC) [49, 50], though the dif-
ference in the acceptable MD runs between native pose and 
pose0 was small in the current analyses as shown in Fig. 4.

The percentages of RMSD values larger than 2.0 Å for 
decoy poses (pose1 and pose2) were 38% (45/120) and 44% 
(52/117), respectively. These percentages are clearly larger 
than 6% (7/120) and 11% (13/118) for native and pose0, 
respectively. This observation is reasonable because pose1 
and pose2 are incorrect binding modes. It indicates that 
MD simulations have the capability to distinguish incorrect 
binding modes from correct binding modes. Our current 
investigations suggest that if we use 2.0 Å as the threshold, 
38–44% incorrect binding poses can be excluded just by 
performing equilibrium MD simulations. Although 6–11% 
correct poses are excluded improperly, this percentage can 
be further decreased by preparing binding modes closer to 
the native ones and by placing presumed initial water mol-
ecules by 3D-RISM or GCMC before MD (as shown in the 
case of 2QBS above).

In addition, if one uses 2.5 Å as threshold value, the per-
centage of the wrongly excluded correct binding poses is 
decreased to only 3%, though the percentage of properly 
excluding incorrect poses is also decreased to 19–24%. 
Such a criterion (2.0  Å) is actually adopted in our in-
house protein–ligand binding free energy prediction tool 
to discriminate improper binding poses before the heavy 
free energy calculation and the detail will be described 
elsewhere.

In our current work, only self-docking was employed. 
Thus, we investigated the differences of the stability of 

Table 3  RMSD value changes (Å) of selected pose0 and the corre-
sponding native pose

a RMSD value is compared to the native pose
b Ligand means the RMSD of ligand is compared to the pose before 
MD (pose0 from docking or native pose from crystal). The value of 
A/B means that the reference of A after MD is pose0 from docking, 
while that of B is native pose. NC means not calculated
c Core means the resides are within 6 Å away from ligand

PDB ID Pose0 Native pose

Ligand 
after 
 dockinga

Ligand after  MDb Corec Ligand 
after 
 MDb

Corec

2AIA 1.2 2.0/2.5 2.0 1.9 0.9
1L2S 1.8 2.0/0.7 1.5 0.7 0.7
3SFF 0.7 2.0/2.0 1.1 0.8 0.9
1NR6 1.1 2.0/1.7 1.2 1.3 1.4
3DD8 0.9 2.1/1.7 1.1 1.7 0.7
1DY4 1.0 2.2/1.5 0.6 1.9 0.7
2HD6 1.2 2.2/2.4 0.7 1.6 0.6
1TOW 1.8 2.3/1.3 0.8 1.0 0.7
1H46 1.1 2.3/2.2 0.7 1.7 0.6
3QPN 1.2 2.4/0.6 0.7 0.8 0.6
1JJE 0.4 3.4/3.6 1.1 1.9 1.1
3EKR 1.7 3.5/3.2 1.1 0.8 0.6
2QBS 0.6 5.4/NC 0.7 1.5 0.7



209J Comput Aided Mol Des (2017) 31:201–211 

1 3

various correct and decoy poses by MD simulation. Our 
strategy is also extendable to the cases, when the complex 
belongs to the same local minimum around the crystal 
structure and sampled as one of the fluctuating structures 
during MD simulations. It would be also interesting to 
investigate cross-docking case, though it may be more dif-
ficult for the systematic study, considering the influences 
from the various structural differences (e.g. side-chain 
orientation, DFG-in/out, different folds) among template 
structures that we can select from the crystal structures 
or simulations. These selections may be somewhat arbi-
trary for the systematic investigation and can be strongly 
system-dependent.

Although our results were based on self-docking, some 
useful suggestion in practical usage may be obtained. The 
docking result showed that it was risky to select only the 
best scored pose as the correct binding mode, because the 
coverage ratio of the best scored poses was less than 50% 
in the self-docking. Therefore, more docking poses should 
be taken into consideration. If the top 10 scored poses were 
included here, for example, the coverage ratio was dramati-
cally improved to 90%. Accordingly, the exclusion of incor-
rect binding poses will become crucial and complicated. 
Different stabilities of these docking poses were observed 
under MD, as shown in Fig. 4. The different performances 
between correct poses (pose0) and incorrect poses (pose1 
and pose2) under MD indicated that simple equilibrium 
MD simulation is useful to exclude some incorrect poses, 
though many incorrect poses survived stably by the cur-
rent procedure. Therefore, the further discrimination by 
more accurate methods such as the binding free energy 

calculation will be required to determine the correct poses 
eventually.

Summary and conclusion

In this paper, we investigated how much the correct ligand 
binding poses were maintained as stable poses and how 
much the incorrect poses were judged as unstable by the 
modern MD simulations. The possibility to distinguish the 
correct and incorrect docking poses only from the inde-
pendent parallel MD simulations was also investigated.

First, the high-quality data set of 120 complexes was cre-
ated, which satisfied the typical physicochemical properties 
of the drug-like ligands. In addition to the native pose from 
the crystal structure, three binding poses (pose0, pose1, and 
pose2) were generated by docking software for each com-
plex. Here, pose0 was the closest pose to the native one, 
and pose1 and pose2 were decoys which differed substan-
tially from pose0. The high ranks of pose1 and pose2 in top 
10 candidate poses from docking score suggested that these 
were challenging decoys.

Five parallel 10 ns MD simulations with different initial 
velocities were then performed for each complex. We found 
that about 94% (113/120) native poses and 88% (104/118) 
pose0 were recognized as stable by the simulations. It is 
understandable that the simulations maintained the correct 
binding modes (native and pose0) with high probability. 
This result suggests that the modern molecular dynam-
ics method can properly perform the stable protein–ligand 
equilibrium simulations for most cases.

Fig. 6  Influence of crystal water molecule to the pose0. a Position of 
pose0 in 2QBS before (green) and after MD simulation (final snap-
shot, yellow) without including a crystal water molecule. b After 
including the crystal water molecule in simulations, the pose0s (final 

snapshots of 5 independent MD runs) are stable under MD runs and 
close to docking pose0 in all five parallel MD runs. Complex name is 
shown at upper right of each figure
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On the other hand, the percentages of RMSD val-
ues larger than 2.0  Å for decoy poses (pose1 and pose2) 
were 38% (45/120) and 44% (52/117), respectively. These 
percentages are clearly larger than 6% (7/120) and 11% 
(13/118) for native and pose0, respectively. It suggests that 
MD simulations have the ability to distinguish incorrect 
binding modes from correct binding modes.

The failure cases of pose0 may be attributed to the inap-
propriate parameters of force field. Currently, the param-
eter of ligand is generated by RESP charge fitting derived 
from quantum calculation results, which is a common and 
widely used procedure. However, different fitting method 
may result in large difference during MD simulation [51]. 
For those special cases, detailed investigation on the force 
field parameter generation of ligand would be of impor-
tance to the improvement of our protocol.

In addition, the analysis of 2QBS with pose0 highlighted 
the importance of crystal water. This information of the 
important water molecules is rarely known in practice. 
However, this problem may be alleviated by placing some 
presumed water molecules into complex from theoretical 
prediction, such as the method based on reference interac-
tion site model or grand canonical Monte Carlo simulation.

In the current analysis, the stability of incorrect poses by 
the statistical analyses based on the 5 parallel runs may be 
overestimated. This is because the incorrect pose is judged 
as stable, when the RMSD change of any one among the 
5 parallel MD runs is less than 2.0 Å. Thus, we can main-
tain the correct binding pose (pose0) as much as possible. 
Further discrimination between the correct poses and those 
survived decoys may be handled by the absolute binding 
free energy calculation based on perturbation theory.

Our investigations suggest that if we use 2.0  Å as the 
threshold 38–44% incorrect binding poses can be excluded 
just by performing equilibrium MD simulations. If one uses 
2.5 Å instead, the percentage of the wrongly excluded cor-
rect binding poses can be decreased to only 3%, though the 
percentage of properly excluding incorrect poses is also 
decreased to 19–24%. We have actually adopted such a cri-
terion (2.0 Å) in our in-house protein–ligand binding free 
energy prediction tool for the compromise between accu-
racy and efficiency. Because the computational cost of the 
binding free energy calculations is expensive, it is very 
useful if we can some exclude putative wrong poses by the 
simple equilibrium simulations. The detailed protocol of 
our binding free energy prediction tool and its application 
to drug design will be discussed elsewhere.
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