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Introduction

Lipophilicity is the most important physicochemical 
property in drug discovery and a key design parameter in 
medicinal chemistry [1–4]. Lipophilicity has tradition-
ally been linked [5–8] to permeability although it has long 
been recognized that high lipophilicity is associated with 
poor aqueous solubility [9] and is an undesirable fea-
ture in compounds intended to be drugs [10]. Lipophilic-
ity considerations feature prominently in the well-known 
‘Rule of 5’ (Ro5) [11] which is essentially a statement of 
physicochemical property distributions for compounds 
that had been taken into Phase II clinical studies at some 
point before the publication of the original study. Although 
invoked frequently, and occasionally outside its applicabil-
ity domain of oral absorption, Ro5 provides no guidance 
as to how compliant compounds should be optimized. It is 
also unclear why the high polarity limit for Ro5 is specified 
in terms of hydrogen bonding while the low polarity limit 
is defined by lipophilicity. The wide acceptance of Ro5, 
and the popularity of approaches to data presentation that 
hide or mask variation, tend to blind drug discovery sci-
entists to the possibility that lipophilicity may be less pre-
dictive of outcomes, such as pharmacological promiscuity, 
than is commonly believed [12].

Lipophilicity is usually quantified as a partition coef-
ficient (P) and the nature of solute partitioning between 
immiscible solvents has been understood for many years 
[13]. The distribution coefficient, D, of compound X may 
be defined as the ratio of concentrations of X in solvents 
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S1 and S2, where [Xi](S1) and [Xi](S2) are the concen-
trations of form i of the compound in solvents S1 and S2 
respectively:

The partition coefficient P is usually defined as the ratio 
of the concentrations of the neutral form of X in the two 
solvents:

Partition coefficients in drug discovery are convention-
ally defined with S1 as the organic solvent and S2 as water 
which means that the partitioning system may be speci-
fied by the organic solvent (e.g., Poct for octanol/water; 
Pchx for cyclohexane/water; Phxd for hexadecane/water). 
Partition coefficients are usually quoted as their base 10 
logarithms and, in this study, we will use the abbreviations 
‘logP’ and ‘logD’ for the base 10 logarithms of P and D 
with subscripts to indicate the organic phase (e.g., logPoct). 
The most commonly used organic solvent for lipophilicity 
measurement is octanol [14, 15] and a number of methods 
exist for prediction of logPoct [16]. The aqueous phase is 
typically buffered (e.g., pH 7.4) for lipophilicity measure-
ments and it is D (as opposed to P) that is actually meas-
ured. The distribution coefficient, which is a function of 
pH, and P are identical for compounds that are not signifi-
cantly ionized at the measurement pH. Making the assump-
tion that only neutral forms of compounds partition into the 
organic phase, D can be written as a function of P and the 
fraction, Fneut, of compound present as neutral form in the 
aqueous phase [17]:

In some cases [18, 19], ionized forms of compounds do 
partition into the organic phase and, in these situations, D 
also depends on the nature and concentration of counter 
ion(s). If required, logP can be obtained from the logD-pH 
profile or by applying Eq. (3) with a measured pKa value. 
However, neither of these approaches is routinely used in 
drug discovery programs and the logP values quoted for 
compounds that are significantly ionized are usually calcu-
lated rather than measured.

Like molecular size, lipophilicity can be regarded as a 
risk factor in drug discovery and the most direct way to 
monitor it during the course of a lead optimization project 
is to plot the response of potency to lipophilicity [20]. Pro-
vided that it is not simply a reflection of a narrow range in 
the data, a weak correlation between potency and lipophi-
licity is actually desirable because it indicates that the dis-
covery project team has room to maneuver. When potency 
and lipophilicity are more strongly correlated, the response 
of the former to the latter should be as steep as possible 
and this consideration can also be used to assess different 
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structural series within a project. It is also useful to model 
the response of pIC50 to logP (or logD) because this allows 
potency to be ‘normalized’ with respect to risk factor and 
the residuals quantify the extent to which the activity of 
a compound beats (or is beaten by) the trend in the data 
[20]. Andrews et  al. used residuals in an analogous man-
ner in their 1984 study of functional group contributions to 
drug-receptor interactions [21]. Subtraction of logD [22] 
or logP [23] from pIC50 was suggested for normalization 
of activity with respect to lipophilicity and the difference 
between pIC50 and logP (or logD) subsequently became 
known as ligand lipophilicity efficiency or lipophilic ligand 
efficiency (LLE) and lipophilic efficiency (LiPE) [24]. The 
difference between potency and logP can be interpreted as 
a measure of the ease of transferring the neutral form of a 
compound from an organic solvent (usually octanol) to its 
binding site although this interpretation is no longer valid 
when compounds bind to targets in ionized forms [20]. 
LLE/LiPE will appear to decrease with lipophilicity if the 
gradient of a linear response of potency to lipophilicity is 
less than unity and this should generally be considered as a 
characteristic of the structural series rather than interpreted 
in terms of ‘quality’ of individual compounds.

The octanol/water partitioning system is arbitrary and it 
has been suggested [17] that its adoption may reflect mis-
interpretation of work by Collander [25] who was aware 
of the relevance of the hydrogen bonding characteristics of 
the organic phase to partitioning. Octanol can form hydro-
gen bonds with solutes on account of the hydroxyl group in 
its molecular structure and its high water content at satu-
ration (2.5 M; equivalent to mole fraction of 0.29) [26] is 
greater than that of cyclohexane (0.003  M) [27] or hexa-
decane (0.002 M) [28]. It has been argued [29, 30] that a 
hydrocarbon solvent is a more appropriate model for the 
lipid bilayer core. The alkane/water partition coefficient 
(logPalk) provides a more direct measure of aqueous sol-
vation energy [17, 31–34] than its octanol/water counter-
part (logPoct) while being more amenable to measurement 
than gas to water transfer free energy [35]. It has also been 
suggested that a solvent lacking hydrogen bonding capac-
ity would represent the most appropriate reference state 
for normalizing potency with respect to lipophilicity [20]. 
Alkane/water partitioning systems are also more sensitive 
than octanol/water to changes in polarity resulting from 
conformational biasing and intramolecular hydrogen bond-
ing [36]. Cyclohexane [37], and other hydrocarbon solvents 
such as hexadecane [28, 29] have been used for logP meas-
urement for many years [38–59]. The difference between 
logPoct and logPalk provides a measure of solute hydrogen 
bonding capacity and is of considerable interest in its own 
right [39, 41, 44–46, 51, 53, 54]. It is usually given the 
symbol ΔlogP and it is effectively an octanol/alkane parti-
tion coefficient where both phases are saturated with water.
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Although cyclohexane and hexadecane are the most 
commonly encountered organic solvents in alkane/water 
partitioning studies, other hydrocarbon solvents are also 
used and it is typically necessary to aggregate measure-
ments for different alkanes (and different experimental pro-
tocols) for modelling studies [17]. The term ‘alkane/water 
partition coefficient’ (logPalk) is used both as a generic 
description of measurements made using very similar par-
titioning systems and to acknowledge that data has been 
aggregated for analysis. Compounds of interest to medici-
nal chemists tend to be poorly soluble in saturated hydro-
carbons and this presents challenges for measurement 
of alkane/water partition coefficients. Self-association is 
more of a concern for logPalk measurement than for logPoct. 
Just as ionization in the aqueous phase makes compounds 
appear to be less lipophilic than they actually are, self-asso-
ciation in the organic phase effectively masks polarity and 
results in an increase in apparent lipophilicity. Furthermore, 
differences in spectral characteristics (e.g. dimer absorbs 
more strongly than monomer) have the potential to exag-
gerate effects of self-association. However, partitioning of 
ions into the organic phase is less likely for hydrocarbon 
solvents than for octanol and the low solubility of water in 
the former reduces the likelihood of interactions with other 
solutes that can lead to ‘water-dragging’ [56]. Measure-
ment [34, 48, 57–59] and prediction [17, 33, 49–52, 60–62] 
of logPalk are both areas of active research.

The presence of hydrogen bond (HB) acceptors and 
donors in the molecular structure of a solute favors aque-
ous solvation and tends to make the solute less lipophilic. 
The less polar the organic phase, the greater the sensitiv-
ity of logP to solute hydrogen bonding capacity although 
it should be noted that contact between polar and non-
polar molecular surfaces is not inherently repulsive [63]. 
HB acidity and basicity are usually quantified as associa-
tion constants for 1:1 complexes in low-polarity solvents 
such as carbon tetrachloride or 1,1,1-trichloroethane and a 
large body of measured data (mainly HB basicity) is avail-
able [64–68]. Calculated molecular electrostatic potential 
(MEP) is an effective predictor of both HB acidity [69] and 
HB basicity [63, 70–72]. Minimized MEP (Vmin) reflects 
the electronic distribution within atoms and is arguably 
more relevant to intermolecular interactions than atomic 
charges which describe the electronic distribution between 
atoms [63]. MEP minima cannot, in general, be reproduced 
by atom-centered (or bond-centered) multipoles [63]. Vmin 
can be thought of as a ‘lone pair’ descriptor that is capa-
ble of explaining why pyrazine can accept a hydrogen bond 
despite lacking a permanent dipole moment. When relating 
measured HB acidity/basicity (1:1 complex) to solvation 
behavior, it is important to be aware that HB donors and 
acceptors of solute interact simultaneously with a number 
of solvent molecules (1:N complex) [63, 68]. HB acidity/

basicity measured for a polyfunctional compound with 
non-equivalent HB donors/acceptors is not generally mean-
ingful [63, 68] unless individual contributions to the overall 
formation constant can be determined [73]. Despite these 
limitations, HB acidity and basicity considerations can 
provide insight into partitioning phenomena just as parti-
tion coefficient measurements can provide insight into the 
nature and strength of hydrogen bonding. Taken together, 
formation constants of 1:1 hydrogen bonded complexes and 
partition coefficients complement views [74, 75] of molec-
ular recognition that are more based on analysis of X-ray 
crystal structures.

In this perspective we first show how analysis of logPalk 
measurements can be used to quantify polarity of both 
compounds and substructures. We then illustrate the con-
nection between polarity defined in this manner and hydro-
gen bonding by using examples of polar atom types (e.g. 
HB donors; aromatic nitrogen) and substructures (e.g. aro-
matic rings).

Computational details

ADD_CENTRE [63] and MEP2HB were created with the 
OEChem [76] toolkit which was also used with the OESpi-
coli toolkit [77] to create ClogPalk [17]. Each of the ADD_
CENTRE, MEP2HB and ClogPalk programs uses the Open-
Eye [78] implementation of SMARTS [79, 80] to specify 
substructures. Source code and documentation for these 
three programs and READ_GAUSS_FILE is provided as 
supplementary material.

Molecular structures were encoded as isomeric 
SMILES [81, 82] strings and Omega [83, 84] was used 
to generate a single conformation for each. Molecu-
lar geometries were energy-minimized in gas phase 
(MMFF94S) [85] using the Szybki [86] molecular 
mechanics program. Molecular surface area (MSA) was 
calculated from atomic coordinates and Bondi [87] radii 
using ClogPalk with a probe radius of 1.4 Å. Minimized 
molecular electrostatic potential [63, 70, 71] was calcu-
lated with Gaussian 09 [88] using the Hartree–Fock [89], 
B3LYP [90, 91] or MP2 [89, 92, 93] theoretical models 
with 6-31G** or 6-311 + G** basis sets [94–96]. The 
ADD_CENTRE software was used to calculate starting 
coordinates for MEP minimization by placing points on 
conventional ‘lone pair’ axes at distances that were typi-
cally between 1.3 and 1.5  Å from the relevant nucleus. 
The version of ADD_CENTRE (1.1) used in this study 
differs from the version (1.0) used previously [63] in that 
it provides additional functionality to probe-systems and 
handle nitroso oxygen. Starting points for MEP minimi-
zation with π-systems were generated by placing points 
on normals to the plane of symmetry that either pass 
through atomic nuclei or bond centroids at distances 
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in the range 1.5 to 2.0  Å. MEP minima are typically 
more difficult to locate for aromatic rings than for het-
eroatoms and ADD_CENTRE has a feature that allows 
a normal passing through a bond centroid to be rotated 
around the bond axis. Vmin values were extracted from 
Gaussian 09 output using READ_GAUSS_FILE and HB 
basicity (pKBHX) values were calculated for these using 
MEP2HB which applies models derived in a previous 
study [63]. For each atom type, Vmin was calculated at 
the level of theory corresponding to the most predictive 
model for pKBHX. An updated file of models for predic-
tion of pKBHX from Vmin is provided as supplemental 
material.

Measured alkane/water partition coefficients were 
taken from the literature and classified as CHX 
(cyclohexane), HXD (hexadecane) or ALK (alkane 
other than cyclohexane or hexadecane) according to the 
organic solvent. Unless otherwise stated, data in these 
three categories were aggregated for analysis and a file 
of 1144 values measured for 812 compounds is provided 
as supplementary information with links to their respec-
tive literature sources. Files of 453 measured HB basic-
ity (pKBHX) values and 63 measured pKa values are also 
made available as supplementary information. Octanol/
water partition coefficients were taken from a published 
compilation [97] or, in the case of 1,5-naphthyridine, 
from primary literature [51].

ClogPalk [17] was used to calculate reference logPalk 
values from MSA. The reference values used in the 
analyses for heteroaromatic nitrogen and carbonyl oxy-
gen accounted for polarity of benzylic substituents by 
subtraction of the following correction factors: benzyl 
(1.07), 3-chlorobenzyl (1.09) or 4-phenylbenzyl (1.78). 
Correction was only made the presence of benzylic sub-
stituents for one data point in the analysis for aromatic 
nitrogen and three data points in the analysis for car-
bonyl oxygen. The version of ClogPalk used in the cur-
rent study differs from that described previously [17] 
in the way that SMARTS patterns are matched. Previ-
ously, the parameter associated with a SMARTS pat-
tern was only assigned to the atom mapping onto the 
first atom of the SMARTS string. In the current version 
(1.1), the parameter associated with a SMARTS pattern 
is assigned to all atoms that map onto that SMARTS pat-
tern. Updated parameter files for the ClogPalk model that 
are compatible with the current version of the software 
are provided as supplemental material.

MUDO [98] was used for Matched Molecular Pair 
Analysis (MMPA) [99–104] and all statistical analysis 
was performed with JMP [105]. The predictive models 
for pKBHX and polarity used in this study (M01 to M16) 
are provided in Table 1.

Estimation polarity from measured partition 
coefficients

The general framework used in this study for relating parti-
tion coefficients to hydrogen bond capacity can be summa-
rized as:

In this framework, logP(expt) is the logP value measured 
for a compound and logP(ref) is logP for a physically mean-
ingful reference state which may either be a measured or 
calculated value. The HB donor and acceptor capacities for 
the compound are represented by α and β respectively and 
these are vectors because, in general, molecular structures 
have multiple HB donors and acceptors. Equation (4) treats 
HB donors and acceptors as perturbations of the reference 
state and exploiting Eq.  (4) requires that both reference 
state and function, f, be defined explicitly. Equation (4) can 
be used either to estimate HB capacity from logP measure-
ments or to predict logP from calculated HB capacity.

The polarity of a compound may be estimated from 
measured logPalk by making use of the strong linear rela-
tionship (M01, Table 1) between logPalk and MSA that is 
observed for saturated hydrocarbons. The reference state is 
a hypothetical saturated hydrocarbon with identical MSA to 
the compound of interest for which logPalk can be calcu-
lated reliably using M01 (Table 1). The polarity, Q, of the 
compound is defined as the difference between the value of 
logPalk calculated for this reference state and the measured 
value:

Q can be treated as a sum of contributions (qi) from polar 
substructures where ni is the number of instances of sub-
structure i in the molecular structure of the compound:

Equations (5) and (6) form the basis of the ClogPalk model 
[17] which associates qi values with substructures defined 
using SMARTS [79, 80] notation and is illustrated graph-
ically in Fig.  1. Equations  (5) and (6) can either be used 
with measured logPalk data to estimate qi or with calculated 
qi values to predict logPalk. A strong correlation between 
logPalk and molecular volume was also observed for satu-
rated hydrocarbons and analogous analysis based on that 
relationship has been reported [45]. If measured logPalk 
values are available for a number of compounds with only 
the substructure of interest and saturated carbon present in 
their molecular structures then the mean value of Q pro-
vides a direct estimate of qi for that substructure. This is the 
preferred approach for estimation of substructural polarity 
from measured logPalk although its applicability may be 

(4)logP(ref) − logP(expt) = f (�, �)

(5)Q = 0.0338 ×
(

MSA∕Å
2)

− 0.284 − logPalk

(6)Q = Σini × qi
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limited by data availability. Once qi has been determined 
directly for substructure i (e.g. benzyl substituent), it can 
then be used to estimate qj from measured logPalk for com-
pounds with only saturated carbon and substructures i and j 
in their molecular structures. This approach was used in the 
parameterization of the ClogPalk model [17] and estimation 

of substructural polarity in this manner may be termed 
‘indirect’. When modelling the response of polarity to HB 
capacity, it can be useful to correct Q for presence of other 
HB acceptors and donors since this enables exploitation of 
more measured data than would otherwise be possible. A 
corrected value of Q may be defined as follows where n is 

Table 1   Models for prediction of polarity and hydrogen bond basicity

Model Definition Description

M01 logPalk = A + B × MSA/Å2

A = −0.284 (0.077); B = 0.0338 (0.0006)
N = 47; RMSE = 0.159; R2 = 0.986

Relationship between logPalk and MSA for saturated hydrocarbons (Fig. 1)

M02 logPalk = A + B × MSA/Å2

A = −4.653 (0.065); B = 0.0329 (0.0005)
N = 54; RMSE = 0.127; R2 = 0.988

Relationship between logPalk and MSA for saturated alcohols (Fig. 1)

M03 logPalk = A + B × MSA/Å2

A = −7.998; B = 0.0345
N = 2

Relationship between logPalk and MSA for saturated diols (Fig. 1)

M04 logPalk = A + B × MSA/Å2

A = − 3.326 (0.312); B = 0.0345 (0.0024)
N = 10; RMSE = 0.127; R2 = 0.988

Relationship between logPalk and MSA for saturated ethers (Fig. 1)

M05 Q/n = A + B × (pKBHX − log n)
A = 1.83 (0.23); B = 1.26 (0.15)
N = 40; RMSE = 0.64; R2 = 0.64

Relationship between Q and measured pKBHX for compounds with nitrogen or 
oxygen HB acceptors (Fig. 2; n is number of HB acceptors)

M06 pKBHX = A + B × Vmin/au + C × (Vmin/au − 0.217)2

A = −1.86 (0.08); B = −55.1 (2.9); C = −707 (108)
N = 6; RMSE = 0.009; R2 = 0.999

Relationship between pKBHX and Vmin (MP2/6-311 + G**) for some non-fused 
aromatic rings (Fig. 3a)

M07 Q = A + B × Vmin/au
A = −0.15 (0.32); B = −46.7 (10.8)
N = 22; RMSE = 0.21; R2 = 0.48

Relationship between Q and Vmin (MP2/6-311 + G**) for N-methylpyrrole, 
benzene and methylbenzenes (Fig. 3b)

M08 pKBHX = A + B × Vmin/au
A = −3.67 (0.18); B = −56.1 (1.8)
N = 58; RMSE = 0.177

Calculation of pKBHX from Vmin (B3LYP/6-311 + G**) for aromatic nitrogen

M09 pKBHX = A + B × Vmin/au
A = −3.52 (0.13); B = −59.3 (1.7)
N = 110; RMSE = 0.200

Calculation of pKBHX from Vmin (MP2/6-31G**) for carbonyl oxygen

M10 pKBHX = A + B × Vmin/au
A = −2.83 (0.13); B = −50.9 (1.7)
N = 110; RMSE = 0.164

Calculation of pKBHX from Vmin (MP2/6-31G**) for sulfoxide oxygen

M11 pKBHX = A + B × Vmin/au
A = −2.97 (0.31); B = −39.9 (3.5)
N = 11; RMSE = 0.257

Calculation of pKBHX from Vmin (HF/6-31G**) ether oxygen

M12 qaromN = A × exp(B × pKBHX(pred))
A = 1.285 (0.098); B = 0.515 (0.035)
N = 29; RMSE = 0.21

Relationship between of heteroaromatic nitrogen polarity and pKBHX calculated 
using model M08 (Fig. 4)

M13 qcarbonylO = A × exp(B × pKBHX(pred))
A = 2.216 (0.041); B = 0.4852 (0.011)
N = 45; RMSE = 0.22

Relationship between carbonyl oxygen polarity from and pKBHX calculated from 
model M09 (Fig. 6)

M14 qetherO = A + B × pKBHX(pred)
A = 1.383 (0.086); B = 1.923 (0.143)
N = 14; RMSE = 0.236; R2 = 0.94

Relationship between ether oxygen polarity and pKBHX calculated using model 
M11 (Fig. 5)

M15 ΔlogPoct[N→CH] = A + B × pKBHX(pred)
A = 0.88 (0.04); B = 0.30 (0.03)
N = 6; RMSE = 0.04; R2 = 0.97

Relationship between effect of aza-substitution on logPoct and pKBHX calculated 
using model M08 (Fig. 8; green line; no)

M16 ΔlogPoct[N→CH] = A + B × pKBHX(pred)
A = 0.67 (0.08); B = 0.31 (0.04)
N = 4; RMSE = 0.04; R2 = 0.96

Relationship between effect of aza-substitution on logPoct and pKBHX calculated 
using model M08 (Fig. 8; red line; benzo-fused)
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the number of instances of the HB acceptor (or donor) of 
interest, and qcorr,i and ncorr,i are, respectively the polarity 
and number of instances of a substructure i:

In this study, Qcorr values were used to model the responses 
of polarity to calculated pKBHX for heteroaromatic nitrogen 
and carbonyl oxygen although correction factors were only 
defined for three substructures: benzyl (1.07), 3-chloroben-
zyl (1.09) and 4-phenylbenzyl (1.78).

MMPA [99–104] can be used to estimate polarity dif-
ferences between substructures. A matched molecular pair 
consists of two compounds that are linked by a specific 
structural transformation (e.g. carboxyl to tetrazole) that 
may be regarded as a perturbation of either structure. For 
example, the effect on logPalk of N-methylation of a sec-
ondary amide group may be estimated by averaging the 
difference in logPalk between secondary amides and their 
N-methylated analogs:

In general, the structural transformations that define 
matched molecular pairs result in changes in MSA and 
this must be accounted for when using MMPA to estimate 
polarity differences between substructures. For example, 
the difference in the polarity of substructures 1 and 2 can 
be written as:

(7)Qcorr = (Q − Σincorr,i × qcorr,i )∕n

(8)ΔlogPalk[Amide:NH → Amide:NMe
]

= logPalk
[

R1C(=O)N(Me)R2] − logPalk[R1C(=O)N(H)R2]

The advantage of MMPA is that it allows measured data for 
compounds with non-equivalent HB donors and acceptors 
in their molecular structures to be exploited for estimation 
of polarity.

One advantage of defining polarity in terms of a differ-
ence between partition coefficients is that Q is invariant 
with respect to standard state. Partition coefficients are usu-
ally defined in terms of molar concentration units although 
mole fraction can also be used. Any model for partition-
ing (or binding) must be able to accommodate a change in 
standard state definition in order to be considered to have 
a valid thermodynamic basis. While prediction of partition 
coefficients is the main focus of this Perspective, measures 
of substructural polarity derived from logPalk are also of 
interest for modelling molecular recognition in aqueous 
media [55]. One of the objectives of this study is to evalu-

ate calculated HB basicity as a predictor of substructural 
polarity and it is instructive to examine the relationship 
between Q and measured pKBHX that is illustrated in Fig. 2. 
The compounds in this data set were selected to have either 
a single HB acceptor (e.g. cyclohexanone) or two equiva-
lent HB acceptors (e.g. dioxane) which means that Q can 

(9)
q1 − q2 = ΔlogPalk[1 → 2] −

(

0.0338∕Å
2)

× ΔMSA[1 → 2]

Fig. 1   Plot of measured logPalk against molecular surface area for 
saturated hydrocarbons (grey circles; model M01 in Table  1), satu-
rated alcohols/diols (red diamonds; models M02/M03 in Table 1) and 
saturated ethers (green diamonds; model M04 in Table 1). Other than 
saturated carbon, only the atoms defining each functional group are 
present in molecular structures for this data set

Fig. 2   Plot of polarity against measured HB basicity for structurally 
prototypical compounds with only a single HB acceptor or two sym-
metrically equivalent HB acceptors in their molecular structures. Data 
has been plotted on a per-HB acceptor basis by normalizing both Q 
and pKBHX by the number (n) of HB acceptor atoms and details for 
the least squares line of fit (model M05) are given in Table 1
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be associated with the HB acceptor of each compound. 
The results shown in Fig.  2 suggest that development of 
a model for logPalk that is based entirely (i.e. without sub-
structural parameterization) on measures of HB acidity and 
basicity derived from formation constants of 1:1 hydrogen 
complexes is unlikely be feasible.

Polarity of hydrogen bond donors

The octanol/water system is relatively insensitive to the 
presence of HB donors in molecular structures and logPoct 
is of practically no value in assessing HB acidity [12, 46, 
54]. Consequently, it is necessary to use alkane/water sys-
tems to study hydrogen bond donors with partition coef-
ficient measurements. Polarity estimates for a number 
of common HB donors are presented in Table  2. Gener-
ally, the presence of an HB donor in a molecular structure 
implies that at least one HB acceptor is also present and 
this means that the HB donor contribution to polarity can-
not be estimated directly using equations (5) and (6). Most 

of the values in Table 2 were derived from MMPA using 
Eq.  (9). Availability of data made it possible to estimate 
polarity for hydroxyl, thiol and carboxylic acid HB donors 
by using equations (5) and (6) indirectly (e.g. as polarity 
difference between alcohols and ethers). Polarity was also 
estimated for the primary sulfonamide HB donors using 
equations (5) and (6) although this reflects lack of data for 
matched molecular pairs. One question that arises from this 
analysis concerns the extent to which alkylation of nitro-
gen or oxygen perturbs HB basicity although it is likely 
that donation of an HB to water will affect HB basicity in a 
similar manner.

The polarity estimates in Table  2 suggest that hydro-
gen atoms interact more strongly with water when 
bonded to oxygen than when bonded to nitrogen. This is 
broadly consistent with logKα values typically observed 
[66] for amides, phenols and carboxylic acids although it 
is important to be aware that HB donation by hydroxyl is 
likely to result in an increase in HB basicity of oxygen 
[51]. The interactions of the HB donors of benzamides 

Fig. 3   Minimized Molecular Electrostatic Potential (MEP) for aro-
matic systems. The Vmin calculations were performed for MMFF94S 
energy-minimized structures using the MP2/6-311G** protocol and 
the atomic units (au) are Hartree per elemental charge. a Plot of HB 
basicity (pKBHX) against minimized MEP (Vmin) for non-fused aro-
matic compounds lacking conventional HB acceptors (model M06, 
Table  1). b Plot of polarity, Q, against (Vmin) for N-methylpyrrole, 

methyl-substituted benzenes and chloro-substituted benzenes. The 
logPalk value for 1-methylpyrrole has been estimated from the logPalk 
value measured for pyrrole, making the assumption that the effect 
of N-methylation will be the same for pyrrole as for indole. c Vmin/
au values calculated for π-systems of 1-methylpyrrole, o-xylene and 
chlorobenzene showing the positions and magnitudes of the MEP 
minima
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and anilides with water appear particularly weak, sug-
gesting that methylation of these nitrogen atoms favors 
conformations in which the amide carbonyl oxygen atom 
can form more effective interactions with water. Analo-
gous observations have been made for chromatographi-
cally-measured lipophilicity [106].

Although polarity differences can be discerned 
between the different types of HB donor, it is more 
instructive to compare them with polarity estimates for 
compounds with a single HB acceptor nitrogen or oxy-
gen. The values of Q (in parentheses) for acetonitrile 
(3.5), 1-methylimidazole (5.5), 1-methylpiperidine (3.8), 
tetrahydrofuran (3.1), acetone (3.8), dimethylformamide 
(5.7), N-acetylpyrrolidine (6.8) and dimethylsulfoxide 
(7.0) suggest that the HB acceptors in these compounds 
are typically more polar than any of the HB donors in 
Table 1. Defining polarity in terms of logPalk enables HB 
donors and acceptors to be brought onto the same scale 
in a way that is not possible with measures of HB acidity 
and basicity derived from association constants for 1:1 
hydrogen bonded complexes. These observations point 
to a general tendency for water to interact more strongly 
with HB acceptors than with HB donors and are consist-
ent with the view that anions interact more strongly than 
cations with water [107–109]. One question raised by the 
hydration imbalance between HB donors and acceptors 
concerns the extent to which it can be explained by the 
molecular (as opposed to the solvent) structure of water. 
The hydration imbalance between the HB donor and 
acceptor of the amide group should be considered when 

modelling protein folding and intramolecular hydrogen 
bonding of cyclic peptides.

Aromatic π‑systems

Unlike other substructures used as illustrative examples, 
the HB capacity of π−systems cannot be linked to indi-
vidual atoms. Aromatic hydrocarbons are more polar than 
saturated hydrocarbons and water is an order of magnitude 
more soluble in benzene than cyclohexane at temperatures 
ranging from 10 to 40 °C [27]. A Q value of 1.0 can be cal-
culated for benzene using equations (5) and (6), indicating 
polarity comparable with the HB donor of an amide. An 
increase in the extent of the π-system typically leads to an 
increase in polarity although the Q values for phenanthrene 
(1.5) and pyrene (1.4) suggest that the trend is not particu-
larly strong. The Q value for N-methylindole (2.5) indicates 
that this heterocycle is particularly polar and this is a factor 
that may need to be specifically accounted for when mod-
elling interactions of tryptophan residues. The π-systems 
of aromatic rings function as HB acceptors and pKBHX 
values have been measured [68] for benzene (− 0.49) and 
1-methylpyrrole (0.23). Figure  3a illustrates the relation-
ship (M06, Table 1) between pKBHX and Vmin which can be 
used to predict pKBHX for the aromatic rings of chloroben-
zene (−1.0) and 1,3-dichlorobenzene (−1.6). While it is 
well-established that aromatic π-systems can interact with 
HB donors, the key question in pharmaceutical design is 
whether the π-system of an aromatic ring interacts more or 
less strongly with its binding partner than with water.

The Vmin values associated with π-systems provide a 
measure of potential for interaction with HB donors and 
could be used as physicochemical descriptors of aromatic 
character [110]. Two pairs of MEP minima were observed 
for the π-system of indole and these are associated with the 
C4-C5 bond (Vmin = −0.035 au; calculated pKBHX = −0.06) 
and the C2–C3 bond (Vmin = −0.032 au; calculated 
pKBHX = −0.18). The MEP minima associated with the 
C4–C5 bond lie closer to C5 than C4 and it is significant 
that 5-azaindole is most basic of the azaindoles [111]. MEP 
calculations can be used to compare the effects of substitu-
tion and ring-fusion. For example, the Vmin value (−0.0005 
au; predicted pKBHX = −2.15) calculated for buckminster-
fullerene suggests that its π-system accepts hydrogen bonds 
even less readily (on a per-bond basis) than 1,3,5-trichlo-
robenzene (−0.0021 au; calculated pKBHX = −2.01). Two 
challenges for using pKBHX (or Vmin) to model aqueous sol-
vation of π-systems are that numbers of interacting water 
molecules are not generally known and that HB basicity 
derived from data for 1:1 complexes is not directly relevant 
when a π-system accepts more than a single HB.

A plot of Q against Vmin is shown in Fig.  3b for a 
selection of non-fused aromatic compounds and a line 

Fig. 4   Relationship between corrected polarity, Qcorr, and pKBHX 
calculated for heteroaromatic nitrogen using model M08 (Table 1). A 
curve (model M12, Table 1) was fit to the filled black circles which 
correspond to compounds in which heteroaromatic rings are either 
non-fused or which have a doubly-connected nitrogen atom in each 
ring (e.g. 1,5-napthyridine). Halogen-substituted pyridines (red cir-
cles) and fused heterocycles (red and green diamonds) are shown for 
reference but were excluded from training set. For furan, logPalk was 
approximated by logPoct (ΔlogP ∼ 0 for weak HB acceptors) and the 
measured pKBHX value was used
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(M07, Table 1) has been fit to the data for 1-methylpyr-
role, benzene and the methylated benzenes. The chlorin-
ated benzenes all lie above the reference line indicating 
that they are more polar than would be expected from 
Vmin values calculated for their π-systems. These results 
are consistent with a view that some of the lipophilicity 
increase associated with chloro-substitution is the result 

of a reduction in the HB basicity of the ring which would 
imply that chloro substituents on aromatic rings are less 
lipophilic than is commonly assumed [112, 113]. Addi-
tional support for this view comes from MMPA [99–104] 
which shows that replacement of chloro with methyl for 
primary alkyl chlorides leads, on average, to a 1.4 unit 
increase in logPhxd (Table 3). In contrast, replacement of a 

Fig. 5   Predicted logPalk for a selection of heteroaromatic com-
pounds. Substructural polarity (qaromN) values associated with aro-
matic nitrogen atoms were calculated (M12, Table  1) from Vmin 
(M12, Table 1). A correction factor (+ 2.0) has been applied for pres-

ence of adjacent hydrogen bond acceptors in 10 and 12 (but not 7) 
and the uncorrected predictions are shown in parentheses for these 
compounds
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chloro substituent on a benzene ring with a methyl group 
tends to result in a small decrease in logPhxd. MEP calcu-
lations suggest that the chlorine atoms of chlorobenzene 
(Vmin = −0.019 au) and dichloromethane (Vmin = −0.020 
au) are of similar polarity. A single MEP minimum 
(Vmin = −0.024 au) was found for 1,2-dichlorobenzene 
and this indicates that, in contrast with dichloromethane, 
through-space interactions between the chlorine atoms 
are more important than through-bond interactions.

Aromatic nitrogen

Aromatic nitrogen is an important molecular recognition 
element in medicinal chemistry and the pKBHX and logKβ 
values measured [66–68] for it span a wide range, indicat-
ing that this atom type is relatively sensitive to substructural 
context. This makes it more difficult to parameterize polar-
ity by substructure and therefore increases the potential 
impact of a polarity model based on MEP. The relationship 
between Qcorr and calculated pKBHX (Model M08, Table 1) 
is shown in Fig.  4 for compounds with aromatic nitrogen 
HB acceptors. In this analysis, a substructural correc-
tion (for benzyl) was applied for a single measured logPalk 
value although two other values of Qcorr reflect scaling by 
the number of heteroaromatic nitrogen atoms. For model-
ling, the dataset has been restricted to molecular structures 
with one or more nitrogen atoms present in each aromatic 
ring and that are either unsubstituted or alkyl-substituted 
(e.g. 4-methylpyridine and 1,5-naphthyridine but not qui-
noxaline). The underlying assumption is polarity of an 
aza-substituted aromatic ring is dominated by the nitrogen 
so that the contribution of the π-cloud may be neglected. 
Making this assumption allows Qcorr to be equated to the 
substructural polarity, qaromN, of aromatic nitrogen for the 
training set compounds. 1-Benzylimidazole was included 
in the training set because the contribution to polarity of 
the benzyl group can be corrected for. An exponential func-
tion (Model M12, Table  1) was fitted to the data which 
allows qaromN to be calculated from Vmin. The rationale for 
fitting an exponential function is that the contribution of 
an HB acceptor to logPalk tends asymptotically to zero as 

Fig. 6   Relationship between corrected polarity, Qcorr, and pKBHX cal-
culated for carbonyl oxygen using model M09 (Table 1). The curve 
(model M12, Table 1) was fit to the black circles which correspond 
to molecular structures with either one carbonyl group (e.g. cyclo-
pentanone) or two symmetrically equivalent carbonyl groups (ben-
zoquinone). The red diamonds correspond to sulfoxides which were 
not included in the fitting and the pKBHX values for these compounds 
were predicted using model M10 (Table 1)

Table 2   Polarity of hydrogen 
bond donors (HBD)

a Number of data points
b Mean decrease in logPalk resulting from creation of hydrogen bond donor
c Standard deviation for decrease in logPalk resulting from creation of hydrogen bond donor
d Typical hydrogen bond acidity measured for the atom type; see ref [66]
e Value reflects presence of two donor hydrogen atoms in substructure

Hydrogen bond donor Na Mean(qHBD)b SD(qHBD)c logKα
d

Aromatic NH (indole) 2 1.0 0.11 1.1
Aromatic NH (imidazole) 1 0.9 1.2
Aliphatic amide NH 6 0.8 0.10 0.6–0.7
Benzamide NH 1 0.2
Anilide NH 1 0.6 1.3
Cyclic imide NH 2 1.3 0.13
Amide NH2 1 1.3e

Sulfonamide NH2 2/1 (primary/tertiary 
sulfonamide)

1.9e 1.1

Aliphatic alcohol OH 54/10 (alcohol/ether) 1.5 0.26 0.8–1.5
Phenol OH 2 2.2 0.07 2.1
Carboxyl OH 22/46 (acid/ester) 2.1 0.28 1.8–2.1
Aliphatic SH 6/3 (thiol/thioether) −0.3 0.72
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the HB basicity becomes very weak. Values of Qcorr were 
also plotted in Fig. 4 for a number of compounds that had 
been excluded from the training set because of uncertainty 
about the contributions to polarity from substructures 
other than aromatic nitrogen. Fused five-membered het-
eroaromatic rings all lie above the fitted curve, indicating 
that other factors (e.g. presence of oxygen in ring; π-cloud 
polarity of carbocyclic ring) need to be considered when 
interpreting polarity for these compounds. The data for qui-
noline, isoquinoline and quinoxaline were not used for fit-
ting M12 (Table 1), on account of the carbocyclic rings in 
their molecular structures. However, all lie close to the fit-
ted curve which suggests that the carbocylic rings of these 
compounds make only small contributions to polarity. The 
pKBHX values calculated (Model M06, Table 1) for the car-
bocyclic rings of 1-methylbenzimidazole (−0.2), quinoline 
(−0.8), isoquinoline (−1.2) and quinoxaline (−1.3) may 
explain why the largest positive residual was observed for 
the first compound. Positive residuals were also observed 
for the halogenated species and this suggests that the polar-
ity of the halogen atoms cannot be neglected. The pKBHX 
values calculated for the nitrogen (0.4) and each fluorine 
(−0.6) atom of 2,6-difluoropyridine suggest that the fluoro 
substituents significantly influence the polarity of this 
compound.

Equations (5) and (6) were used with calculated qaromN 
(M12, Table  1) to predict logPalk for a number of com-
pounds for which the only substructures with HB capac-
ity were aromatic nitrogen atoms (Fig. 5). Predicted and 

measured logPalk values were compared for five com-
pounds with two or more non-equivalent heteroaromatic 
HB acceptors. The largest discrepancies between meas-
urement and prediction were observed for 2 and 4 and, 
in each of these cases, the predicted value is less than the 
measured value which indicates that HB acceptor capac-
ity has been over-estimated in the context of alkane/water 
partitioning. It is well known [63, 66–68, 71, 114] that 
heteroaromatic compounds such as pyridazine (12) with 
adjacent nitrogen atoms are better HB acceptors than 
their proton basicity would suggest and this can be con-
sidered as a manifestation of the α effect [115] or thought 
of in terms of secondary electrostatic interactions [116]. 
While only 1:1 complexes are typically observed in the 
measurement of HB acidity or basicity, the HB donors 
and acceptors present in a molecular structure can all 
simultaneously form hydrogen bonds with water mol-
ecules in aqueous solution. HB donation to one of the 
nitrogen atoms of pyridazine would be expected to make 
it more difficult for the other nitrogen atom to accept 
an HB for a number of reasons. Firstly, accepting an 
HB makes nitrogen more electronegative and this will 
tend to draw electron density away from the other nitro-
gen atom. Secondly, simultaneous HB donation to both 
nitrogen atoms of pyridazine would result in an electro-
statically repulsive orientation of water molecules that is 
enthalpically unfavorable. Thirdly, the orientation of two 
water molecules would increase the degree of constraint 
in the system and is therefore expected to be entropically 

Table 3   Matched molecular 
pair analysis of effect on 
hexadecane/water logP of 
replacing of chloro with methyl

a Number of Cl→CH3 matched molecular pairs
b Mean change in logPalk for of Cl→CH3
c Standard deviation in change in logPalk for of Cl→CH3
d Mean change in logPalk for of Cl→CH3 scaled by number of chlorine atoms
e Minimimized molecular electrostatic potential calculated at MP2/6-311 + G** level

Chloro compound N(MMP)a Mean(ΔMMP)b SD(ΔMMP)c Mean(ΔMMP)/
N(chloro)d

Vmin/aue

Primary alkyl chlorides 7 +1.40 + 0.10 +1.40
Chloromethane 1 +1.22 +1.22 −0.026
Dichloromethane 1 +1.68 +0.84 −0.020
Chloroform 1 +1.64 +0.33 −0.011
Carbon tetrachloride 1 +0.72 +0.18 −0.005
tert-Butyl chloride 1 +0.64 +0.64 −0.028
1,1,1-trichloroethane 1 +1.11 +0.37 −0.015
Chlorobenzene 1 −0.25 −0.25 −0.019
1,2-dichlorobenzene 1 −0.04 −0.02 −0.024
1,3-dichlorobenzene 1 −0.26 −0.13 −0.014
1,4-dichlorobenzene 1 −0.08 −0.04 −0.014
1,2,3-trichlorobenzene 1 −0.40 −0.13 −0.019
1,2,4-trichlorobenzene 1 −0.48 −0.16 −0.019
1,3,5-trichlorobenzene 1 −0.53 −0.18 −0.009
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unfavorable. It is noteworthy that the logPalk value calcu-
lated for 1 is very similar to the measured value and this 
observation is consistent with N3, which is predicted to 
be a significantly stronger HB acceptor than N2, domi-
nating the solvation of this triazole.

The view that adjacency of HB acceptors compromises 
solvation has implications for molecular design and it can 
be conjectured that similar considerations apply to adja-
cent HB donors. The entropic costs of solvating adjacent 
polar atoms can also be thought of in terms of molecular 
complexity [117] and solvation can be described as ‘frus-
trated’ [118] when hydration spheres of polar atoms over-
lap to a significant extent. This implies that the presence 
of adjacent HB donors or acceptors in a concave region of 
a protein molecular surface should be viewed as a design 
opportunity [119]. It has also been suggested that molecu-
lar structures capable of presenting arrangements of hydro-
gen bonding groups that cannot easily be mimicked by 
clusters of water molecules represent a molecular recogni-
tion theme [63] that might be exploited in fragment design 
[120]. Measurement of logPalk for structurally prototypical 
compounds would allow frustrated hydration to be studied 
systematically.

Predictions for a number of heteroaromatic compounds 
for which experimental values have not been reported 
are also presented in Fig.  5 and the values calculated for 
10 and 12 (but not 7) have been corrected (+2.0) for the 
presence of adjacent HB acceptors. The HB acceptors of 
9 and 15 are predicted to be the weakest for the structures 
shown in Fig.  5 and measured logPalk values for these 
would be particularly informative for refining the model 
illustrated in Fig. 4. The cyclohexane/water partition coef-
ficient component of the SAMPL5 challenge [33, 34] fea-
tures compounds of higher molecular complexity than the 
structurally prototypical compounds typically encountered 
in the logPalk literature and this is certainly appropriate for 
testing prediction methods. Nevertheless, a case can be 
made for inclusion of structural prototypes that are likely 
to present specific challenges for solvation models. The 
prediction difficulties presented by strong HB acceptors 
that are aligned point to compounds of potential interest 
in initiatives like SAMPL5 [33, 34] and the HB acceptor 
characteristics of 1,8-naphthyridine and 1,2,3-triazine have 
already been highlighted in this context [63]. Prediction 
in drug design frequently focuses [99–104] on differences 
between values of properties (e.g. decrease in solubility 
resulting from chloro-substitution) and this is a theme that 
could be explored in challenges such as SAMPL5 [33, 34]. 
For example, measured logPalk for pairs of compounds of 
identical molecular shape, but differing in their hydrogen 
bonding characteristics (e.g. 1-butyltetrazole and 2-butyl-
tetrazole), would enable comparison of different solvation 
models with respect to their treatment of electrostatics.

Carbonyl oxygen

As is the case for aromatic nitrogen, the HB basicity of car-
bonyl oxygen is very sensitive to substructural context and 
it is therefore difficult to parameterize polarity for this atom 
type using substructural definitions. Oxygen atoms are typ-
ically associated with two HB acceptor sites that are not in 
general equivalent although this does not present special 
difficulties for modelling HB basicity because the experi-
ments are designed so that only 1:1 complexes are observed 
[67, 68]. The situation is very different in solvents with HB 
donor capacity because an oxygen atom can simultaneously 
accept two hydrogen bonds and using one HB acceptor 
site is likely to result in a decrease in the HB basicity of 
the remaining site [51]. The situation is analogous to that 
of aligned HB acceptors of 2 and 4 discussed in the previ-
ous section, although each HB acceptor site is likely to be 
even more sensitive to the environment of the other. The 
approach used in this study was to model polarity using 
the greater of the two pKBHX values predicted for each car-
bonyl oxygen atom in cases where the two values differ 
and HB basicity of carbonyl oxygen has been treated in an 
analogous manner for prediction of ΔlogP [51]. As was the 
case for aromatic nitrogen, the training set was restricted 
to compounds for which the polarity of the carbonyl oxy-
gen could be estimated from measured logPalk. In cases 
where the carbonyl group is part of an extended, non-fused, 
π-system (e.g. tertiary amides and benzoquinone but not 
naphthoquinone) substructural polarity is assumed to be 
due to the carbonyl oxygen. Three quinolones with benzylic 
substituents on nitrogen were also included in the training 
set because their inclusion improves coverage of chemi-
cal space and the polarity of substituents can be accounted 
for. The relationship between Qcorr and pKBHX predicted 
using M09 (Table 1) is shown in Fig. 6 for compounds with 
carbonyl or sulfoxide oxygen as the only atoms with HB 
capacity in their molecular structures. The data points for 
the sulfoxides were not used for modelling and all lie below 
the curve (M13, Table 1) that has been fit which suggests 
that predicted pKBHX exaggerates the polarity of sulfoxide 
oxygen.

Equations (5) and (6) were used to predict logPalk using 
models M12 (aromatic nitrogen), M13 (carbonyl oxygen), 
M14 (hydroxyl donating intramolecular HB) and the qHBD 
values in Table  2 (HB donors). The results are shown in 
Fig. 7 and agreement between predicted and measured val-
ues is poorer than what might be expected from the root 
mean square error (RMSE) for model M13 (Table 1) which 
highlights the difficulties in extrapolating from structural 
prototypes to situations where HB acceptors and/or donors 
are in close proximity. The predictions tend to exaggerate 
the polarity of these compounds and predicted logPalk val-
ues are typically lower than the measured values. As noted 
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Fig. 7   Calculated logPalk for compounds with carbonyl oxygen HB 
acceptors. Substructural polarity associated with atoms were calcu-
lated from Vmin using models M12, M13 or M14 (Table 1) or taken 
from Table  2. Each logPalk value is calculated by subtracting sub-
structural polarity values from a reference logPalk value calculated 

(model M01, Table  1) for a saturated hydrocarbon with the same 
molecular surface area. Hydroxyl groups forming intramolecular 
hydrogen bonds were modelled (M14, Table 1) as ethers and the par-
ticipating HB donors were treated as non-polar



176	 J Comput Aided Mol Des (2017) 31:163–181

1 3

in the previous section, simultaneous solvation of adjacent 
hydrogen bonding sites is likely to incur, at very least, an 
entropic cost and Vmin does not capture the polarization of a 
solute that accepts hydrogen bonds from one or more water 
molecules. The discrepancies between predicted and meas-
ured logPalk are particularly extreme for 21, 22, 24 and 25 
which may reflect a structural feature (carbonyl group adja-
cent to doubly-connected nitrogen) that is shared by these 
compounds. However, a more subtle factor may also be 
exerting its influence here. The carbonyl oxygen atoms for 
the compounds in the training set typically have HB accep-
tor sites for which the calculated pKBHX values are either 
identical or, at least, very similar. In contrast, the pKBHX 
values calculated for the HB acceptor sites of 22 (3.4 and 
2.2) differ by 1.2. This raises a more general question for 
quantitative structure activity/property relationship (QSAR/
QSPR) modelling. Suppose two descriptors X1 and X2 are 
strongly correlated for the training set compounds. Should 
a set of compounds for which X1 and X2 are weakly corre-
lated be considered to be within the same region of chemi-
cal space as the training set simply because the values of 
all descriptors used in the model lie within the ranges of 
training set values?

Values of logPalk have been calculated for three com-
pounds for which intramolecular hydrogen bonding is 
likely to influence partitioning characteristics. The calcu-
lated logPalk values are all lower (by 0.3 to 1.1 unit) than 
the measured values which indicates that the polarity of the 
compounds has been over-estimated. Formation of an intra-
molecular HB eliminates one of the MEP minima associ-
ated with carbonyl oxygen and it could be argued that this 
would place the compound outside the applicability domain 
of a model trained with data for carbonyl groups with pairs 
of very similar Vmin values. Nevertheless, the MEP calcu-
lations capture essential features of the intramolecular HB 
such as the reduced availability of the remaining oxygen 
‘lone pair’. The intramolecular HBs for these three com-
pounds are likely to persist in the aqueous phase and this 
would be expected to facilitate prediction of logPalk, espe-
cially for a method like ClogPalk that uses a single confor-
mation to represent a structure.

Modeling logPoct for aza analogs of benzene 
and naphthalene

Although alkane/water partition coefficients represent 
the main focus of this study, hydrogen bonding also influ-
ences their octanol/water equivalents. Figure  8 illustrates 
the relationship between the effect of aza-substitution on 
logPoct and the pKBHX calculated for nitrogen. The analy-
sis has been performed on a per-nitrogen basis and the data 
points fall into two groups according to whether or not a 
carbocyclic ring is present in the molecular structure of 

the aza-analog. The small residuals observed for phthala-
zine and cinnoline suggest that proximity of HB acceptors 
is much less of a problem for prediction of logPoct than for 
logPalk. Calculated values of logPoct for aza analogs of ben-
zene and naphthalene are shown in Fig. 9. On a technical 
note, aza-analogs of benzene and naphthalene should be 
considered outside the applicability domains of these mod-
els if they are substituted (even with alkyl).

One aspect of lipophilicity control in molecular 
design is to achieve a balance between the polar and non-
polar portions of molecular structures. The logPoct val-
ues for benzene (2.1) and 4-propylpyridine (2.1) suggest 
that aza-substitution of benzene will counter the effect of 
a propyl substituent. However, in the hexadecane/water 
partitioning system, 4-propylpyridine (logPhxd = 1.3) is 
0.8 units less lipophilic than benzene (logPhxd = 2.1) sug-
gesting that aza-substitution will more than compensate 
for the presence of a propyl group. Differences like these 
raise the question of which partitioning system is ‘right’ 
for lead optimization and even whether there is a single 
‘right’ partitioning system for all applications. Despite 
its limitations, logPoct is likely to remain a useful design 
parameter for lead optimization and knowledge of HB 
acidity and basicity can help the medicinal chemist 
minimize the impact of the limitations. Lead optimiza-
tion is usually carried out against structural series that 
are defined by scaffolds and HB acceptors/donors (and 
ionizable groups) tend to be relatively conserved within 
series. This means that the choice of partitioning system 
becomes less important when working within a series 
than when performing data analysis for structurally 
diverse sets of compounds [20]. If a plot of pIC50 against 

Fig. 8   Relationship between effect on logPoct of aza substitution of 
benzene or naphthalene and pKBHX calculated for aromatic nitrogen 
using model M08 (Table 1). Differences in logPoct values were scaled 
by number of aza substitutions and points are grouped according to 
whether or not the aza-substituted species is fused with a carbocycle 
(1,5-naphthyridine is grouped with the aza-benzenes in green). The 
data was fitted using models M15 (green) and M16 (red) in Table 1
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logPoct shows a compound to be deviating sharply from 
the trend line, it is advisable to assess the hydrogen 
bonding characteristics of the compound before jumping 
to the conclusion that the observed potency is especially 
unusual. The medicinal chemist should also be cautious 
when attempting to extrapolate trends (e.g. response of 
aqueous solubility to logPoct) observed for one series to 
another series and be especially wary of any analysis in 
which continuous data has been transformed to categori-
cal data [12].

Conclusions

We show how logPalk measurements can be analyzed to 
define polarity for both compounds and substructures. 
Using a number of illustrative examples, we make a con-
nection between polarity defined in terms of partitioning 
and hydrogen bonding defined in terms of 1:1 complex 
stability. Defining polarity in this way highlights the hydra-
tion imbalance between the HB donor and acceptor of the 
amide group. Two insights relevant to molecular design are 
that aromatic chloro substituents may be less hydrophobic 
that is commonly believed and that hydration of adjacent 

Fig. 9   Prediction of logPoct for 
some six-membered heter-
oaromatic rings. Substructural 
polarity (qaromN) associated with 
nitrogen atoms values were cal-
culated from Vmin using models 
M12 (Table 1). Each logPoct 
value is calculated by subtract-
ing qaromN values from measured 
logPoct for either benzene (2.13) 
or naphthalene (3.30)
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HB acceptors (or donors) is likely to be frustrated. We 
show how pKBHX values calculated for aromatic nitrogen 
and carbonyl oxygen can be used in prediction of partition 
coefficients.
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