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Abstract The assessment of binding affinity between

ligands and the target proteins plays an essential role in

drug discovery and design process. As an alternative to

widely used scoring approaches, machine learning methods

have also been proposed for fast prediction of the binding

affinity with promising results, but most of them were

developed as all-purpose models despite of the specific

functions of different protein families, since proteins from

different function families always have different structures

and physicochemical features. In this study, we proposed a

random forest method to predict the protein–ligand binding

affinity based on a comprehensive feature set covering

protein sequence, binding pocket, ligand structure and

intermolecular interaction. Feature processing and com-

pression was respectively implemented for different pro-

tein family datasets, which indicates that different features

contribute to different models, so individual representation

for each protein family is necessary. Three family-specific

models were constructed for three important protein target

families of HIV-1 protease, trypsin and carbonic anhydrase

respectively. As a comparison, two generic models

including diverse protein families were also built. The

evaluation results show that models on family-specific

datasets have the superior performance to those on the

generic datasets and the Pearson and Spearman correlation

coefficients (Rp and Rs) on the test sets are 0.740, 0.874,

0.735 and 0.697, 0.853, 0.723 for HIV-1 protease, trypsin

and carbonic anhydrase respectively. Comparisons with the

other methods further demonstrate that individual repre-

sentation and model construction for each protein family is

a more reasonable way in predicting the affinity of one

particular protein family.
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Introduction

Structure-based drug design methods, such as docking,

have become a common tool in the drug discovery process

over the past decade [1–3]. One of the most important

issues in structure-based drug design methods is the

screening of available ligands with their relevant target

proteins. In most cases, the stronger a ligand binds with its

target protein, it would more probably affect the physio-

logical function of the protein, and as a consequence, it will

be likely a suitable drug candidate [4]. Therefore, the

assessment of the binding affinity between a ligand and its

target protein plays an essential role in drug discovery and

design process. The study on the relationship between the

descriptors of a given protein–ligand complex and its

binding affinity becomes very important in modern drug

discovery process since the binding affinity is mainly

determined by the interaction between the ligand and the

relevant macromolecular target [5, 6].

The most widely used methods for predicting the bind-

ing affinity of protein–ligand complex are based on dock-

ing and scoring functions that can identify the binding
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modes of the ligands and estimate the strength of the

protein–ligand interaction. Traditionally, the common

scoring functions in molecular docking can be roughly

divided into three different types: force field based methods

(e.g. DOCK [7], GOLD [8], SIE [9], and LIE [10] ),

knowledge based potentials (e.g. DrugScore [11], PMF [12,

13], DFIRE [14], and 3DDFT [15] ) and empirical scoring

functions (e.g. X-Score [16], FlexX score [17], SCORE

[18, 19], and SODOCK [20] ).

Nevertheless, although a few scoring functions such as

X-Score [16] achieves a remarkable performance on the

PDBbind benchmark, despite improvements over the last

years, most scoring functions still suffer from a rather poor

correlation with experimental binding affinity [22, 23].

Besides, docking and scoring approaches are not easy

implementation and often take a long time. For that reason,

as an alternative to widely used docking and scoring

approach, some other in silico methods such as Hi-PLS [24]

and novel geometrical descriptors-based methods [25, 26]

based on the structures of ligands and the relevant proteins

are also proposed for the fast prediction of the binding

affinity. These methods firstly use the molecular descriptors

calculated from the structures of the ligand and its target,

and then use machine learning methods to develop predic-

tion model. Ballester and Mitchell [21] reported a machine-

learning scoring function called random forest (RF)-score

that employed RF and it outperformed all other scoring

functions when tested on the core set in PDBbind V2007 by

using protein–ligand complex descriptors and a nonlinear

learning algorithm. Compared to the docking and scoring

functions based methods, these methods have shown the

obvious advantages such as easy implementation, fast pre-

diction process and strong predictive ability.

Since successes have been achieved by the methods

mentioned above, models constructed by these methods

were mostly on large functionally and structurally diverse

datasets. We can call them as generic models because they

are based on diverse protein–ligand complexes despite of

the functions of different target families. It is obvious that

generic models do not take the functional specificity of

each target family into account. It is widely believed that

specific models are superior to generic ones because of the

specificity, which have been proved by previous resear-

ches. For example, to address the problem that generic

models overlooked the difference among the actual phys-

iological states in different tissues, Zhao and Huang [27]

reconstructed a human heart-specific metabolic network,

Wang et al. [28] generated a heart-specific DM1 mouse

model. Lewalle et al. [29], Heil et al. [30] and Xu et al. [31]

constructed species-specific models rather than generic

models. As for binding affinity prediction, Saranya and

Selvaraj [32] developed QSAR models to predict the

binding affinity only for HIV-1 protease inhibitors and

achieved a good performance. Xue et al. [33] successfully

developed a kinase target-specific scoring function to

assess the binding of ATP-competitive kinase inhibitors.

Proteins belonging to different function families always

have different structures and physicochemical features

[33]. Therefore, in our work, three specific models were

constructed for three different target families of HIV-1

protease, trypsin and carbonic anhydrase respectively. As a

comparison, two generic models on diverse protein–ligand

complexes were also built. Each protein–ligand complex

was characterized by using a comprehensive feature set

covering all aspects of each complex, including protein

sequence, binding pocket, ligand structure and intermo-

lecular interaction. From the feature importance evaluation

and selection, the selected important features of each

family are very different from each other because of their

different functions. The large feature sets were observed in

the generic models due to the larger protein–ligand com-

plex sample space compared to the specific models.

Moreover, the specific models yield a better performance

than the generic models, which demonstrates that we

should take specificity of different functions of protein

families into account when predicting the affinity of the

protein–ligand complex and it would be more reasonable to

construct the specific model for the specific family.

Materials and methods

Dataset

All of the protein–ligand complex information was extracted

from the refined set of PDBbind database [34]. The PDB-

bind database is the largest data collection of the protein–

ligand complexes, with information for both binding affini-

ties and known 3D crystal structures. Being updated every

year, the version 2012 includes 2,897 protein–ligand com-

plexes with experimentally measured binding affinity data.

The refined set is composed by retrieving proteins that bind

only one known drug like ligand, excluding those with a

molecular weight higher than 1000 and both carbohydrates

and nucleic acids. Then, compounds with cofactors and

those with X-ray structure determined at a resolution higher

than 2.5 Å were also excluded. Finally, the complexes with

known dissociation constants (Kd) or inhibition constants

(Ki) were considered. Since the binding affinity values range

from 1.2 pM to 10.1 mM, we used the negative logarithm of

Kd and Ki values in this study.

Here, five datasets of protein–ligand complexes were

respectively constructed based on the refined set. Three are

family-specific datasets for three important target families

which are 170 complexes of HIV-1 protease, 110 complexes

of trypsin and 126 complexes of carbonic anhydrase. The
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three protein families are also most populated in the PDB-

bind refined set. The other two are generic datasets that

includes functionally and structurally diverse protein–ligand

complexes. The number of protein–ligand complexes pub-

licly available in the PDBbind database has grown from

1300 complexes in 2007 to 2897 complexes in 2012. Most

of the researches published to predict the binding affinity of

protein–ligand complexes applied the data of PDBbind

database version 2007 or some version even older. In order

to validate our model, we constructed two generic datasets

from version 2012 and 2007 respectively. We found that

four complexes from the refined set in the PDBbind database

V2007 have been abrogated or replaced in the Protein Data

Bank (PDB) now. As a consequence, in our work, there are

2897 protein–ligand complexes in version 2012 and 1296

protein–ligand complexes in version 2007, named as V2012

and V2007 respectively. The PDB IDs of the five datasets

are listed in supplementary information S1.

Li et al. [35] proposed a strategy to generate data parti-

tions using uniform sampling on a round-robin basis.

Though this partitioning method is not thoroughly random, it

has an obvious advantage that each partition could span the

largest range of binding affinities and incorporates the

largest structural diversity of different protein families.

Similarly, in order to select the training samples that can

fully represent the whole sample space in each dataset,

affinities of the protein–ligand complexes were sorted from

low to high and then divided into several subsets according

to the affinity value intervals. According to the ratio (4:1) of

the numbers of training samples versus testing ones, we

randomly select the training samples at each sample interval.

As a consequence, the HIV-1 protease dataset contains 136

complexes in the training set and 34 in the test set, the

trypsin dataset includes 88 and 22 samples in the training

and test set and the carbonic anhydrase dataset includes 100

and 26 complexes in the training and test set respectively.

For the two generic datasets, V2007 and V2012 contain

1037 and 259 complexes, 2318 and 579 complexes in the

training and test set, respectively. The training set and test

set extracting process was randomly repeated five times for

three family-specific datasets, and ten times for V2007 and

V2012, since these two generic datasets have large amount

of samples. So we built five models for each family-specific

dataset and ten models for the two generic datasets respec-

tively. A summary of all the datasets is shown in Table 1.

Methods

Feature extraction

The affinity of a protein–ligand complex is commonly decided

by features from the target protein, ligand and their interac-

tion. In this paper, we proposed a comprehensive feature set to

represent all aspects of a protein–ligand complex. Each pro-

tein–ligand complex was described by descriptors from four

blocks: protein sequence, binding pocket, ligand structure and

intermolecular interaction. These four blocks of descriptors

could cover the major information related to the specificity

and the binding affinity.

Block 1: Descriptors based on protein sequence

The FASTA format sequences of all proteins were collected

from PDB. Then, the structural and physicochemical features

of proteins were computed from amino acid sequences using

the web-version of PROFEAT software [36]. Seven types of

features were generated, which are (1) amino acid and

dipeptide composition, (2) normalized Moreau-Broto auto-

correlation, (3) Moran autocorrelation, (4) Geary autocorre-

lation, (5) composition, transition, distribution, (6) sequence

order and (7) Pseudo amino acid composition (k = 30),

respectively. At last, 1,080 descriptors were achieved.

Block 2: Descriptors from binding pocket

Binding pockets are the surface concavities of proteins where

a substrate might bind. The binding pocket in the PDBbind

database in each case was defined as the residues on the pro-

tein within 10 Å from the bound ligand observed in the crystal

structure. According to international conventions, the distance

cutoff of 10 Å means the distance from any atoms of the

amino residue to any atoms of the ligand in a protein–ligand

complex. Since the capability of a pocket to interact with small

molecules determines the biological function of a protein,

binding pocket descriptors are important to characterize the

interaction between a protein and its ligand. Before calculat-

ing the binding pocket descriptors, the binding pocket struc-

tures of the protein–ligand complexes from the PDBbind

database were first added with hydrogen atoms and then

minimized to the lowest energy conformation. After that, 30

descriptors were generated including 27 CPSA (charged

partial surface area) features, a FINGERPRINT feature, a

MOLPROP_VOLUME feature, and a MOL_WEIGHT fea-

ture by Sybyl-X (Version 1.1).

Table 1 A summary of affinity range and the number of samples in

each dataset used in this study

Protein family pKd/pKi range Number of complexes

Training set Test set

HIV-1 protease 4.30–11.59 136 34

Trypsin 2.27–7.96 88 22

Carbonic anhydrase 3.90–10.52 100 26

V2007 0.49–13.96 1037 259

V2012 2.00–11.92 2318 579
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Block 3: Descriptors of ligand structures

The following 6,122 structural descriptors of ligands were

obtained using PowerMV software (Version 0.61) [37],

including 546 atom pair descriptors, 4,662 atom pair

descriptors, 735 fragment pair descriptors, 147 pharmoco-

phore fingerprints descriptors, 24 weighted Burden number

descriptors and 8 properties descriptors.

Block 4: Intermolecular interaction features

The intermolecular interaction features published by Bal-

lester and Mitchell [21] were used. Briefly, the number of

occurrences of Ligand_atom–Protein_atom pairs in a

radius of 12 Å for the elements C, N, O, F, P, S, Cl, Br, and

I of the ligand and C, N, O, and S of each protein are

counted. Therefore, each complex will be characterized by

a vector with 36 variables. The 12 Å cut-off distance was

suggested in PMF [12] to incorporate the solvation effects

to the maximum extent.

Feature pre-processing and principal component

analysis(PCA)

Finally 7,268 feature variables were obtained from the four

blocks of descriptors of protein–ligand complexes. Ballester

et al. [38] found that a more precise chemical description of

the protein–ligand complex does not generally lead to a

more accurate prediction of binding affinity. Actually, when

the number of descriptors is large, the feature set probably

contains irrelevant and redundant variables that cause the

dimensionality problem and make the model difficult to

interpret [39]. This ‘‘curse of dimensionality’’ can also lead

to model overfitting [40], so it is necessary to implement

feature selection and compression. Here a principal com-

ponent analysis (PCA) was employed to perform objective

feature selection before model building.

Firstly, for each model, before separating them into the

training set and test set, a rigorous pre-processing was per-

formed on features of each block respectively. Descriptors in

each block were checked for constant or near constant val-

ues and those detected were removed from the original

feature vector. Then these descriptors were filtered to

remove the redundant variables whose pair correlation

coefficients were higher than 0.9.

Then considering the limited number of samples, PCA

was applied to compress the features into principal prop-

erties and hence new information-rich orthogonal latent

variables with reduced noise levels were obtained. The

central idea of PCA is to reduce the dimensionality of a

dataset consisting of a large number of interrelated vari-

ables, while retaining as much as possible of the variation

present in the data set. This is achieved by transforming to

a new set of variables, the principal components (PCs)

which are uncorrelated and ordered so that the first few

retain most of the variation present in all of the original

variables [41]. In this work, accounting for C90 % vari-

ance of the original information, the significant PCs were

obtained for the three specific models and two generic

models.

The operations above were carried out on each data set.

Finally, the features after feature selection and compression

from the four blocks are merged into a new feature vector

for every instance. After that, we implemented the parti-

tioning method to separate the data set into the training set

and test set. A workflow of feature processing and com-

pression was shown in Fig. 1 and detailed information was

shown in Table 2.

Fig. 1 The workflow of feature processing and compression
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Random forest modeling

In this study, we employed a RF model to establish the

correlations between descriptors and binding affinities of the

protein–ligand complexes. RF is a machine-learning method

which is based on an ensemble of decision trees generated

from bootstrap samples of training data, with prediction

calculated by consensus over all trees. It has been shown to

perform very well in non-linear regression [42]. Svetnik

et al. [43] applied RF to investigate structure–activity rela-

tionships of pharmaceutical molecules. Polishchuk et al. [44]

used RF to implement QSAR prediction of aquatic toxicity.

In RF, a bootstrap sample was produced from the whole

training set to form a subset for building each tree. The

samples that are not used to build the current tree are placed

in the out-of-bag (OOB) set. Each tree is trained on a dif-

ferent subset of the training set (approximately 60 %) and at

every splitting node with a different subset of variables. This

adds variability to the model and is the main reason for the

improved robustness of RF compared to a single decision

tree. The parameter mtry, the number of variables used at

each splitting node, is the only tunable parameter that sig-

nificantly influences the performance of the model. Each

tree is then grown without pruning. The final model is

chosen by the lowest error for prediction of the OOB set and

only after that resulting model was applied for prediction of

external test set. In addition, RF can be also used to estimate

variable importance to identify those variables that con-

tribute the most to the binding affinity prediction across

known complexes. Here, the RF models were generated by

the RF package in the R version 2.15.3 [45].

Model evaluation

Once the models were built, only the prediction results of

training set was insufficient to prove the predictive ability of

the model. Therefore, we implemented the internal validation

and external validation to test the robustness of the model.

In RF, the standard way of assessing the predictive power

is OOB validation. It is a type of cross-validation in parallel

with the training step by using the so-called OOB set [46]. In

OOB validation, the model training process is repeated

n times with a randomly chosen subset, and the samples

which are not used for training are predicted by the gener-

ated model. Usually, the model training process is repeated

many times, far more than the number of the randomly

chosen subsets, so that each sample can be predicted several

times with different models. The overall prediction accuracy

Table 2 Detailed information about feature processing and compression in each feature block for five models

Protein family Feature blocka Feature numbers Final features

Initial Constant out Correlated

Rp [ 90 % out

90 % PCA

HIV-1 protease 1 1,080 810 275 8 70

2 30 30 13 5

3 6,122 1,351 515 53

4 36 35 9 4

Trypsin 1 1,080 1,080 837 38 74

2 30 30 13 4

3 6,122 1,093 339 31

4 36 36 1 1

Carbonic anhydrase 1 1,080 956 88 4 49

2 30 30 9 4

3 6,122 687 243 39

4 36 28 4 2

V2007 1 1,080 1,080 824 113 423

2 30 30 9 6

3 6,122 2,218 1,690 301

4 36 36 9 3

V2012 1 1,080 1,080 818 146 586

2 30 30 11 6

3 6,122 1,831 1,558 431

4 36 36 10 3

a Block 1: descriptors based on protein sequence and structure. Block 2: descriptors from binding pocket. Block 3: descriptors of ligand

structures. Block 4: intermolecular interaction features
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is then assessed from the average prediction on each sample.

The OOB estimate is obtained by considering the OOB part

of the data for the ith tree, denoted by Di
OOB. The ith tree is

used to predict the property of the observations in Di
OOB. It

has been shown [47] that on average each tree uses

approximately 2/3 of the whole data set and hence the size

of Di
OOB, is on average 1/3 of the dataset. This implies that

each observation will be in the OOB data about 1/3 of the

time. Consequently, the OOB estimates can be aggregated to

provide an ensemble prediction for each observation. This

result is an OOB estimate of the mean square error (MSE)

that can be used to approximate the MSE for the entire

ensemble of trees. The MSE expressed in terms of the OOB

samples is computed by Eq. (1) [42].

MSE � MSEOOB ¼ n�1
Xn

i¼1

Y
_OOB

ðXiÞ � Yi

� �2

ð1Þ

In addition, external validation provides a more objective

evaluation on the performance of the model. The data that are

not used during the model development is the test set in our

study and the test set were used for the external validation.

The performance of regression model can be measured by

Pearson correlation coefficient (Rp), Spearman correlation

coefficient (Rs) and root mean squared error (RMSE):

Rp ¼ N
PN

n¼1 pðnÞyðnÞ �
PN

n¼1 pðnÞ
PN

n¼1 yðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
PN

n¼1 pðnÞð Þ2
� �

N
PN

n¼1 yðnÞð Þ2�
PN

n¼1 yðnÞ
� �2

� �r

ð2Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

ðpðnÞ � yðnÞÞ2
vuut ð4Þ

where y(n) and p(n) are the values of experimentally deter-

mined affinity and estimated affinity of the nth complex out

of N complexes in the test set, respectively, {yr
(n)} and

{pr
(n)} are the rankings of {y(n)} and {p(n)}, respectively.

Results and discussion

Feature compression and evaluation

After pre-processing, the remaining features in each block

were compressed by PCA for each dataset. In this work,

accounting for C90 % variance of the original information,

the significant PCs were obtained for the three specific

models and two generic models. From Table 2, we can see

that in total, the original features of each model were

efficiently compressed by PCA. Totally, the number of PCs

for the three specific models of HIV-1 protease, trypsin and

carbonic anhydrase are 70, 74 and 49 respectively, all

much lower than 100. For the two generic models of V2007

and V2012, the number of compressed variables (PCs) is

423 and 586 respectively, which is only one-tenth of the

number of original features. Although the features for

V2007 and V2012 were also efficiently compressed,

compared to the three specific models, the number of PCs

is much higher than those of the three specific models

because V2007 and V2012 datasets include much more

diverse samples which distribute much larger feature space,

so much more features are needed to cover the larger

feature space, but the features of one protein family have

stronger specificity than those of diverse function families.

It can also be seen that the number of samples in V2012

dataset is nearly 2.5 times the number of samples in V2007,

so the PC variables in V2012 model is more than those in

V2007 model.

In order to further evaluate the variables in four blocks,

all features were further analyzed by RF and the impor-

tance scores were achieved and represented as ‘%IncMSE’.

‘%IncMSE’ is an estimate of the importance of the given

descriptor for binding affinity prediction across the training

data and it indicates the increase of the mean standard error

after the permutation of one descriptor. A larger score

suggests that a descriptor should contribute to protein–

ligand binding affinity prediction remarkably. Figure 2

plots the average importance scores of the features in four

blocks for the five models. For HIV-1 protease complexes,

the permutation of features in ligand structure block

increases MSE by 4.08 % on average, so ligand structure

features contribute the most to HIV-1 protease-specific

model. Moreover, according to importance score ranking,

the top 10 descriptors with the highest scores are all from

this block. After investigation, we find that most of the

ligands of HIV-1 proteases are peptide-like ligands and

these ligands have significant difference in structure with

those of other proteins, so the effective characterization of

ligand structure is most important for the binding affinity

RS ¼ N
PN

n¼1 p
ðnÞ
r y
ðnÞ
r �

PN
n¼1 p

ðnÞ
r

PN
n¼1 y

ðnÞ
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
PN

n¼1 ðp
ðnÞ
r Þ2 �

PN
n¼1 p

ðnÞ
r

� �2
	 


N
PN

n¼1 ðy
ðnÞ
r Þ2 �

PN
n¼1 y

ðnÞ
r

� �2
	 
s ð3Þ
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prediction of HIV-1 protease. As for trypsin complexes, the

features of the binding pocket block contribute a great deal.

Under the permutation test by RF, its MSE can increase

4.36 % on average. Among the top 10 descriptors, 9 are

from ligand structure block and 1 is binding pocket feature.

For carbonic anhydrase complexes, features from the

intermolecular interaction block contribute the most and

the permutation of features in this block increases MSE by

6.89 % on average. After investigating the interactions

schematic plot in the PDB database, we find that the major

interactions between carbonic anhydrase and their ligands

are the hydrogen bonds, so those intermolecular features

correlated with hydrogen bonds are contribute much more

than other features.

In addition, an interesting finding can be seen that

although the average score of features in protein sequence

block is relatively high in three specific models, none of

them ranks top 10 because the family-specific proteins have

high sequence similarity. However, for V2007 and V2012

complexes, features in binding pocket block contribute the

most and the permutation of features in this block increases

MSE by 7.94 and 12.25 % respectively, on average. But for

V2012 model, the top 10 descriptors include 8 from protein

sequence block, but they are of relatively low importance

scores and 2 from binding pocket block with the highest

scores. As above, features that contribute the most to the

prediction model are both from binding pocket block for two

generic models. From the above discussion, we can con-

clude that important features for proteins of different func-

tions are different. Due to the generic model contains

functionally and structurally diverse protein–ligand com-

plexes, the variables are substantially large in amount so that

they can cover the whole sample space. So it is necessary to

make specific characterization of family-specific proteins

and for binding affinity prediction, it is more reasonable to

construct specific models.

Prediction performance

In order to effectively test the performance of the method,

the internal validation on the training set and external

validation in the independent test set were implemented.

The prediction results of the three specific and two generic

models on test sets are shown in Fig. 3a–e and detailed

prediction results including the training sets are listed in

Table S1 in the supplementary information S2. As shown

in Fig. 3 and Table S1, all models give a good internal

performance on the training set with Rp higher than 0.97,

indicating a very high linear dependence between these

variables over the training set. However the three specific

models obviously outperform the two generic models on

the external validation with Rp higher than 0.72, especially

the trypsin-specific model yields a very promising predic-

tion result with Rp and Rs as high as 0.87 and 0.85 on the

test set, but the two generic models yield Rp and Rs lower

than 0.70.

As an excellent method for predicting protein–ligand

complex affinity, RF-score [21] achieved a good perfor-

mance by using only intermolecular interaction features

and the nonlinear RF model. In order to further demon-

strate the validity of our method, comparisons between our

method and RF-score were implemented and the compar-

ison results are shown in Fig. 4 and detailed information

are listed in Table S2 in the supplementary information S2.

The process of the selection of training set and testing set

were repeated ten times for V2007 and V2012 datasets and

five times for three specific datasets because of the rela-

tively small size of datasets of the latter. In this study we

used exactly the same training sets and the same test sets in

order to make a fair comparison between our method and

the RF-Score. So based on the same datasets, it is the fair

comparison between our feature set and that of RF-Score.

From Fig. 4, on average, RF-score also yields a good

performance with Rp higher than 0.93 on the training sets

for all five models. For the independent test sets, the two

generic models by our method give a comparative perfor-

mance with those by RF-score and the average Rp and Rs

for V2007 and V2012 on the test sets are 0.69, 0.68 and

0.70, 0.68 by our method, 0.69, 0.71 and 0.69, 0.71 by RF-

score respectively. However, for the three specific models

our method performs better than RF-score. The average Rp

and Rs for HIV-1 protease, trypsin, and carbonic anhydrase

on the test sets are 0.74, 0.87, 0.74 and 0.70, 0.85, 0.72 by

our method, 0.68, 0.67, 0.68 and 0.61, 0.58, 0.63 by RF-

score respectively. The comparison results indicate that the

four blocks of descriptors can more comprehensively rep-

resent the binding information between the ligand and the

Fig. 2 The average importance scores of features in four blocks for

five models
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target protein, rather than only intermolecular interaction

features. It is more reasonable to construct the individual

prediction model for a protein family rather than generic

model of diverse protein families.

In addition, Cheng et al. [48] have conducted a com-

parative assessment for 16 popular scoring functions on

PDBbind benchmark V2007 by using 195 protein–ligand

complexes in the core set as the test set and the remaining

1105 complexes as the training set. In order to further

demonstrate the predictive power of our method, the per-

formance of our method on PDBbind benchmark was also

achieved. We used the exactly same 195 protein–ligand

complexes in PDBbind benchmark V2007 as the test set

and the remaining 1105 complexes in PDBbind V2007 as

the training set. Figure 3f also shows the prediction result

of our method on the PDBbind benchmark V2007 and

Table 3 presents the performance of our method and the

RF-Score, including the RF-Score v2.0 which is also

published by Ballester et al. [38] that performs better than

the old version of RF-Score, along with 16 scoring func-

tions on the PDBbind benchmark V2007. The performance

results for the other 16 scoring functions shown in Table 3

were extracted from Cheng et al. [48]. Comparison results

show that our generic model and RF-Score achieve the

better performance than other 16 scoring functions, indi-

cating the superiority of machine-learning scoring func-

tions. Since the Rp and Rs of the generic model by our

method are slightly lower than those of RF-Score v1.0

(\0.01), the family-specific models by our method still

give a superior performance to RF-Score.

Furthermore, we tested our method and RF-Score

on the exactly same family test sets as Cheng et al. [48]

used in their work, including HIV protease (112 com-

plexes), trypsin (73 complexes), carbonic anhydrase (44

complexes) and thrombin (38 complexes). By excluding

the samples in each family test set, the generic model by

our method and RF-score were respectively constructed

using the remaining complexes from PDBbind V2012 as

the training set. The training set and test set are non-

overlapping but the training set contains the target com-

plexes as well so the comparison is fair and valid as the

classical scoring functions also include the target in their

training set. The prediction results of our method and RF-

Score along with the selected classical scoring functions

Fig. 3 Scatter plots of predicted versus measured binding affinity values of the three specific and two generic models along with PDBbind

benchmark V2007
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Fig. 4 Box plots of prediction performance of Rp, Rs, and RMSE for five models
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listed by Cheng et al. are shown in Table 4. The prediction

results for the selected classical scoring functions shown in

Table 4 were extracted from Cheng et al. [48]. From

Table 4, RF-Score and our method do not perform better

than other classical scoring functions in every family target

and our generic model only gives the best performance on

the HIV protease test set, which is consistent with the

conclusion by Cheng et al. that the performance of each

method is case-dependent because different target protein

families have the different intrinsic characteristics. How-

ever, the comparison was carried out between only our

generic model and other methods. Because the prediction

model was trained using functionally and structurally

diverse protein–ligand complexes but test on one particular

family target, the generic model would weaken the speci-

ficity of one particular family target, so the performance of

such a model on complexes of this particular protein type

would be probably poor. In fact, a satisfactory result has

been achieved when we used the family-specific model by

our method for each family test set, as shown in Fig. 3.

According to the comparison results from Fig. 3 and

Table 4, the main conclusion was further addressed that

individual representation for each protein family is neces-

sary and it is more reasonable to construct the individual

Table 3 Performance of our method, RF-score and other 16 scoring

functions on the PDBbind benchmark V2007

Scoring function Rp Rs SD

RF-Score::Elem-v2 0.803 0.797 1.54

RF-Score::Elem-v1 0.776 0.762 1.58

Our method 0.772 0.756 1.65

X-Score::HMScore 0.644 0.705 1.83

DrugScoreCSD 0.569 0.627 1.96

SYBYL::ChemScore 0.555 0.585 1.98

DS::PLP1 0.545 0.588 2.00

GOLD::ASP 0.534 0.577 2.02

SYBYL::G-Score 0.492 0.536 2.08

DS::LUDI3 0.487 0.478 2.09

DS::LigScore2 0.464 0.507 2.12

GlideScore-XP 0.457 0.435 2.14

DS::PMF 0.445 0.448 2.14

GOLD::ChemScore 0.441 0.452 2.15

SYBYL::D-Score 0.392 0.447 2.19

DS::Jain 0.316 0.346 2.24

GOLD::GoldScore 0.295 0.322 2.29

SYBYL::PMF-Score 0.268 0.273 2.29

SYBYL::F-Score 0.216 0.243 2.35

Table 4 Performance of our method, RF-Score and other selected classical scoring functions on the four family-specific test sets from PDBbind

V2007

HIV protease (N = 112) Trypsin (N = 73)

Scoring functions Rs Rp SD Scoring functions Rs Rp SD

Our method 0.522 0.532 1.71 Our method 0.573 0.633 1.35

RF-Score 0.393 0.488 1.47 RF-Score 0.712 0.738 1.14

By NHAa 0.140 0.172 1.62 By NHAa 0.603 0.655 1.28

A: X-Score::HPScore 0.339 0.341 1.54 A: X-Score::HSScore 0.824 0.817 0.97

B: SYBYL::ChemScore 0.228 0.276 1.58 B: DS::Ludi2 0.791 0.823 0.96

C: DS::PMF04 0.200 0.183 1.61 C: DS::PLP2 0.774 0.797 1.02

D: DrugScorePDB::PairSurf 0.170 0.225 1.60 D: SYBYL::ChemScore 0.773 0.829 0.95

A ? B 0.304 A ? B 0.845

A ? C 0.291 A ? C 0.814

A ? D 0.266 A ? D 0.818

B ? C 0.225 B ? C 0.831

B ? D 0.205 B ? D 0.808

C ? D 0.194 C ? D 0.812

Carbonic anhydrase (N = 44) Thrombin (N = 38)

Scoring functions Rs Rp SD Scoring functions Rs Rp SD

Our method 0.626 0.677 1.59 Our method 0.407 0.580 1.80

RF-Score 0.415 0.646 1.61 RF-Score 0.545 0.619 1.77

By NHAa 0.273 0.443 1.25 By NHAa 0.555 0.622 1.66

A: DS::PLP2 0.772 0.800 0.84 A: DS::PLP1 0.672 0.692 1.53

B: SYBYL::G-Score 0.646 0.706 0.99 B: SYBYL::G-Score 0.626 0.667 1.58
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prediction model for a protein family rather than generic

model of diverse protein families.

Conclusions

In this study, we developed a machine learning method to

predict the binding affinity for both family-specific and

generic protein–ligand complexes. A comprehensive

characterization covering all aspects of each complex was

proposed based on descriptors in four blocks of protein

sequence, binding pocket, ligand structure and intermo-

lecular interaction. Compared with the scoring function

based methods, the machine learning methods have shown

some obvious advantages such as easy implementation, fast

prediction process and strong predictive ability. Through

feature analysis and evaluation, the important features in

different family-specific models are different, which indi-

cate the necessity of individual representation for each

protein family. Moreover, the prediction results on the

external validation show that family-specific models are far

superior to the generic models, because family-specific

models take the structural and functional specificity of each

target family into account. It is practical to develop specific

models to improve the accuracy in binding affinity pre-

diction. Finally, comparisons between our method and RF-

score were implemented. Both of them used RF to build the

prediction model but with different features. The superior

performance of our method on the family-specific models

indicates that the four blocks of descriptors are more

comprehensive for characterizing the family-specific pro-

tein–ligand complexes. The good performance of specific

models make us believe that our method can be a useful

tool for predicting binding affinity of the three family-

specific protein families.
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