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Abstract A physicochemical property-based desirability

scoring scheme for fragment-based drug discovery was

developed for class A aminergic GPCR targeted fragment

libraries. Physicochemical property distributions of known

aminergic GPCR-active fragments from the ChEMBL

database were examined and used for a desirability func-

tion-based score. Property-distributions such as log D (at

pH 7.4), PSA, pKa (strongest basic center), number of

nitrogen atoms, number of oxygen atoms, and the number

of rotatable bonds were combined into a desirability score

(FrAGS). The validation of the scoring scheme was carried

out using both public and proprietary experimental

screening data. The scoring scheme is suitable for the

design of aminergic GPCR targeted fragment libraries and

might be useful for preprocessing fragments before struc-

ture based virtual or wet screening.
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Abbreviations

FrAGS Fragment Aminergic GPCR Score

GPCR G-protein coupled receptor

PSA Polar surface area

FBDD Fragment-based drug discovery

HTS High-throughput screening

FS Fragment-screening

7TM Seven-transmembrane

SILE Size-independent ligand-efficiency

SMILES Simplified molecular-input line-entry system

EF Enrichment factor

TPR True positive rate

TNR True negative rate

FPR False positive rate

FNR False negative rate

ROC Receiver operating characteristic

TAAR1 Trace-amine receptor subtype 1

5HT1 5-Hydroxy-tryptamine receptor subtype 1

Introduction

Fragment based drug discovery (FBDD) implies the screening

of small-sized, simple, polar molecules in high-concentra-

tions. Fragment screening (FS) is an alternative lead-discov-

ery approach to high-throughput screening campaigns with

remarkable advantages. Fragment based lead discovery

samples the notably smaller fragment space with respect to the

lead-like or drug-like space. An illustration of this point is that

the number of compounds with up to 17 heavy atoms [1] is

about 1011 while the estimated number of drug like molecules

up to 30 heavy atoms [2] is 1060. Another inevitable aspect is

the documented increase of molecular weight and lipophilic

character during lead-optimization [3, 4], and fragments as

typically soluble, low molecular weight and polar compounds

provide more operational freedom in optimizing them to

compounds with favorable pharmacokinetic properties.

G-protein coupled receptors (GPCRs) are key modula-

tors of cell-signaling and constitute the largest cell-
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Tudósok Körútja 2, Budapest 1117, Hungary

e-mail: keseru.gyorgy@ttk.mta.hu

123

J Comput Aided Mol Des (2015) 29:59–66

DOI 10.1007/s10822-014-9804-5

http://dx.doi.org/10.1007/s10822-014-9804-5


membrane receptor superfamily. Ligands of these receptors

are neurotransmitters, peptides, hormones, etc. GPCRs are

either named as seven-transmembrane receptors (7TM) for

having a common structure of seven a helices ending in an

extracellular N terminus and an intracellular C terminus.

The superfamily is classified into A, B, C, and frizzled-type

receptors, hereby class A constitutes the largest family,

including aminergic, chemokine, glycoprotein hormone

receptors and neuropeptide receptors. G-protein coupled

receptors are appearing prevalently in drug discovery and

representing the therapeutic target for a wide range of

small-molecule drugs of central-nervous system, cardio-

vascular and inflammation related diseases [5]. Aminergic

receptors, the largest group of class A, are muscarinic

acetylcholine, adrenoceptors, dopamine-, histamine-, sero-

tonin-, octopamine-, and trace amine-receptors. In the

present study we collected fragment-like aminergic GPCR

ligands from public databases and analyzed their charac-

teristic physicochemical features to derive a scoring

scheme suitable to screen compound libraries for aminergic

class A GPCR ligands.

Compiling libraries

Active set

GPCR-SARfari [6] was downloaded from the ChEMBL

database of the European Bioinformatics Institute [as part of

European Molecular Biology Laboratory (EMBL)], and was

processed using Knime.com AG’s Konstanz Information

Miner (Knime) [7]. GPCR SARfari (version 3.00, June 2012)

contains 947,914 entries, including molecular structures, and

in vitro activity data for GPCR-targets. Collected data were

processed in several steps. Only binding data were kept,

while data of functional assays and those related to ADME

properties were discarded. Activities given as IC50, log IC50,

Ki and log Ki were converted to pActivity and were treated

on an equal footing with pKi values. When ligand activities

for several species were available only the highest activity

was kept. Counter ions of salts were stripped [14], and only

one entry was kept with the highest pKi value. This process

resulted in 166,699 entries, containing structurally unique

compounds with activity data on several GPCR targets. Size-

independent ligand efficiency (SILE) [8] metrics were used

to classify compounds as active or inactive on a target. SILE

is an empirically derived measure suitable for the comparison

of compounds with different sizes:

SILE ¼ pKi=N0:3
heavy

The cut-off for sorting of GPCR-active fragments was

determined by evaluating the relationship between pKi and

SILE in the 8 B Nheavy B 22 range (see Table 1 in the

Supporting Information). SILE C 1.95 was accepted as the

activity threshold that corresponds to Ki values suitable for

fragment-screening activity on GPCR targets (100–10 lM).

After removing activities under SILE \ 1.95, the resulting

data-set of 144,759 entries was used for identifying GPCR-

active fragments. Unlike several prevalent methodologies

using molecular weight as size-determining definition, our

measure was the number of heavy atoms [9]. Molecular-

weight based filters penalize halogen and sulphur atoms

including sulphonamide-type molecules, due to their pro-

portionately higher atom-weight. Since one heavy atom

stands for 13.286 Da [10] molecular weight, the commonly

used RO3 [11] cut-off (300 Da) may be converted to

Nheavy B 22. Removing molecules with less than 8 or more

than 22 heavy atoms resulted in 10,477 unique fragments

with listed binding activity data on several GPCRs. Com-

pounds considered to be GPCR-like fragments (2,370), were

defined having SILE of at least 1.95 on at least four different

GPCR-targets. The active set contains activity data related to

139 different receptors (and subtypes), out of which 87

receptors are aminergic GPCRs [12] (serotonin, b-adrenerg,

dopamine, histamine, trace-amine, octopamine, muscarinic-

acetylcholine receptors) and 52 other not-aminergic class-A

GPCRs (opioid-, adenosine-, sphingosine-1-phosphate-,

thromboxane-, melatonin-, orphan-, and angiotensin-recep-

tors). It was found that the majority of the fragments (2,183

out of 2,370, 92 %) had exclusively aminergic GPCR

activity data, serving as training set.

Another definition for GPCR-active fragments was also

used in order to check how much the property distributions

depend on the definition of actives. The activity threshold of

SILE C 1.95 was replaced by pKi = 4. Note that while pKi

is independent from molecular size, the SILE definition

requires higher affinity for larger ligands in accordance with

their higher available maximal affinity [8]. Activities over

pKi C 4 were kept resulting a set of 165,459 entries. Keep-

ing molecules with the number of heavy atoms between 8

and 22 resulted in 10,950 unique fragments. Compounds

considered to be GPCR-like fragments, were defined having

a pKi value of at least 4 on at least four different GPCR-

targets. This set of 2,478 fragments was used for checking

whether the property distributions of the active set are

dependent on the method for defining actives (see later).

Reference set

For the determination of the essential GPCR fragment

parameters we created a reference set derived from the

ChEMBL [13]. Compounds of the active GPCR set were

removed from the 1,292,344 ChEMBL (version 16) entries.

Ligand structures in salt forms were stripped [14], and only

one entry was kept in case of duplicates, resulting in

structurally unique compounds. After filtering by
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Nheavy = [8; 22], 309,962 fragments remained, out of

which 5,000 fragments were picked out randomly to gen-

erate a set proportional in size with the active set.

Selection of relevant physicochemical-descriptors

and scoring

The examination of molecular physicochemical property

distributions in drug-discovery related chemical databases

is a commonly used methodology for library design [5, 15].

Fragments were characterized by widely used physico-

chemical descriptors such as c log P, c log D (at pH 7.4),

polar surface area (PSA) (at pH 7.4), number of rotatable

bonds, number of hydrogen bond acceptors, number of

hydrogen bond donors, acidic dissociation constant pKa

(related to the strongest center), basic dissociation constant

pKa (related to the strongest center), number of nitrogen

atoms and number of oxygen atoms using ChemAxon’s

JChem for Excel [16]. All the descriptors were calculated

for all the fragments of both the active and the reference

sets, followed by the calculation of the distribution-func-

tions for each property. The corresponding distribution-

functions were described by medians, means and standard

deviations shown in Table 1.

The distributions of the hydrogen bond donor and

acceptor-count and log P do not differ markably in their

medians and standard deviations comparing the active and

reference sets, however in case of the aminergic GPCR-like

fragments the polar surface area (at pH 7.4) has median

lower than that of the reference set. Lower log D values at

pH 7.4 are related to the basic character of the aminergic

GPCR fragments. Considering the number of rotatable

bonds, aminergic fragments are typically less flexible

containing generally 0 or 1 rotatable bond than molecules

in the reference set. Fragments of the active and inactive

sets were also classified by their acid–base character. The

classification method and the results are shown in Table 2.

83 % of the active fragments have basic character, 16 % of

the fragments were neutral, none of them were acidic, and

only 1 % were zwitter-ionic. In contrast, 15 % of the

randomly sampled reference fragments were basic, 71 %

neutral, 12 % acidic, and 3 % zwitter-ionic. The domi-

nantly basic character of the active set causes that although

they have less O atoms, smaller PSA and slightly higher

log P than the reference molecules their log D values at pH

7.4 are lower. Summarizing, these aminergic fragments

constitute a set of small, rigid molecules, containing few

heteroatoms, that are most often (*83 %) basic nitrogens.

Differences in property-distributions were identified by

visual inspection and by the analysis of medians, means

and standard deviations, comparing aminergic-fragments,

and ChEMBL inactive reference fragments (see Table 1).

As a result, log D (pH 7.4), number of nitrogen atoms,

number of oxygen atoms, number of rotatable bonds,

strongest basic pKa, and PSA (at pH 7.4) were identified as

descriptors that are able to characterize aminergic-frag-

ments. Differences between selected property distributions

were checked by Mann–Whitney U-tests [17]. All com-

pared property distribution pairs are different at a signifi-

cance level of p = 0.05. The following section will present

some general statements about aminergic fragments, pro-

viding standpoints for developing a desirability scoring

function.

Log D distribution of the amine-like fragments has a

mean of 0.90, with a standard deviation of ±1.62, corre-

lating with their predominantly basic character, differing

from the log D distribution of the random fragments

(mean = 1.65, SD = ±2.24), however there is no notable

Table 1 Mean, median, and standard deviation values of the calcu-

lated physicochemical properties

Median Mean SD

Active set (SILE C 1.95)

PSA (at pH 7.4) 37.30 39.67 21.04

log D (at pH 7.4) 0.97 0.90 1.62

Number of nitrogen atoms 2.00 2.28 1.26

Number of oxygen atoms 1.00 1.08 0.95

Number of rotatable bonds 2.00 2.64 1.89

pKa (strongest basic) 8.55 7.92 2.85

log P 2.18 2.04 1.53

Hydrogen bond donor count 1.00 0.89 0.96

Hydrogen bond acceptor count 3.00 2.70 1.13

Reference set

PSA (at pH 7.4) 56.49 60.49 29.28

log D (at pH 7.4) 2.03 1.65 2.24

Number of nitrogen atoms 2.00 2.17 1.48

Number of oxygen atoms 2.00 2.14 1.52

Number of rotatable bonds 3.00 3.36 2.10

pKa (strongest basic) 7.00 5.97 2.60

log P 2.41 2.20 1.80

Hydrogen bond donor count 1.00 1.27 1.12

Hydrogen bond acceptor count 3.00 3.23 1.50

Table 2 Classification of the acid–base characters of active and

inactive fragments

pKa (acidic) pKa (basic) Actives Inactives

Acid \7 [7 or absent 0 12

Base [7 or absent [7 83 15

Neutral [7 or absent \7 or absent 16 71

Zwitterion \7 [7 1 3
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difference in the corresponding log P distributions. The

number of nitrogen atoms represents that aminergic GPCR-

like fragments have at least 1 nitrogen-atom (*40 %

contain 1, *40 % contain 2). The number of oxygen

atoms puts restraint to the number of oxygens (*30 % do

not contain any). Aminergic fragments are less flexible

with a mean of 2.64 rotatable bonds, and with 10 % not

having any rotatable bonds, unlike random fragments, with

a mean of 3.35 rotatable bonds. Only 0.2 % of aminergic

fragments have no basic-center. 83 % of them have at least

one basic center, that is identified as having no acidic pKa

lower than 7, and a basic pKa higher than 7. The distri-

bution of basic pKa has a mean value of 7.92 with a

standard deviation of 2.84. In contrast, 50 % of the refer-

ence fragments are neutral (pKa mean = 5.96, SD = 2.59).

The polar surface area of a molecule is defined as the

surface sum over all polar atoms. PSA is a commonly used

medicinal chemistry metric for the optimization of passive

membrane permeability. The widely known Rule of Three

[11] filter for fragment-like compounds limits polar surface

area to be at most 60 Å2. The training set has a median

value of 37.3 Å2 and a mean value of 39.67 Å2 for polar

surface area, with a standard deviation of 21.04. The lower

values of PSA of the active set are due to the smaller

number of oxygen atoms.

The examined physicochemical properties were calcu-

lated for the fragments of the alternative active set selected

by pActivity cut-off (pKi C 4). The corresponding, medi-

ans, means and standard deviation are shown in Table 3.

Comparing property distributions based on SILE and

pActivity thresholds we concluded that these are highly

similar and the SILE active set was used in all further

studies.

After determining the characteristic descriptors showing

remarkable difference in their medians and standard devi-

ation with respect to randomly sampled reference frag-

ments we used these descriptors to derive a desirability

scoring scheme.

Common approaches for multiparametric filtering [18]

include desirability functions [19] that are used to convert

preferred descriptor distributions into a scoring function. A

desirability function maps the value of a property onto a

score in the range of [0; 1]. Desirable and undesirable

property-ranges (x) are defined by the function through

series of inflection points [20], identifying the desirable and

undesirable regions of the properties with a certain desir-

ability score of y(x). Molecules not satisfying the criteria of

the examined descriptor receive a desirability score of 0.

Molecules with desirable properties gain a score higher

than 0 and at most 1. After calculating a desirability score

for all of the properties, the scores may be combined by

summation or multiplication into an overall desirability

measure. Desirability functions make it possible to define

smooth boundaries for a property, rather than using a rigid

cut-off, thus avoiding rejection of compounds based on an

uncertain property value close to a criterion boundary. The

selected properties were next translated to desirability

functions. The two properties describing the number of

heteroatoms and the number of rotatable bonds are con-

sidered to be discrete variables, while log D (at pH 7.4),

PSA (at pH 7.4) and basic pKa (strongest) are continuous

(see the Supporting Information).

The number of nitrogen atoms is an important feature of

aminergic GPCR-fragments due to their basic character

that gives a major contribution to the interaction with the

binding site. However not all fragments are supposed to be

sorted out that lack nitrogen atoms. The desirable property

range for the number of nitrogen atoms is between 0 and 5,

namely 0 and 3–5 nitrogen atoms are scored with

y(x) = 0.5, and 1–3 nitrogen atoms are cored with

y(x) = 1. A score value of y(x) = 0 was assigned to

fragments containing more than five nitrogen atoms (Fig-

ure 1 in Supporting Information).

The active fragments of the training set contained

mostly 0–3 oxygen atoms, supporting the account of oxy-

gen atoms most probably as hydrogen-bond acceptors.

Fragments having 0–3 oxygen atoms are considered to be

desirable with a score of y(x) = 1 (see in Figure 2 in

Supporting Information).

In addition to the gain in conformational entropy a

recent paper [11] has revealed the positive influence of the

restriction of molecular flexibility by the number of rotat-

able bonds in ADME/PK properties suggesting an upper

bound of three. The distribution of the rotatable bond count

for the training set showed that *8 % of the active frag-

ments possessed rigid planar structure, *21 % contained

only one and *27 % only two rotatable bonds. None of

the active fragments contained more than seven rotatable

bonds. Consequently all planar, non-flexible fragments and

molecules containing 3 or less rotatable bonds are desirable

(score of 1). Less-desirable property-ranges of 4–7 rotat-

able bonds are mapped with a monotonic decreasing score

function (see Figure 3 in Supporting Information).

Table 3 Mean, median, and standard deviation values of the calcu-

lated physicochemical properties of the active set defined by pAc-

tivity metrics

Active set (pKi C 4) Median Mean SD

PSA (at pH 7.4) 37.97 40.22 21.38

log D (at pH 7.4) 0.97 0.90 1.62

Number of nitrogen atoms 2.00 2.28 1.26

Number of oxygen atoms 1.00 1.10 0.98

Number of rotatable bonds 2.00 2.76 1.96

pKa (strongest basic) 8.54 7.83 2.99
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The desirability function for log D (at pH 7.4) prefers

mostly fragments in the log D range of 1 and 2, and

decreases monotonously towards -2 and 5, accepting more

basic and more polar fragments (see Figure 4 in Supporting

Information).

The desirability function of the polar surface area (at pH

7.4) is more permissive than the upper bound of the Rule of

Three (PSA B 60 Å2), because fragments on the range of 0

and 100 Å2 are not discarded. In contrast, these fragments

are favored by a score of a hump function with a maximum

at 40 Å2 and linearly decreasing towards 0 and 100 (see

Figure 5 in Supporting Information).

Though 83 % of the fragments of the training set are

basic, the desirability function of the strongest basic pKa

does not totally discard an acidic fragment, in this manner

the property range of the strongest basic pKa was mapped

with a constant score of 0.1 in the 0–6 pKa range, and with

a hump function covering the values of 6 and 13, penal-

izing fragments with basicity stronger than pKa [ 13, and

preferring fragments with a pKa value between 8 and 10

(see in Figure 6 in Supporting Information).

Desirability scores may be combined either by sum-

mation or by multiplication into an overall desirability

measure. A disadvantage of the multiplicative approach is

that it discards molecules if they receive a desirability

score of zero for a single property. In contrast, the additive

approach reduces the impact of a single property-score

when a large number of properties are involved [18].

Taking these aspects into consideration we defined the

‘‘Fragment Aminergic GPCR Score’’ (FrAGS) as the sum

of the individual property-scores, providing a score with a

range between 0 and 6.

Validation of the Fragment Aminergic GPCR Score

(FrAGS)

Validation was carried out by three complementary

approaches. First, the active training set was mixed with

random inactive ChEMBL compounds to check whether

the score is able to sort out the active compounds. The

second approach used an independent active set from the

PubChem database [21]. The third validation used data of a

HTS and a FS campaign on aminergic GPCR targets pro-

vided by Gedeon Richter Plc. Compounds not satisfying

our fragment criterion (8 \ Nheavy \ 22) were removed

from the HTS data set. The effectiveness of the FrAGS was

determined by the enrichment factor (EF), and by the

comparison of false negative rates (FNR) and true negative

rates (TNR) as functions of the score. Furthermore, recei-

ver operating characteristic (ROC) curves were also

investigated.

ChEMBL validation

The inactive set was created similarly to the reference set

generated for deriving the FrAGS. The entire ChEMBL

database [13] of about 1,300,000 entries was filtered by the

previously identified active fragments. Counter ions of salts

were removed; finally 96,539 unique fragments were kept.

This set was merged with the 2,183 active fragments to give

a validating set with 2.2 % actives. Relevant properties were

calculated for the compiled 98,722 fragments, and FrAGS

were calculated. The enrichment factor increases monoton-

ically up to the score of about 5 and oscillates for higher

scores (see Figure 7 in Supporting Information). Its highest

value before the oscillatory region is about 2.5. The corre-

sponding ROC curve is shown in Fig. 1 (true negative rates

and false negative rates as functions of the FrAGS are shown

in Figure 8 in Supporting Information).

PubChem validation

Second validation was carried by retrieving aminergic

GPCR targeted HTS data from PubChem. PubChem is a

public repository for biological properties of small mole-

cules hosted by the National Institutes of Health (NIH,

USA), containing bioassay data on more than 700,000

compounds, providing information about HTS and frag-

ment-screening data on GPCR-targets suitable for our vali-

dation [21]. High-throughput screenings for allosteric-

binders, or targeting b-arrestin pathways, or used as counter-

screening were sorted out. Only confirmed actives with at

least 10 lM activity were taken into consideration. The
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Fig. 1 Receiver operating characteristics of the ChEMBL validation

data
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following aminergic GPCR targets were represented in HTS

campaigns: 5HT1A with 7 confirmed actives, 5HT1E with 51

confirmed actives, TAAR1 with 375 confirmed agonists and

with 36 confirmed antagonists. Molecules satisfying frag-

ment-size criterion (heavy atom count between 8 and 22)

were kept providing 200 fragments with confirmed active

data on aminergic-GPCRs (5HT1A, 5HT1E, TAAR1). This

dataset does not overlap with ChEMBL actives used as

training set. 31 confirmed 5HT1-active fragments and 169

TAAR1-active fragments were added to a set of inactive

fragments extracted from the corresponding primary

screening sets by filtering all inactive compounds by the

number of heavy atoms (8 B Nheavy B 22). After removing

duplicates 296,510 fragments remained out of which 3,100

and 16,900 randomly sampled inactive molecules from the

5HT1 and TAAR1 screens, respectively, were selected for

validation. FrAGS values were calculated for the 3,131

5HT1 set of fragments and 17,069 TAAR1 set of fragments,

followed by the calculation of TPR, FPR, TNR, FNR, ROC

and EF (shown in Figs. 2, 3 and Table 4 and in Figures 9,

10 and 11, 12 for 5HT1 and TAAR1 in Supporting Infor-

mation). In the case of the 5HT1 validation the highest

enrichment resulted a remarkable ratio of 7.98

(EF5.0 = 7.98). The ROC curve of the 5HT1 validation set

(Figure 2 in Supporting Information) appears to be separated

into two parts, one below and another above FPR = 0.8. It

raises the question if the compounds of the two subsets

belong to different structural classes. Therefore we exam-

ined the structural similarity of the two distinct sets. The

distance matrices of fingerprints were calculated for the

entire 5HT1 validation set, and separately for the two sub-

sets. The similarity of the three sets was characterized by the

means and standard deviations calculated for their pairwise

distances. The mean distance was 0.66 ± 0.09, and

0.64 ± 0.09 for the first and the second subset, respectively.

Furthermore the entire 5HT1 set has a mean distance of

0.66 ± 0.09, demonstrating the structural diversity of the

validation set. The TAAR1 EF curve shows a 3.41-fold

enrichment at FrAGS = 5. The enrichment monotonously

increases until FrAGS = 5, and oscillates over 5.

Validation on proprietary data

The third validation was carried out on experimental

screening data of fragments, provided by Gedeon Richter

Plc. The targets of the screening campaigns were aminergic

GPCR receptors. Only fragment sized molecules were

examined from the HTS campaign. 9,302 fragments were

screened by high-throughput screening, and 3,038
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Fig. 2 Receiver operating characteristics of the PubChem validation

data on 5HT1
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Fig. 3 Receiver operating characteristics of the PubChem validation

data on TAAR1

Table 4 Enrichment factors at selected FrAGS values obtained in

validation studies

Fragment-

GPCR-score cut-

off

EF

ChemBL

EF

5HT1

EF

TAAR1

EF

Richter

HTS

EF

Richter

FS

4.5 1.79 2.00 1.39 1.33 1.09

5 2.35 7.98 3.41 2.51 2.34

5.5 2.56 22.86 4.48 1.54 2.94
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fragments were evaluated with the fragment-screening

approach.

In the high-throughput screening dataset 41 fragments

were found to be active on the aminergic GPCR target, and

9,261 fragments were inactive. The enrichment factor

increases monotonically until FrAGS of about 5, and

oscillates over this value. The corresponding false negative

rates, true negative rates and the ROC curve is shown in

Fig. 4 and in Figures 13 and 14 in Supporting Information.

Fragment-screening identified 33 active, and 3,038

inactive fragments. The plot of enrichment factor versus

FrAGS is shown in Figure 16 in Supporting Information.

The enrichment factor increases monotonically until about

FrAGS = 5. The ROC curve is shown in Fig. 5 and the

plots of false negative rates and true negative rates are

shown in Figures 15 and 16 in Supporting Information.

Defining FrAGS cut-off

Ligand-based filters are typically used for selecting a set of

compounds of a large library for further virtual or experi-

mental studies. For the determination of the appropriate cut-

off the enrichment curves of the validation studies were

examined (Table 4 and Figures 7, 9, 11, 13 and 15 in

Supporting Information). The validation test using ChEMBL

compounds showed, that the enrichment is about two to

threefold over about FrAGS = 4.5. The enrichments are

much higher in the other two validation studies using Pub-

Chem and the experimental HTS and FS data. Remarkable

oscillation of the enrichment was observed over FrAGS [ 5

that is due to the small number of compounds having high

score values. It is proposed that a cut off value of 5.0 is an

appropriate choice for the selection of promising aminergic

fragments. Our three independent validation studies show

enrichments around or above 3 using this cut off value.

Conclusions

Comparing the distributions of several physicochemical

descriptors calculated for fragment-like aminergic GPCR

ligands with those of randomly selected fragments revealed

that the following descriptors are markedly different for the

two sets of compounds: log D (at pH 7.4), PSA (at pH 7.4),

pKa (strongest basic center), number of nitrogen atoms,

number of oxygen atoms, and the number of rotatable bonds.

Desirability functions based on the statistical differences in

the property distributions were defined and were combined

to a Fragment Aminergic GPCR Score (FrAGS). This score

can take values between 0 and 6, the higher the score the

more likely the fragment is an aminergic GPCR ligand. The

scoring scheme was verified with independent experimental

data collected in real-life screening situations and it was

found that a score cut off value of 5 is appropriate to achieve

an enrichment of around or over 3. The scoring scheme is

suitable for screening large libraries of fragment-like com-

pounds for aminergic GPCR ligands, and thus it is a useful
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Fig. 4 Receiver operating characteristics of the GPCR HTS valida-

tion data
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Fig. 5 Receiver operating characteristics of the GPCR FS validation

data
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tool for compiling focused fragment libraries for drug dis-

covery projects.

Supporting Information

The desirability functions, Enrichment Factors and the

TNR/FNR plots are available free of charge via the Internet

at http://www.springer.com/.
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