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Abstract We continued prospective assessments of the

Wilma–solvated interaction energy (SIE) platform for pose

prediction, binding affinity prediction, and virtual screen-

ing on the challenging SAMPL4 data sets including the

HIV-integrase inhibitor and two host–guest systems. New

features of the docking algorithm and scoring function are

tested here prospectively for the first time. Wilma–SIE

provides good correlations with actual binding affinities

over a wide range of binding affinities that includes strong

binders as in the case of SAMPL4 host–guest systems.

Absolute binding affinities are also reproduced with

appropriate training of the scoring function on available

data sets or from comparative estimation of the change in

target’s vibrational entropy. Even when binding modes are

known, SIE predictions lack correlation with experimental

affinities within dynamic ranges below 2 kcal/mol as in the

case of HIV-integrase ligands, but they correctly signaled

the narrowness of the dynamic range. Using a common

protein structure for all ligands can reduce the noise, while

incorporating a more sophisticated solvation treatment

improves absolute predictions. The HIV-integrase virtual

screening data set consists of promiscuous weak binders

with relatively high flexibility and thus it falls outside of

the applicability domain of the Wilma–SIE docking plat-

form. Despite these difficulties, unbiased docking around

three known binding sites of the enzyme resulted in over a

third of ligands being docked within 2 Å from their actual

poses and over half of the ligands docked in the correct

site, leading to better-than-random virtual screening

results.

Keywords Virtual screening � Docking � Affinity

prediction � Binding free energy � SIE

Introduction

Accurate prediction of structural and energetic aspects of

binding in aqueous solution is critical for successful

structure-based drug design and the understanding of

molecular recognition in biological systems. Binding

affinity prediction methods range from the relatively slow

but thermodynamically rigorous pathway approaches such

as free energy perturbation (FEP) and thermodynamic

integration (TI) [1, 2], to the faster end-point approaches

relying on binding affinity scoring functions that can be

classified into three main categories: force-field-based,

knowledge-based, and empirical [3–9]. Although many

end-point methods are based on implicit solvent descrip-

tions, the solvent potential of the mean force theory ensures

that, given adequate configurational sampling, these

methods can be as rigorous as alchemical pathway methods

based on explicit solvent description [10, 11]. A popular

method in the force-field-based group is MM-PB(GB)/SA

[12–14], which combines molecular mechanics-based

terms with continuum solvation terms.

Solvated interaction energy (SIE) [15–17] is another

end-point force-field-based scoring function that approxi-

mates binding affinity by an interaction energy contribution

and a desolvation free energy contribution, each of them

further made up of electrostatic and nonpolar components.

Calibrated on a diverse dataset of 99 protein–ligand
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complexes [15], SIE achieves a reasonable transferability

across a wide variety of protein–ligand systems for which it

predicts absolute binding affinities within the experimental

range as shown by various test cases reported in the liter-

ature [17, 18]. External testing of the standard SIE

parametrization in the CSAR-2010 dataset of 343 protein–

ligand complexes diverse with respect to ligands and tar-

gets predicted absolute binding affinities with a mean-

unsigned-error (MUE) of about 2 kcal/mol [18].

A docking procedure is required in order to apply SIE in

absence of crystallographic ligand poses. To this end we

developed Wilma, an exhaustive docking program that has

the required efficiency for large-scale virtual screening of

small-molecule libraries. Owing to its exhaustive nature as

well as to its fast empirical pose-ranking function cali-

brated on crystal structures of protein–ligand complexes,

the top-ranked pose produced by Wilma has been shown to

be consistently close to the experimental pose for drug-like

ligands.

Both SIE and Wilma have been employed for blind

testing in previous editions of Statistical Assessment of the

Modeling of Proteins and Ligands (SAMPL) organized by

OpenEye, Inc. A reasonable performance of SIE in binding

affinity prediction for the SAMPL1 set of kinase inhibitors

with available cognate crystal structures had been noted

[19]. In SAMPL3, the Wilma–SIE virtual screening plat-

form achieved good enrichment of true positives from a

dataset of fragment-size ligands against trypsin, with an

AUC of about 0.7 for a receiver-operating-characteristic

(ROC) curve characterized by an excellent early enrich-

ment performance [20]. Binding affinity predictions for

trypsin–ligand and host–guest complexes in SAMPL3 were

generally within 2 kcal/mol of the experimental values but

rank ordering of affinities within 2 kcal/mol was not well

predicted.

In this paper, we continue prospective testing of the

Wilma–SIE docking–scoring platform for both virtual

screening and binding affinity predictions. We tested our

methods on both molecular systems proposed in SAMPL4.

One the one hand were the two relatively small hosts with

their surprisingly high-affinity guest ligands. On the other

was the much larger homodimeric HIV-1 integrase that can

bind various inhibitors at several sites with much weaker

affinities than one would expect based on the shape of the

enzyme pockets and the size of the ligands. Several

methodological and system-dependent properties are

explored in this study. These include: (1) a new virtual

screening scoring function replacing the surface-based

terms with a penalty term for non-complementary polar

and non-polar interactions, (2) the role of vibrational

entropy change and symmetry corrections to the absolute

magnitude and correlation of binding affinity predictions,

respectively, studied on the host–guest systems, (3) the

effect of the size of the sampled docking space for docking

and enrichment of actives, studied on HIV-integrase pose

prediction and virtual screening datasets, (4) a more

advanced continuum solvation model and the use of a

common structure of the target for binding free energy

predictions, studied on the HIV-integrase affinity dataset.

Methods

Wilma docking

The docking software Wilma uses a brute-force searching

approach where the interaction with the rigid protein of all

the discrete rotational and translational states of every

ligand conformation generated by Omega (OpenEye Sci-

entific Software, New Mexico) is examined. Using an

efficient filtering method, the program exhaustively enu-

merates, scores and ranks all the ligand poses that do not

overlap with the protein. Docking is done within one or

several predefined rectangular volumes with a translation

step size of 0.5 Å. The discrete rotation of the ligand is

adjusted to insure that the maximum movement of any

atom between adjacent orientations is less than 1 Å. The

ligand conformations generated by Omega are controlled

by setting the internal energy cutoff to 20 kcal/mol and

adjusting the RMSD clustering parameter to produce at

most 5,000 conformations.

The original weighted 5-term scoring function used for

Wilma docking was trained to recover the most native

states using 320 protein–ligand complexes from the curated

CSAR dataset [21]

WilmaScore1 ¼ w1Ecoul þ w2Evdw þ w3EHB þ w4Epsc

þ w5Enpsc

ð1Þ

This scoring function includes a coulombic interaction

term, Ecoul, a van der Walls 6-12 Lennard-Jones potential,

Evdw, an explicit H-bond term, EHB, which considers donor

and acceptor orientations, and two surface (polar and non-

polar) complementarity terms, Epsc and Enpsc. For this study

we calibrated a different version of the scoring function for

Wilma docking that replaces the two surface

complementary terms by a term, Eflaws, which introduces

an energetic penalty for flaws present in the docked pose in

terms of protein–ligand polar complementarity.

WilmaScore2 ¼ w1Ecoul þ w2Evdw þ w3EHB þ w4Eflaws

ð2Þ

These flaws account for the obstruction of polar groups by

non-polar or like-charged polar groups. Introduction of the

Eflaws model is an attempt to reduce occasional top-ranked
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poses and false-positive ligands that are ‘‘flawed’’ due to

the presence of buried partially charged atoms without

formation of electrostatically complementary interactions

in the bound state, which were still observed when using

the surface complementarity terms. This empirical geo-

metrical model poses a more stringent electrostatic

desolvation penalty on such unfavorable interactions

(flaws) in addition to addressing the charge sign of polar

interactions in comparison with the former surface-based

model. Further description and implementation details of

the Eflaws term are provided in the Supplementary Material.

The Wilma scoring function was used exclusively for

structure prediction, i.e., to select the top-ranked docked

pose.

Solvated interaction energy (SIE) calculations

Scoring of binding affinities was carried out using the SIE

end-point force-field based method [15–18], which

approximates the binding free energy from the electrostatic

and non-polar components of the interaction energy and the

desolvation free energy

SIE ¼ aðEcoul þ Evdw þ ERFðBEMÞ þ EnpsolvÞ þ C ð3Þ

where Ecoul and Evdw describe solute–solute interactions by

intermolecular coulombic and van der Waals interaction

energies in the bound state calculated with AMBER and

GAFF molecular mechanics force fields [22–24]. Desolv-

ation effects are described by ERF(BEM), the change in the

reaction field energy between the bound and free states

calculated with a continuum model based on a boundary

element solution to the Poisson equation using the BRI

BEM program [25, 26] and a solute dielectric constant

Din = 2.25, and Enpsolv, the non-polar desolvation

approximated from a linear proportionality with the change

in solute molecular surface area [27–29]. The free state of

the system is obtained by rigid separation of the interacting

molecules from the bound state. Partial atomic charges for

protein atoms are taken from the AMBER force field,

whereas organic solutes are assigned AM1-BCC partial

charges [30, 31]. a is a global scaling factor of the total raw

solvated interaction energy relating to the scaling of the

binding free energy due to configurational entropy effects

[32, 33]. The standard parameters of the SIE function in

Eq. (3) are a = 0.1048 and C = –2.89 kcal/mol calibrated

against a protein–ligand training dataset of 99 complexes

refined by restrained energy minimization [15].

We also explored prospectively a different SIE function

in which the solvation terms are replaced by our latest

continuum solvation model FiSH that captures some of the

properties of the first shell of hydration [34, 35]. For

example, the electrostatic desolvation in the FiSH model,

ERF(FISH), can account for charge asymmetry effects. Also,

instead of a single surface-area-based term for all non-

electrostatic component of solvation, FiSH includes an

additional continuum van der Waals term, Ecvdw, to more

accurately describe the solute–solvent non-polar interac-

tions, and a separate surface-area based cavity term, Ecav.

Unlike the default solvation model within SIE, which uses

a solute dielectric of 2.25, the FiSH model uses a solute

dielectric of 1.0. The modified SIE ? FiSH scoring func-

tion then has the form

SIEþ FiSH ¼ aðEcoul þ Evdw þ ERFðFISHÞ þ Ecvdw þ EcavÞ
þ C

ð4Þ

where the parameters a = 0.1232 and C = 1.46 were

obtained by training against the same 99 protein–ligand

data set used for the original SIE function [15].

Finally, another SIE variant that implements two terms

from the Wilma docking program, the explicit hydrogen

bonding term, EHB, and the energetic penalty term for flaws

of protein–ligand complementarity, Eflaws,

SIEþ HBþ FLAW ¼ aðEcoul þ Evdw þ ERFðBEMÞ
þ EnpsolvÞ þ bEHB þ dEflaws þ C

ð5Þ

were calibrated against the 320 protein–ligand complexes

from the curated CSAR dataset [21], leading to weighting

factors b = -0.4 and d = 1.2, while keeping a and C at

the default values in Eq. (3).

Prior to SIE, SIE ? FiSH and SIE ? HB ? FLAW

calculations, all complexes were refined by constrained

energy minimization as described previously [18, 20].

The average CPU time for a Wilma–SIE calculation was

of the order of 10 min for a typical protein–ligand complex

in the HIV integrase virtual screening exercise. It generally

took Wilma about 0.1 s to exhaustively dock one confor-

mation of a ligand. For each ligand up to 5,000 Omega-

generated conformations were docked. The docked poses

were then clustered and representatives from each cluster

were rescored with SIE. Each protein–ligand representative

took about 20 s to rescore.

Structural preparation

HIV-integrase data set for virtual screening

The 1.9-Å-resolution crystal structure of the homodimeric

HIV-1 integrase catalytic core domain prepared for virtual

screening was taken from the PDB entry 3NF8 as sug-

gested by the SAMPL4 organizers. Structural preparation

of the dimeric structure was done in SYBYL 8.1.1 (Tripos,

Inc., St. Louis, MO). The crystallographic water molecules,

acetate and sulfate ions, and co-solvent and ligand
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molecules were removed. Chain termini of the dimeric

structure, including those arising from the disordered loop

between residues Lys188 and Gly193 were capped with

acetyl and methylaminyl groups. Hydrogen atoms were

added, with the protonation states of most ionizable side-

chains assigned for neutral pH. Exceptions include the side

chains of Asp64 and Glu92 in both monomers, which were

protonated. Tautomeric and protonation states of His resi-

dues were manually assigned after visual inspection in

order to maximize the H-bonding network, noting the

protonated forms assigned to His72 and His183 in both

monomers. Polar hydrogen atoms were oriented to maxi-

mize H-bonding and then the structure was refined by

energy minimization with the AMBER force field using

harmonic constraints of 3 and 20 kcal/(molÅ2) for the non-

hydrogen side-chain and backbone atoms, respectively.

In order to prepare the database of ligands for virtual

screening, we first verified the provided protonation states at

neutral pH and introduced alternate states for 13 ligands.

These include deprotonation of pyridine N atoms in ligands

AVX101125_0, AVX17228_0 and AVX17231_0, deproto-

nation of aromatic amine N atoms in AVX17264_0,

AVX17264_1, AVX38752_0, AVX38752_1, AVX40869_0,

AVX40872_0 and AVX62526_0, deprotonation of the

imidazole ring in ligand AVX62778_0, and tautomerism

between piperidine N atoms in ligands AVX40989_0 and

AVX40989_1. Partial charges were calculated with the AM1-

BCC method [30, 31], as implemented in Molcharge (Open-

Eye, Inc.), using as input the lowest-energy conformation

generated by Omega (OpenEye, Inc.).

HIV-integrase data set for affinity prediction

Two sets of structures were prepared. In one set cognate

protein structures for each ligand were used as inferred

from the corresponding crystal structures. In the other set a

common protein structure was used for all ligands. In the

cognate set, the eight crystal structures of complexes pro-

vided for prospective predictions as well as the suggested

control structure 3ZSQ of a complex with previously

measured binding affinity were prepared in a similar way

as described earlier for the virtual screening data set, fol-

lowed by constrained energy-minimization of the com-

plexes around the ligands as required for SIE calculations

[18, 20]. The number of protein atoms was kept the same in

all these complexes, which required deletion of C-terminal

Ala residue in one of the structures (the AVX17557 com-

plex). In the common set, the cognate protein structures in

all these complexes were replaced by the 3NF8 structure

prepared for virtual screening, after root-mean-square fit-

ting of backbone atoms, and then refined by the same

energy minimization protocol.

Host–guest data sets

The provided structure of the cyclic cucurbit[7]uril (CB7)

and OctaAcid hosts used for Wilma docking and SIE

affinity scoring were first energy-minimized with the

GAFF force-field, AM1-BCC partial charges and a dis-

tance-dependent dielectric constant. The cyclic OctaAcid

host, containing eight carboxylate side chains, was used in

the state corresponding to the formal net charge of

-8e. The rotameric states of its four aliphatic carboxylate

side-chains were manually changed into a symmetrical

geometry prior to energy minimization. The structures of

the all guests (14 amines as CB7 guests and 9 carboxylic

acids as OctaAcid guests) were docked in the most prob-

able protonation states at the corresponding experimental

pHs (as provided, with the exception of the CB7 guest #10

for which an alternate state corresponding to a mono-pro-

tonated piperidine ring was also docked). A training set of

seven guests with measured binding affinities for the CB7

host [36] was prepared as described previously [20].

Vibrational entropy calculations

The relatively small size of the host–guest systems allows

the direct application of a normal mode analysis (NMA) to

compute the vibrational entropy change upon binding [37].

Here, the AMBER force field with a distance-dependent

dielectric was used for the minimization and construction

of the mass-weighted Hessian matrix.

Results and discussion

Host–guest affinity prediction

We submitted two prospective models for each of the CB7

and OctaAcid host–guest affinity prediction data sets, one

based on the standard SIE scoring function in Eq. (3) and

the other one on the SIE ? HB ? FLAW function in

Eq. (5). We used our exhaustive docking program Wilma

to arrive at bound conformations for host–guest complexes.

The search space was defined large enough to allow

docking of the guest at any contact position around the

host. In general, the top-scored pose for all guests was

found to bind through the central hole-region of the hosts.

Both hosts are macrocycles having a circular geometry

with a central hole where certain guests are recognized

with surprisingly high affinity given the relatively small

size of these systems [36]. Whereas CB7 is a neutral host,

OctaAcid is negatively charged due to eight carboxylate

side chains disposed peripherally and away from the

macrocycle [38, 39]. Their guests are depicted in Figures

S1 and S2 from the Supplementary Material.
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The statistical performances of the models are listed in

Table 1 (see Table S1 for the values of the predicted

binding affinities). Since the results with the two scoring

functions were similar we will discuss only those based on

the SIE function. We see that there is good correlation with

SIE for both hosts but the slopes are small, that is, pre-

dicted range much smaller than the experimental one. One

way to modulate the correlation slope is to rescale the SIE

function in terms of the enthalpy–entropy compensation

factor a in Eq. (3) specifically for the system being

investigated. This is justified since is has been previously

shown that the CB7 host, for example, requires a higher

energy efficiency factor, that is, the degree to which

attractive forces are effective in generating binding free

energy, rather than being cancelled by entropy losses, than

the b-cyclodextrin host [33, 40, 41]. This points towards a

larger value for the a scaling factor in the SIE formulation.

Hence, we explored this possibility retrospectively by

deriving a rescaled SIE function based on a previously

published data for guests binding to CB7 (7 complexes)

[36]. This training model leads to an a scaling factor of

0.3572 (with a positive constant C = 2.24), hence a sig-

nificantly larger scaling than that for the standard SIE

function (0.1048), in agreement with previous observations

[40, 41]. Application of the rescaled SIE function to the

SAMPL4 CB7 data set led to a retrospective model with a

much-improved correlation slope (Table 1; Fig. 1a, b).

The weaker entropy compensation in CB7 binding as

compared to proteins is likely due to the rigidity of the CB7

host to begin with, resulting in a reduced loss of entropy

upon complex formation. As a way to support this expla-

nation, we noted that the slope for the cyclic CB7 host is

not only larger than that for proteins but also larger than

that obtained for the acyclic host analog to CB7 we

examined in SAMPL3 [20]. In order to assess qualitatively

the reduced entropic costs of binding to the cyclic CB7

host, we have designed a computational experiment com-

paring the cyclic CB7 and its acyclic cucurbituril analog

studied (as host-1) in SAMPL3 [20] (Fig. 2). The loss of

vibrational entropy of the target host upon guest binding (a

cyclohexyl diamine) was calculated by normal mode ana-

lysis in each system. After adding the loss of rotational and

translational entropy of the ligand upon binding we cal-

culated entropic losses –TDSbinding of only ?9.7 kcal/mol

in the case of the cyclic CB7 host compared with the larger

loss of ?13.3 kcal/mol for the acyclic host. This corrobo-

rates nicely the smaller enthalpy–entropy compensation

and hence a larger scaling factor of binding free energy for

the cyclic analog relative to the acyclic one. Furthermore,

since OctaAcid is also a cyclic host, we applied the scaling

Table 1 Performance of host–guest and HIV-integrase binding affinity predictions

System ID#a Methodb RMSE MUE Ks R Slope

CB7 187 SIE 3.90 3.46 0.54 0.74 0.18

CB7 188 SIE ? HB ? FLAW 3.92 3.48 0.57 0.75 0.19

CB7 Retro rSIE 1.67 1.24 0.54 0.74 0.62

CB7 Retro rSIE, symmetry correction 1.72 1.29 0.56 0.74 0.60

CB7 Null 2.16 1.86 n/a n/a n/a

OctaAcid 185 SIE 1.32 1.19 0.70 0.81 0.24

OctaAcid 186 SIE ? HB ? FLAW 1.33 1.19 0.70 0.87 0.28

OctaAcid Retro rSIE 1.59 1.39 0.70 0.81 0.82

OctaAcid Retro rSIE, symmetry correction 1.50 1.23 0.59 0.76 0.81

OctaAcid Null 1.24 1.00 n/a n/a n/a

HIV-IN 182 SIE, cognate structures 3.92 3.85 -0.36 -0.67 -0.76

HIV-IN 183 SIE, common structure 3.34 3.25 -0.64 -0.78 -0.80

HIV-IN 184 SIE ? FiSH, cognate structures 1.84 1.33 -0.14 -0.35 -1.03

HIV-IN Retro SIE ? FiSH, common structure 1.21 0.90 -0.50 -0.55 -1.30

HIV-IN Null 0.40 0.34 n/a n/a n/a

RMSE: root-mean-square error (kcal/mol); MUE: mean unsigned error (kcal/mol); Ks: Kendall tau; R: correlation coefficient; slope: correlation

slope. Note that the RMSE and MUE values reported for the host–guest systems are the absolute values and hence are larger than the

corresponding values reported in the SAMPL4 overview paper by Muddana et al. [46] which are values for predictions of relative binding

affinities by taking one of the host–guest systems as reference
a Submission number. Retro: retrospective model. Null: predicted affinities set to the experimental mean
b SIE: a = 0.1048 and C = -2.89 in Eq. (3); rSIE: rescaled SIE function based on an external training data set for CB7 with a = 0.3572 and

C = 2.24 in Eq. (3); SIE ? FiSH: a = 0.1232 and C = 1.46 in Eq. (4); SIE ? HB ? FLAW: a = 0.1048, b = -0.4, d = 1.2 and C = -2.89

in Eq. (5)

J Comput Aided Mol Des (2014) 28:417–427 421

123



factor derived for CB7 and significantly improved the

correlation slope for this system as well (Fig. 1d, e). All

these data suggest that entropic scaling of free energy is

system-dependent and can be calibrated if data is available

for the system under investigation. If not enough data with

a good dynamics range is available, vibrational entropy

calculations by normal mode analysis may provide an

alternative for comparison between various systems and

appropriate adjustment of the scaling coefficient.

The symmetry of the hosts and some of the guests can

have consequences on binding free energies [42, 43]. Since

the host symmetry affects all ligands equally, only the

guest (ligand) symmetry corrections need to be considered

for relative binding free energy calculations. These
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Fig. 1 Scatter plots of calculated versus actual binding affinities for

the host–guest systems and various prediction models. a CB7 host,

standard SIE, submission #187; b CB7 host, refitted SIE (based on

external published data for 7 complexes of CB7), retrospective; c CB7

host, refitted SIE, symmetry correction, retrospective; d OctaAcid

host, standard SIE, submission #185; e OctaAcid host, refitted SIE

(based on external published data for 7 complexes of CB7),

retrospective; f OctaAcid host, refitted SIE, symmetry correction,

retrospective. The diagonal dashed line indicates a perfect correlation

Fig. 2 Role of vibrational

entropy of the target to free

energy scaling studied by

comparing the cyclic host CB7

with an acyclic host analog. The

ligand bound to each host is

shown in ball-and-stick

representation
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corrections (*0.4 kcal/mol for a twofold symmetry)

applied to the retrained SIE scoring function for both CB7

and OctaAcid systems have a marginal effect (Fig. 1c, f).

HIV integrase affinity prediction

We submitted SIE and SIE ? FiSH prospective predictions

for the HIV-integrase binding affinity data set (Table 1,

Table S1), which consists of eight inhibitors (depicted in

Figure S3) against the binding site for the LEDGF/p75

cellular cofactor of HIV-1 integrase (termed the LEDGF

site throughout the rest of the paper). Previously unreleased

crystal structures of these enzyme-inhibitor complexes

were made available for this blind challenge. We first used

these cognate protein structures for generating SIE pre-

dictions of binding free energies (submission #182). The

correlation between these predictions and the actual values

is quite poor (Table 1). It is worth noting that the dynamic

range of binding affinities in this data set is extremely

narrow (1.2 kcal/mol), so from this viewpoint the SIE

blind prediction was successful in that the dynamic range

of predicted binding affinities was similarly narrow

(1.4 kcal/mol). However, SIE was trained and externally

tested to achieve a performance of about 2 kcal/mol mean-

unsigned error [15, 18, 20] and hence it is not capable of

reliably ranking binding affinities within smaller dynamic

ranges. The absolute magnitude of binding affinities was

also overestimated by SIE in this data set (Fig. 3a). This

may relate to the fact that SIE suffers from a certain mass

bias and the ligands in this data set are relatively large

(with molecular weights between 364 and 574 Da) for their

measured binding affinities (0.2–1.5 mM dissociation

constants).

We then wanted to test whether small structural changes

afforded in the protein target by various cognate crystal

structures are contributing favorably or not to SIE predic-

tions. We refer here to changes that are distributed all

around the protein molecule and involve main-chain and

side-chain fluctuations that are not necessarily limited to

transitions over large torsional barriers. We also noted that

several exposed side chains close to moieties that are

common for all these ligands, for example Gln95 and

His171, experience significantly different rotameric states

in different crystal structures. Therefore, we replaced the

cognate protein structures with a single external structure

(taken from the available PDB structure 3NF8). The SIE

prospective predictions from this common target structure

experiment (submission #183) did not worsen the predic-

tions, which are still within a narrow (1.1 kcal/mol)

dynamic range, and actually we noticed a slight
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Fig. 3 Scatter plot of predicted

versus experimental binding

affinities of HIV-integrase

ligands. a SIE function on

cognate structures (submission

#182); b SIE function on single

structure (submission #183);

c SIE function on cognate

structures (submission #184);

d SIE ? FiSH function on

single structure (retrospective).

The diagonal dashed line

indicates a perfect correlation
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improvement in the magnitude of absolute predictions

(Fig. 3b). This indicates that the common protein structure

is a good strategy for noise reduction in predictions with

the SIE and related methods, which are based on a single

conformation of the complex. It also more faithfully rep-

resents the routine application of SIE in most virtual

screening campaigns. If small conformational movements

are needed close to the ligand, then those can be introduced

on the common scaffold thus eliminating the noise intro-

duced by distant movements.

Application of the SIE ? FiSH variant of the scoring

function improved the absolute magnitudes of predictions

for half of the complexes with the cognate (multiple) target

structure approach (submission #184, Fig. 3c) and for all

but one complex in the common (single) target structure

approach (retrospective prediction, Fig. 3d). This indicates

that SIE ? FiSH may be less sensitive to size bias than

SIE, reinforcing some of the earlier findings based on our

experience in SAMPL3 [20]. It is also apparent from the

current results that the spread of the predictions with

SIE ? FiSH is larger than the SIE-based spread and the

experiment, which indicates that this model is more sen-

sitive to protein structural changes. This further reinforces

the value of using the common structure approach.

HIV-integrase pose prediction and virtual screening

The HIV-integrase virtual screening challenge consisted of

identifying a set of binders from a final full set of 305 mol-

ecules, some of which are stereoisomers of the same com-

pounds. Retrospectively, there were 56 distinct binders in

this data set, the rest consisting of proven non-binding decoy

molecules that are structurally similar analogs of the binders.

One peculiarity of this virtual screening challenge was that

the target, HIV-integrase, can bind ligands at three distinct

sites (actually six considering the dimer): the LEDGF site,

the Y3 site, and the fragment site, although most binders

included in this set bind to the LEDGF site [44, 45]. We

directed virtual screening of the full set to all three sites and

selected the best scoring pose overall using the standard SIE

scoring function in Eq. (3) (submission #146) and the SIE

variant that includes hydrogen bonding and flaws terms as in

Eq. (5) (submission #147). In a third submission (#148) we

also used the newer SIE ? HB ? FLAW function but

ranked compounds based on the scores calculated at the

LEDGF site only.

Obviously, the success or failure of the virtual screening

experiment hinges greatly on the docking step. Hence,

before discussing the virtual screening results, we wanted

to get a feel for the docking accuracy based on the

SAMPL4 pose prediction challenge consisting in the HIV-

integrase binders together with their known actual poses.

Hence, our pose prediction submissions (#154, #155 and

#156) were essentially those from our corresponding vir-

tual screening runs mentioned above (submission #146,

#147 and #148, respectively). An overview of our pose

prediction results over all binders is shown in Table 2.

About a third of ligands were docked well (up to 2 Å

RMSD from the actual pose) by Wilma when pose selec-

tion was done with the standard SIE function over all three

sites. Slightly less ligands were docked well when scored

by SIE ? HB ? FLAW overall all three sites and also

when docking was directed only around the LEDGF site.

Half of the ligands were docked closer than 4.52 Å RMSD

from the actual pose with standard SIE scoring over all

three sites, which is a reasonable performance.

The interpretation of the pose prediction challenge in

SAMPL4 is complicated by the existence of several bind-

ing sites for various ligands as well as multiple binding of

some of the compounds at more than one site. In the same

time, this also represents a very stringent test of the

docking method. Half of the ligands are docked at the

correct site using the standard SIE scoring, with an average

RMSD over this fraction of ligands of only 2.36 Å and

with half of this fraction of ligands docked closer than

1.60 Å to the actual pose (Table 2). When docking was

constrained only around the LEDGF site, 85 % of the

ligands were docked in the correct site, because the rest of

the compounds actually bind to other sites. The important

metrics to remember in this case are the average and

median RMSD values of 6.96 and 5.20 Å calculated for

this fraction of compounds. These relatively large RMSD

values indicate a certain level of misdocking within the

relatively wide docking region that we set up around the

LEDGF site.

To gain more insight into the performance of our

docking program in this system, we focused on a subset of

eight compounds from HIV-integrase affinity prediction

challenge presented earlier for which we had access to the

actual poses. These compounds bind to the same pocket in

the LEDGF site. However, although these compounds were

docked in the box around the LEDGF site, Wilma docking

positioned correctly (RMSD \ 2 Å) only one of the eight

compounds. There are several compelling reasons for this

poor docking result.

First, the box defining the docking space around the

LEDGF site was much larger than the actual binding site of

the ligands. We purposely defined a larger region because

of the presence of a deep pocket adjacent to the actual

binding site of these ligands (Fig. 4a). We found that most

compounds docked into the deeper pocket rather than in the

much shallower actual pocket. This was irrespective of

whether SIE or SIE ? HB ? FLAW scoring functions

were used to rank the poses generated by the Wilma

docking program. Retrospectively repeating the docking on

a smaller box focusing strictly around the actual binding
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location resulted in correct docking of five out of the eight

ligands. Overall, these results may indicate that favorable

van der Waals interactions in the deep pocket are over-

whelming the cost of displacing water and ions from this

location, leading to incorrect pose ranking. Hence, some

further improvement of our scoring functions is warranted.

Secondly, as already mentioned, these HIV-integrase

inhibitors are weak binders ([100 lM dissociation con-

stant). They are also highly flexible, having more than eight

rotatable bonds. Weak and flexible ligands are promiscuous

to bind at several locations at the protein surface. This is

reflected in our docking results, where we find that poses in

the wrong pocket outscored the correct poses by just

0.2 kcal/mol (Fig. 4b). Docking of flexible weak-binding

ligands is highly prone to generate false positives, i.e.,

good-scoring incorrect pose. Handling highly flexible

ligands is also difficult because the bioactive conformation

may not be readily generated before docking (although

Omega failed to generate the bioactive conformation for

only one of the eight ligands). Hence, this challenge seems

to fall outside of the applicability domain of our Wilma–

SIE docking–scoring virtual screening platform, which is

designed to reliably differentiate not-too-flexible (less than

eight rotatable bonds) strong binders (at least sub-lM)

from non-binders.

Despite the difficulties, our virtual screening results were

better than random, as shown by the enrichment factors and

ROC curves and their area-under-curve (AUC) values

(Table 3). It is interesting that the early enrichment obtained

with the standard SIE function (EF of 1.25 at 10 % of ranked

library, submission #146) was slightly improved with the

application of the SIE ? HB ? FLAW scoring function

Table 2 Performance of pose predictions for binders of HIV-integrase

ID#a Methodb Fraction B 2Å

RMSD (%)

Average

RMSD (Å)

Median

RMSD (Å)

In the correct site

Fraction (%) Average

RMSD (Å)

Median

RMSD (Å)

154 SIE, three sites 38 12.51 4.52 53 2.36 1.60

155 SIE ? HB ? FLAW, three sites 27 15.65 18.12 43 3.83 1.77

156 SIE ? HB ? FLAW, LEDGF site—wide 30 8.00 6.18 85 6.96 5.20

a Submission number
b SIE: Eq. (3); SIE ? HB ? FLAW: Eq. (5); three sites: docking was performed in three distinct regions around the Y3 site, the fragment site

and the LEDGF site; LEDGF site—wide: docking was performed in a large area around the LEDGF site

Fig. 4 Box defining the region used for virtual docking. HIV-

integrase is represented as a molecular surface. a The box extends

beyond the actual binding location of the ligand and include an

adjacent deep pocket filled with structured water molecules (red

spheres) and an acetate ion. b Low-energy docked poses are found

mostly in the adjacent deep pocket and less in the shallower actual

binding site

Table 3 Performance of virtual screening against HIV-integrase

ID#a Methodb EF

(10 %)

EF

(20 %)

AUC

(ROC)

146 SIE, three sites 1.25 1.16 0.55

147 SIE ? HB ? FLAW,

three sites

1.79 1.25 0.54

148 SIE ? HB ? FLAW,

LEDGF site—wide

1.61 1.52 0.58

Retro SIE ? HB ? FLAW,

LEDGF site—narrow

1.79 1.61 0.60

a Submission number. Retro: retrospective prediction
b SIE: Eq. (3); SIE ? HB ? FLAW: Eq. (5); three sites: docking

was performed in three distinct regions around the Y3 site, the

fragment site and the LEDGF site; LEDGF site—wide: docking was

performed in a large area around the LEDGF site; LEDGF site—

narrow: docking was performed in a smaller region focused around

the actual binding site of the ligands at the LEDGF site
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(1.79 at 10 % of ranked library, submission #147, see Fig. 5)

overall the three sites. This contrasts with the slightly weaker

performance of SIE ? HB ? FLAW versus SIE for pose

prediction in the case of binders (Table 2), and hence indi-

cates a role of the SIE ? HB ? FLAW function in filtering-

out (via the Eflaws penalty) some of the false-positive non-

binders. Encouraged by the docking results with the LEDGF

box confined around the actual binding site, we retrospec-

tively repeated virtual screening on this smaller box. While

the performance was improved (Table 3; Fig. 5), this

required prior knowledge of the system, which we purposely

excluded from the blind evaluation of our methods, as it will

not always be available in real-life applications of our tools.

In the case of alternate protonation and tautomeric sates

of a ligand, Wilma–SIE selects the state with the lowest

SIE value. Feasible alternate states were included pro-

spectively for 13 compounds in the HIV-integrase virtual

screening. Retrospectively, it turns out that all these com-

pounds are non-binders, and they were correctly ranked

low by Wilma–SIE. However, the RMS variation in SIE

score between alternate forms is 0.96 kcal/mol, which is

not negligible and underscores earlier reports of SIE sen-

sitivity to protonation states [18]. There is a larger impact

in the fragment site (1.28 kcal/mol) than in the LEDGF site

(0.93 kcal/mol) or the Y3 site (0.51 kcal/mol). On the same

subject, the selected alternate protonation of guest #10 of

CB7 gave an improved SIE of -1.56 kcal/mol over the

other protonation state. This translates into improving the

correlation with experimental data, e.g., submission # 187

would have a decreased correlation coefficient of 0.71 from

0.74 (Table 1).

Conclusions

The SAMPL4 blind challenge provided a stringent test for

the performance of the Wilma–SIE docking–scoring plat-

form, which remains consistent with past experience on

various systems. The strength of Wilma–SIE is in provid-

ing good correlations with binding affinities over dynamic

ranges of 3 kcal/mol or wider. Using a common protein

structure for all ligands can reduce the noise, while

incorporating the more sophisticated solvation treatment of

the FiSH model improves absolute predictions. Although

the goal of consistently achieving sub-2 kcal/mol accuracy

in relative binding free energies remains a challenge even

when using the actual binding modes, the predictions

correctly detect such narrow dynamic ranges. Estimation of

the change in target’s vibrational entropy may represent a

way to improve absolute predictions. The present study

further delineates the applicability domain of the Wilma–

SIE platform for virtual screening. The formidable task of

filtering out false positives may be improved by strength-

ening the penalty on non-complementary polar contacts.

Wilma–SIE is not intended for detection of promiscuous

weak binders with relatively high flexibility, although even

in such difficult cases it can lead to better-than-random

virtual screening results.
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