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Abstract To rigorously assess the tools and protocols that

can be used to understand and predict macromolecular rec-

ognition, and to gain more structural insight into three newly

discovered allosteric binding sites on a critical drug target

involved in the treatment of HIV infections, the Olson and

Levy labs collaborated on the SAMPL4 challenge. This

computational blind challenge involved predicting protein–

ligand binding against the three allosteric sites of HIV in-

tegrase (IN), a viral enzyme for which two drugs (that target

the active site) have been approved by the FDA. Positive

control cross-docking experiments were utilized to select 13

receptor models out of an initial ensemble of 41 different

crystal structures of HIV IN. These 13 models of the targets

were selected using our new ‘‘Rank Difference Ratio’’

metric. The first stage of SAMPL4 involved using virtual

screens to identify 62 active, allosteric IN inhibitors out of a

set of 321 compounds. The second stage involved predicting

the binding site(s) and crystallographic binding mode(s) for

57 of these inhibitors. Our team submitted four entries for the

first stage that utilized: (1) AutoDock Vina (AD Vina) plus

visual inspection; (2) a new common pharmacophore engine;

(3) BEDAM replica exchange free energy simulations, and a

Consensus approach that combined the predictions of all

three strategies. Even with the SAMPL4’s very challenging

compound library that displayed a significantly lower

amount of structural diversity than most libraries that are

conventionally employed in prospective virtual screens,

these approaches produced hit rates of 24, 25, 34, and 27 %,

respectively, on a set with 19 % declared binders. Our only

entry for the second stage challenge was based on the results

of AD Vina plus visual inspection, and it ranked third place

overall according to several different metrics provided by the

SAMPL4 organizers. The successful results displayed by

these approaches highlight the utility of the computational

structure-based drug discovery tools and strategies that are

being developed to advance the goals of the newly created,

multi-institution, NIH-funded center called the ‘‘HIV Inter-

action and Viral Evolution Center’’.
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Introduction

For an introduction to HIV infection, AIDS epidemics and

integrase/LEDGF inhibition, we refer to the general

introduction paper in this issue [1].

Our laboratory has been involved in HIV-related

research for more than 20 years, with computational and

Alexander L. Perryman and Daniel N. Santiago have contributed

equally to this work.
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drug design efforts targeting HIV Protease (PR) and more

recently HIV integrase (IN) [2–7]. This work has led to the

identification of several potential new allosteric sites on

HIV protease. Our main computational effort uses the

FightAids@Home project, (http://fightaidsathome.scripps.

edu/) in collaboration with IBM World Community Grid,

where volunteers’ computer power is used to perform high-

throughput virtual screenings of millions of commercially

available compounds versus HIV-related targets.

In 2012, we formed the HIV Interaction and Viral Evo-

lution (HIVE) Center (http://hive.scripps.edu/) whose goal is

to characterize at the atomic level the structural and dynamic

relationships between interacting macromolecules in the

HIV life cycle to understand the mechanistic evolution of

drug resistance. The Center involves 13 individual research

groups from six different institutions. One recent collabo-

rative effort between the two HIVE Center computational

groups, the Olson lab and the Levy lab, has been established

to reduce the number of false positive results from large

virtual screens. These virtual screens are used to recommend

acquisition or synthesis of promising compounds for sub-

sequent wet-lab analysis. Thus, the higher the rate of true

positives from computational experiments, the less time,

effort and money is wasted on testing compounds that are not

true binders. To accomplish this, we are developing a pro-

cedure that takes the top hits selected from virtual screens

using either AutoDock or AutoDock Vina (AD Vina) and

evaluates their binding free energy using the replica

exchange molecular dynamics computation, BEDAM, from

the Levy Lab (described in detail in a companion paper in this

issue [8]). Initial retrospective analysis of this procedure on

HIV protease allosteric site-binders has shown to be very

promising (paper in preparation). Fortunately, the SAMPL4

Challenge provided a useful blind data set with unpublished

results upon which we could further test our methodology.

Moreover, the SAMPL4 Challenge organizers had

chosen to use data from studies on three allosteric sites of

the HIV IN [1]. While we had not previously worked on

these HIV target sites, two other member labs in our HIVE

Center, the Engelman and Kvaratskhelia groups, focus on

allosteric inhibition of IN. The SAMPL4 Challenge pre-

sented an opportunity to initiate a computational effort in

that area and promote further HIVE Center collaborations.

Thus, we decided to participate in the SAMPL4 Challenge.

Before the Challenge began, the participants were

informed that most of the SAMPL4 compounds were

known to bind to the LEDGF site of IN, but some could

bind to one or more additional allosteric sites of IN, which

were referred to as the ‘‘FBP’’ site (for Fragment Binding

Pocket) and the ‘‘Y3’’ site (see Fig. 1). Like the LEDGF

site, the FBP site is also located at the dimer interface of

the catalytic core domain (CCD) of IN. There are two

LEDGF sites per IN CCD dimer, two FBP sites per IN

CCD dimer, and also two Y3 sites per IN CCD dimer.

However, the Y3 site is entirely contained within each

monomer of the core domain and is located underneath the

very flexible 140s loop (i.e., Gly140-Gly149). The top of

the 140s loop flanks the active site region, and the com-

position, conformation, and flexibility of the 140s loop is

known to be critical to IN activity [9–11] Since most of the

inhibitors in the SAMPL4 library (i.e., the ‘‘true positives’’)

are LEDGF binders, and since the previously published

inhibitors of the LEDGF site (e.g., the allosteric IN

inhibitors or ‘‘ALLINIs’’) are more advanced and more

well-characterized [12–15], most of our effort focused on

the LEDGF site. Most of this paper will focus on the results

versus the LEDGF site, as well.

Methods

Positive control cross-docking studies

The challenge organizers gave as a reference structure an IN

catalytic domain dimer with ligands bound to all three allo-

steric sites (PDB 3NF8). With myriad HIV IN structures

available and 3 sites to consider, we inspected the interac-

tions and rankings of known binders of the HIV IN allosteric

sites to select an optimally informative subset of structures as

targets for the virtual screening. Thus, co-crystallized

ligands for each site were cross-docked from the collection

of IN structures.

To prepare for the positive control cross-docking stud-

ies, the Protein Data Bank [16, 17] was searched for the

available crystal structures of IN bound to an allosteric

inhibitor. When a particular crystal structure displayed both

‘‘A’’ and ‘‘B’’ form coordinates for residues that were

within one of the three allosteric sites of IN (or within the

shell of residues that surround one of these sites), then that

complex was split into two separate target files (i.e.,

PDBID_A and PDBID_B). If no ‘‘_A’’ or ‘‘_B’’ is listed,

then that crystal structure had no alternate conformations in

the regions surrounding the allosteric sites. The LEDGF

site was represented by 64 different receptor models, the

FBP was involved in 32 different receptor models, and the

Y3 site was described by 10 different receptor models.

These 106 receptor models of 41 crystallographic com-

plexes were superimposed onto the coordinate reference

frame provided by SAMPL4 (alignment by alpha carbons

performed with PyMOL) and then organized according to

which of the three allosteric sites had a ligand bound (using

visual inspection). All hydrogen atoms were added to the

proteins using the MolProbity server, which adjusts the

pKa’s of the titratable residues, optimizes the hydrogen

bond network, and allows His, Gln, and Asn residues to flip

if doing so lowers the energy of the system [18, 19]. All
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hydrogen atoms were added to the ligands using Avogadro

[20]. Gasteiger-Marsili [21] charges were added to the

models of both the ligands and the targets, and then the

non-polar hydrogens were merged onto their respective

heavy atoms using AutoDockTools and Raccoon [22, 23].

The docking studies were all performed using AD Vina

1.1.2 [24]. See Fig. 2 for a summary of the workflow

employed in the positive control cross-docking

experiments.

Only the small molecule allosteric inhibitors of IN were

selected for the positive control cross-docking studies; the

cyclic peptide inhibitor complexes being removed from the

set. These positive control small molecules were utilized in

the cross-docking experiments, with two ligand models for

each ligand. One model started with a pose close to the

crystallographic conformation and position, while the

second model began with a randomized position, orienta-

tion, and conformation (generated by using the ‘‘random-

ize_only’’ function in AD Vina) [24]. All 42 ligand models

were known to be LEDGF binders, 33 ligand models were

known to bind the FBP site, and 5 ligand models were

Fig. 1 Integrase functional structure and architecture. The three

domain structure of an IN monomer bound to DNA is displayed. The

SAMPL4 reference structure of the HIV IN Catalytic Core Domain

dimer (CCD, PDB ID: 3NF8) was superimposed onto PFV IN crystal

structure (PDB ID: 3OS1) to show the relative arrangement of the

domain components. The CCD domain is represented as ribbon model

with each monomer colored in green and cyan, respectively; the other

domains are represented as semi-transparent surfaces: C-Terminal

Domain (CTD, yellow); N-Terminal Domain (NTD, light blue); host

DNA (salmon). The CDQ allosteric ligand from 3NF8 is displayed as

sticks (white) to highlight the three allosteric sites of HIV IN involved

in the SAMPL4 challenge: LEDGF, Y3, and FBP. The IN inhibitor

Raltegravir (RLT) bound in the PFV IN active site is shown with a

black outline. The active catalytic state of HIV IN is a tetramer

formed by a dimer of dimers (not shown)

Fig. 2 Summary of the workflow used in the positive control cross-

docking experiments with AutoDock Vina. This protocol was used to

select the targets that were involved in the subsequent virtual screens

with the SAMPL4 compounds
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known to bind the Y3 site. These 80 ligand models and

their 2 forms of randomized and non-randomized structures

yielded 160 total ligand models for use in the positive

control dockings. When a particular ligand crystallized in

more than one type of allosteric site, it was included in the

set of ligands for each of those sites. The aligned, crys-

tallographic conformations of the positive control ligands

from each site were used as inputs to train the common

pharmacophore engine approach discussed below (see

Table 1).

The following crystal structures had ligands that

crystallized in both the LEDGF site and the FBP site:

3ZT2 (A and B forms), 3ZT4 (A and B forms), 3VQ4,

and 3VQ7. Similarly, the following crystal structures had

ligands that crystallized in both the LEDGF site and the

Y3 site: 3NF6 (A and B forms) and 3NFA (A and B

forms). For 3NF8 (which also had A and B forms), the

fragment CDQ crystallized in all three allosteric sites.

(See Fig. 3 for images that display the crystallographic

binding mode of CDQ with each site and for a depiction

of the grid boxes that were used in the AD Vina cal-

culations against each site.) For both the positive controls

and the virtual screens of the SAMPL4 compounds, 4

CPU’s were used per docking calculation (on the TSRI

Linux cluster), the grid box used for each site had a size

of 30 9 30 9 30 Å3, and the grids were centered on an

atom in CDQ from the 3NF8 reference provided by

SAMPL4. For the FBP site, the nitrogen atom of CDQ

was used for the center (x, y, z = 3.426, -21.239,

-1.559); for the LEDGF site, the C11 atom was used for

the center (x, y, z = 11.095, -46.191, 0.368); for the Y3

site, the N atom of CDQ was used for the center (x, y,

z = 9.137, -25.675, -22.414). Since large grid boxes

were used, the ‘‘exhaustiveness’’ setting in AD Vina was

increased to 20.

Table 1 Common pharmacophore engine’s training sets for each

allosteric site

LEDGF

Receptors (PDB ID) Ligands (HET ID)

3ZCM PX3

3ZSY OM3

3ZSZ OM2

3ZT1 OM1

3ZSQ O4N

3ZSR O3N

3ZSO O2N

3ZSX N44

3NF6 IMV

3NF8 CDQ

3NFA CBJ

3VQ8 BCU

3VQ4 0NX

3ZT3 ZT4

3ZT4 ZT2

3ZT2 ZT2

3ZT0 ZT0

3ZSW ZSW

3ZSV ZSV

3VQ7 SNU

FBP

Receptor (PDB ID) Ligand (HET ID)

4AH9 0MB

3VQ4 0NX

3AO4 833

4AHS AKH

3AO2 AVX

3AO5 BBY

3AO3 BMC

3AO3 BMC

3VQQ BTE

3AO1 (top) BZX

3AO1 (bottom) BZX

3NF8 CDQ

3VQP DBJ

3VQB FBG

3VQE FMQ

4AHR I2E

4AHU ICO

3VQ5 MMJ

3VQD MOK

3VQC MPK

3OVN MPV

4AHT Q6T

4AHV Z5P

Table 1 continued

FBP

Receptor (PDB ID) Ligand (HET ID)

3ZT2 ZT2

3ZT4 ZT2

Y3

Receptor (PDB ID) Ligand (HET ID)

3NF6 IMV

3NF7 CIW

3NF8 CDQ

3NF9 CD9

3NFA CBJ
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Selecting the models for each of the targets

The combination of the three sets of positive control

compounds were cross-docked against all of the models for

each of the 3 allosteric sites (see Fig. 2 for a summary of

the workflow). Interaction-based filters, based on key

hydrogen bonds displayed by many of the ligands in the

crystal structures for each particular site, were applied to

the AD Vina results against each allosteric site (see Fig. 4).

The filtering was done using in-house Python scripts that

were created during the development of Raccon2 and Fox

[23]. The filters were only applied to the top-ranked AD

Vina mode per model of each compound (for both the

positive control experiments and the subsequent virtual

screens of the SAMPL4 compounds). For example, about a

dozen different sets of interaction-based filters were

investigated for the LEDGF results, and two particular

filters were selected, since they harvested a reasonable

number of docked modes per target for visual inspection.

For the LEDGF site, the filter requirements consisted of a

minimum of 2 predicted hydrogen bonds to IN, and either:

(Fa) a hydrogen bond with Glu170; or (Fb) a hydrogen

bond to the backbone amino group of His171, similar to the

ALLINIs (see Fig. 5).

The method used for choosing receptors for virtual

screening of the IN models for the LEDGF site described

here is the same for the FBP site. For each LEDGF target,

the top-ranked docked mode of the positive control ligands

from all 3 sites that passed a particular filter were sorted

according to the estimated free energy of binding as cal-

culated by AD Vina. This sorting process determined the

absolute rank for each compound whether they be known

LEDGF-site binders or decoys (observed to bind at the FBP

or Y3 sites). The ligands that crystallized in the LEDGF

site were then extracted from that sorted list, and their

order in that LEDGF-site specific list determined their

relative rank. Receptor models were chosen from statistics

and visual analysis of the rankings of the site-specific

binders (Supplemental Information, Fig. 1). Subsequently,

this ad hoc visualization process formalized into our ‘‘Rank

Difference Ratio’’ (RDR) procedure where the relative

ranking of the appropriate positive control ligands was

Fig. 3 Grid boxes

(30 9 30 9 30 Å3) utilized in

the positive control cross-

docking studies and in the

virtual screens of the SAMPL4

compounds. Each image

contains the solvent-excluded

molecular surface of the HIV

integrase CCD (colored by

David Goodsell convention in

AutoDock Tools [22]) from the

crystal structure PDB ID 3NF8,

in which the fragment CDQ

(shown as sticks with turquoise

carbon atoms) is bound. Shown

are the LEDGF (A), FBP (B),

and Y3 (C) sites
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used with the corresponding absolute ranking as the RDR

metric for a receptor i, as follows:

RDRi ¼

P

j

Rabs;j � Rrel;j

Ni

where Rabs,j and Rrel,j are the absolute and relative rank-

ings, respectively, for ligand j. For example, a LEDGF

target model for which all of the LEDGF ligands ranked

better than the ligands from the other two sites, the absolute

and relative rankings for all ligands would be the same and

the receptor would thus have an RDR value of 0. In Fig. 5

we plot RDR versus total number of site-specific hits. The

receptor models having a low RDR value and a high

number of LEDGF-site hits demonstrates that this for-

malized RDR metric matches the receptors chosen by the

original ad hoc procedure. For targets that displayed similar

RDR values using a particular filter, receptor models were

selected to maximize structural diversity. Further, if two

forms of a structure had a difference of total number of

LEDGF-site hits less than 2, the receptor model with the

lower RDR value was chosen. A similar strategy was used

to select the FBP targets. For the small set of Y3 receptor

models, the median statistic of rankings was sufficient to

choose the best receptor model, 3NF8_B.

The set of 106 receptor models representing the FBP,

LEDGF, and Y3 sites enabled the selection of the follow-

ing number of targets per site: 6 crystal structures of the

LEDGF site, 6 structures of the FBP site, and 1 crystal

structure of the Y3 site. The LEDGF targets selected were:

3ZSO_B, 3ZT4_B, 3ZT1_A, 3ZT3_A, 3NF8_A, and

3ZCM_A [25, 26]. The FBP targets selected were: 3AO1,

3AO2, 3VQD, 3VQE_A, 3VQ4, and 3VQ7 [27, 28]. The

Y3 target selected was 3NF8_B [26].

Virtual screen of the SAMPL4 compounds using AD

Vina

AutoDock Vina was used to screen the SAMPL4 com-

pound library against these 13 receptor models of IN [24].

See Fig. 6 for a summary of the workflow used for the

LEDGF targets. A similar strategy was utilized for the FBP

and Y3 sites. The same grid box size, location, and settings

for AD Vina from the positive controls were also used in

these virtual screens (see Fig. 3). The 321 compounds

E170

H171

Q168

Fig. 4 Hydrogen bond interactions of AVX17561 (sticks with green

carbon atoms) docked with the LEDGF site (white backbone tube) of

HIV integrase. Three residues (sticks with pink carbon atoms) are

shown with hydrogen bonds (magenta dotted lines) to the ligand

model. Two hydrogen bonds (Glu170 and His171) were required by

the interaction filters

Fig. 5 Selection of the 6 crystal structures that were used as targets

for the LEDGF site during the virtual screen of the SAMPL4

compounds. The X-axis indicates the number of docked models of

LEDGF ligands that passed through a particular filter during the

positive control cross-docking experiments, while the Y-axis plots the

‘‘Rank Difference Ratio’’ metric that quantifies how well the LEDGF

ligands ranked, in relation to the FBP and Y3 ligands. All 84 models

of small molecule LEDGF ligands were docked to 66 LEDGF-site

receptor models and then 2 interaction filters (Fa: a hydrogen bond

with Glu170; Fb: a hydrogen bond to the backbone amino group of

His171) were applied. After normalization of data between the two

sets of filtered data, the best for each receptor source is visualized

here

Fig. 6 Summary of the workflow used in the in the SAMPL4

challenge for the LEDGF site
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provided by SAMPL4 were used as inputs by the Levy Lab

for LigPrep and Epik [29, 30] at a pH of 7 ± 2, which

generated additional tautomers and protonation states of

some compounds to produce a final set of 451 models of

the SAMPL4 compounds. All 451 ligand models of the

compounds were docked against the 6 LEDGF targets, 6

FBP targets, and 1 Y3 target, using the TSRI Linux cluster.

The same filters used in the positive control dockings were

applied to the results of the SAMPL4 dockings.

The sets of docked modes harvested by either of these

two filters per target were combined and visually inspected.

The hydrogen bond Python filter used only the donor–

acceptor distance as a criterion (the donor-hydrogen-

acceptor angles were manually measured during the visual

inspection process). Positive factors considered during

visual inspection included the hydrogen bonds exceeding

the number specified in the filters, potentially favorable

interactions of nearby side-chains if they flexed, and

agreement of position between a set of stereoisomers.

Negative factors included solvent-exposure of non-polar

atoms or large portions of the ligand. Though somewhat

subjective in nature, these criteria were used to make final

choices of hits and later determine a confidence level for

each ligand as required by SAMPL. The range of confi-

dence was 1–5 with 5 being the highest confidence. The

docked modes that passed the visual inspection process

against any of the LEDGF targets were combined, to

generate a set of 69 unique compounds that were predicted

to be LEDGF binders.

For FBP, two filters were also combined to harvest

ligands for visual inspection. In one filter, the top-ranked

docked mode needed to have a minimum of two hydrogen

bonds and a ligand efficiency value less than -0.30

kcal/mol/heavy atom. In the other filter, the compound had

to display a minimum of three hydrogen bonds and a ligand

efficiency value better than -0.25 kcal/mol/heavy atom.

The interaction-based filters from the positive control

dockings that used key hydrogen bonds to the FBP site

were too stringent; very few or no docked compounds

passed that filter. Twenty-five compounds passed the visual

inspection process and were predicted to bind the FBP site.

For the Y3 receptor model, two different filters were

combined to choose docking modes for visual inspection.

One filter required the docked compounds to have one

hydrogen bond with Lys188 and one additional unspecified

hydrogen bond. The second filter only required the docked

compounds to possess 4 hydrogen bonds. A set of seven

compounds passed the visual inspection process and were

predicted to bind to the Y3 site of IN.

The predicted binding modes of all of our candidate

inhibitors that passed the visual inspection process against

the 13 target models were sent to the Levy lab, to be used

as inputs for their BEDAM replica exchange simulations

[31]. (See the companion paper on the BEDAM method for

results and a discussion of the Consensus approach [8].) In

addition, the filtered binding modes predicted by AD Vina

were also re-ranked by the new common pharmacophore

engine method (below), which identified an alternate set of

candidate inhibitors.

Common pharmacophore engine

We have developed a 3D pharmacophore model [32, 33]

based on the AutoDock forcefield/atom type set. The

pharmacophore is based on the conversion of explicit

chemical groups into basic chemical features: hydrogen

bond acceptors and donor, aromatic rings, aliphatic car-

bons, and halogens. Each feature is represented by a

combination of the three-dimensional location of a given

feature with respect to the ligand structure and a series of

properties specific to each feature (i.e., hydrogen bond

direction vector, aromatic ring plane). Each feature can

also include a tolerance setting for its properties and

location. This simplifies the comparison of chemical

structures and provides a rapid method for quantitatively

scoring structural similarity. By using pharmacophore

representations it is possible to generate a common phar-

macophore model that recapitulates the most representative

set of chemical features of a series of ligands bound to the

same site. The choice of features to represent the phar-

macophore is performed after geometrical clustering. A

common pharmacophore engine generates similar feature

clusters that are processed to produce an average repre-

sentation. Isolated features are discarded. In addition to the

aforementioned chemical features, the engine also gener-

ates special sets (i.e., an ‘‘honorable mention’’ set) repre-

senting recurrent atom type clusters present in the ligand

set, like halogens or sulfur.

The common pharmacophore can then be used to re-

score ligands docked to the binding site, providing a new

quantitative score based on the similarity of binding pat-

terns between docked results and known ligands. This

pharmacophore model has been successfully applied to

identify high micromolar allosteric inhibitors of HIV-1

protease, including several crystallographic hits (unpub-

lished data). Further details about the method and the

pharmacophore engine will be described in a future

publication.

Generation of common pharmacophores

In order to generate the common pharmacophores for the

three different sites (LEDGF, FBP, and Y3), the three

different training sets of ligand-receptor complexes were

aligned (by alpha carbons in PyMOL) to the 3NF8
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structure provided as an input for the challenge. For each

site, ligand structures were extracted and their overlapped

conformations were processed with the common pharma-

cophore engine. Features present in at least two ligands

were considered, directionality was disabled for the

hydrogen bond and aromatic ring features, no maximum

features count was used, and all features had the same

weight and radius tolerance (1.5 Å). These settings were

used to increase the tolerance of the common pharmaco-

phores and to provide a generic filter to prioritize docked

poses of ligands that displayed an interaction pattern sim-

ilar to known ligands. A summary of the different training

sets used for the generation of each common pharmaco-

phore is shown in Table 1. The number and nature of the

features generated for each pharmacophore is strictly cor-

related with the number of ligands available for each site

and their structural diversity.

LEDGF common pharmacophore

The LEDGF common pharmacophore was calculated

from 19 different ligands (see Table 1) and contains the

following features: 5 aromatic rings, 2 hydrogen bond

donors, 6 hydrogen bond acceptors, 5 aliphatic carbons,

and 1 halogen (see Fig. 7a).

FBP common pharmacophore

The FBP common pharmacophore was calculated from 22

different ligands (see Table 1) and contains the following

features: three aromatic rings, three hydrogen bond donors,

nine hydrogen bond acceptors, three aliphatic carbons, and

two halogens (see Fig. 7b).

Y3 common pharmacophore

The Y3 common pharmacophore was calculated from 5

different ligands (see Table 1) and contains the following

features: three aromatic rings, four hydrogen bond accep-

tors, two aliphatic carbons, and one halogen (see Fig. 7c).

Results and discussion

Since this was a blind challenge, the official classification

of the success of these methods was determined by the

SAMPL4 organizers, using metrics that they selected and

applied. (See [1] for details used to calculate these metrics.)

The results presented here were plotted by the SAMPL4

organizers, and the graphs in Figs. 8, 9, 10, 11, 12, 13, 14

were generated by them. For these graphs in Figs. 8, 9, 10,

Fig. 7 Common

pharmacophore engine

representation for each of the

three allosteric sites of HIV

integrase. The SAMPL4

reference structure 3NF8 is

represented as white cartoons

with the crystallographic ligand

CDQ represented as.

Pharmacophore features (see

Table 1 for full listing) are

shown as semi-transparent

spheres, with solid sphere

centroids: aromatic features

(orange); aliphatic carbon

(gray); hydrogen bond (HB)

acceptor (red), HB donor

(white); and halogen (green).

Shown are the pharmacophore

models of the LEDGF (a), FBP

(b), and Y3 (c) sites
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11, 12, 13, 14, our different predictions had the following

submission ID numbers: (A) AD Vina plus visual inspec-

tion, entry 133; (B) common pharmacophore engine

(without visual inspection), entry 134; (C) BEDAM replica

exchange binding free energy simulations (of the AD Vina

docked modes that passed the visual inspection process in

A), entry 135; and (D) Consensus approach that combined

A–C, entry 136. See the companion paper on the BEDAM

entry by the Levy Lab [8] to learn the details regarding the

methods and results for C and D.

Virtual screens using AD Vina with visual inspection

(Phase 1 of Challenge): identifying IN binders

Phase 1 involved predicting which of the SAMPL4 com-

pounds actually bind to any of the three allosteric sites of

Fig. 8 Area under the curve (AUC) performance of the Phase 1

entries in the SAMPL4 challenge provided by the SAMPL organizers.

Red boxes highlight the entries for the common pharmacophore

engine (134) and AutoDock Vina plus visual inspection (133)

Fig. 9 Recognition Factor performance of the Phase 1 entries in the

SAMPL4 challenge provided by the SAMPL organizers. Red boxes

highlight the entries for the common pharmacophore engine (134) and

AutoDock Vina plus visual inspection (133)

Fig. 10 Enrichment factor of SAMPL4 entry 134 corresponding to

the common pharmacophore engine’s score

Fig. 11 BEDROC score of the Phase 1 entries in the SAMPL4

challenge provided by the SAMPL organizers. Red boxes highlight

the entries for the common pharmacophore engine (134) and

AutoDock Vina plus visual inspection (133)
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HIV IN. The common pharmacophore engine’s predictions

(without human intervention or visual inspection) are listed

as entry number 134 and ranked 4th place, while the pre-

dictions from AD Vina with visual inspection are listed as

entry number 133 and ranked 7th place according to the

area under the curve (AUC) metric. Although the common

pharmacophore engine’s predictions ranked better than the

results from AD Vina with visual inspection, their

respective AUC values were within the standard deviations

of each other. However, using the Recognition Factor

metric, the performance of the common pharmacophore

engine (which ranked 3rd place) was clearly superior to the

predictions from AD Vina with visual inspection (which

ranked 7th place) when considering the standard

deviations.

For the general metric used to judge most prospective

virtual screens in the published literature, the common

pharmacophore engine had a hit rate of 24.85 % (42/169),

and AD Vina with visual inspection had a similar hit rate

of 23.76 % (24/101). Given the intrinsic approximations

of empirical scoring functions, docking methods are usu-

ally less sensitive to congeneric compounds, while they

are more effective in identifying potential hits in chemi-

cally diverse libraries [34]. Therefore, in the context of the

low diversity library provided in this challenge, the overall

success rate of these docking-based methods is high.

Pharmacophore results (Phase 1 of challenge):

identifying IN binders

Every set of docking results generated with AD Vina for

each binding site in the 13 targets were re-scored with the

corresponding common pharmacophore. The pharmaco-

phore score (ps) ranged from 100.0 (all features matched)

to 0.0 (no feature matched). For the LEDGF and FBP sites,

where six different receptor models were targeted for each

site, the pharmacophore score, ps, was calculated sepa-

rately for each set. The 6 sets (per site) were then combined

by weighting the score of each ligand versus a given

receptor pose by its positional ranking in the set

(pstot =
P

psi/ranki). The pharmacophore score for each

Fig. 12 Pose Recovery Area Under the Curve performance of the

Phase 2 entries in the SAMPL4 challenge provided by the SAMPL

organizers. The AutoDock Vina plus visual inspection process (143,

red box) was our only entry for Phase 2

Fig. 13 RMSD per pose performance of the Phase 2 entries in the

SAMPL4 challenge provided by the SAMPL organizers. The

AutoDock Vina plus visual inspection process (143, red box) was

our only entry for Phase 2

Fig. 14 Fraction of ligand poses that were successfully predicted by

AutoDock Vina. RMSD data (in Å) provided by the SAMPL

organizers
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binding site was then used to rank the ligands and identify

the binders. Depending on their ps ranking, the ligands

were subdivided into three classes, with high (top 10),

medium (10–50) and low ([ 50) confidence, respectively.

Accordingly to the challenge guidelines, ligands in the high

confidence class were considered binders with a confidence

value of 5, ligands in the medium confidence class were

considered as binders with a confidence value of 3, and

ligands in the low confidence class were considered as non-

binders with a confidence value of 1. The overall success

rate in hit identification for binders versus non-binders

using the pharmacophore score was 25 %. Results for the

common pharmacophore engine approach (i.e., entry 134),

using different metrics calculated by the SAMPL4 orga-

nizers, are presented: AUC (see Fig. 8), Recognition Factor

(see Fig. 9), enrichment factor (see Fig. 10), and BEDROC

(see Fig. 11).

Virtual screens with AD Vina plus visual inspection

(Phase 2 of Challenge): identifying the binding site

and binding pose within the three allosteric sites of IN

Phase 2 of the SAMPL4 challenge involved predicting the

binding site (or sites) and binding mode (or modes) of the 57

SAMPL4 compounds that crystallized in an allosteric site of

HIV IN. Since this was a blind contest, our team submitted

all of our predictions for Phase 1 before we obtained the list

of compounds that were involved in Phase 2.

AutoDock Vina with visual inspection was the only

entry that we submitted for Phase 2, and it is listed as entry

number 143. Generally, AD Vina placed between 2nd and

5th places over six different metrics (see Fig. 4 in [1]).

According to the ‘‘Pose recovery AUC by ligand’’ metric

(see Fig. 12), AD Vina ranked 3rd place. But considering

the standard deviations, it was nearly identical to the 2nd

place entry and similar to the 1st place entry. Using the

‘‘RMSD by ligand’’ box plot data (see Fig. 13), AD Vina

again ranked 3rd place. However, when comparing the

medians, AD Vina was actually 1st place (lowest median).

Similarly, if only the data distributions within the 1st and

3rd quartiles are compared and outliers disregarded, AD

Vina ranked 2nd place (with 1st and 3rd quartile values

lower than those of 2nd place Entry 536). Thus, the binding

modes predicted by AD Vina with visual inspection against

these three allosteric sites of IN were relatively accurate,

which contributed to the success of the BEDAM replica

exchange re-scoring entry for Phase 1 [8].

Using the ‘‘Success fraction by RMSD, by ligand’’ plot

(see Fig. 14), approximately 33 % of the ligands were

docked within an RMSD of 3 Å of the crystallographic

binding mode(s). For a visual comparison between the

docked modes of true positives identified in Phase 1 against

the LEDGF site and their crystallographic binding modes

(provided after we submitted our entry for Phase 2), see

Fig. 15. In these molecular images (created with PMV

1.5.6 release candidate 3) [22, 35], some of the best pre-

dictions are displayed as well as some representative

results. In all of these molecular images in Fig. 15, the

fragment hit or the scaffold region (within the larger

derivatives based on extending the fragment hits) docked

accurately with AD Vina and displayed some of the same

interactions that the published ALLINIs display. The

fragment AVX17679 docked within 1.3 Å of its crystal-

lographic pose, while the larger compounds AVX17684 m

and AVX38753 docked within 1.7 and 2.1 Å of their

crystallographic binding modes, respectively. Even when

AVX38783 and AVX38784 docked with larger RMSD

values of 4.5 Å and 3.4 Å, respectively, (see Fig. 15d, e),

their scaffolds superimposed well (RMSD of 1.1 and

1.4 Å) with the crystallographic pose. AVX17561 is an

interesting case where the docked scaffold matches crystal

data (RMSD is 1.2 Å without the amino alkyl group, co-

crystallized ligand structure not shown), but the hydro-

phobic tail is solvated. The binding modes predicted by AD

Vina earned 3rd place in the pose prediction with a relative

performance that was very close to the 1st and 2nd place

entries, using the metrics provided by SAMPL4.

Conclusion

The positive control cross-docking experiments performed

with AutoDock Vina indicated that at least 13 different

crystal structures of HIV IN (6 LEDGF models, 6 FBP

models, and 1 Y3 model) displayed reasonable predictive

power for identifying the appropriate ligands that are

known to bind each of the three sites. Our new RDR metric

appears helpful when selecting targets out of a large

ensemble of different receptor models and should be fur-

ther investigated as an alternative and/or complementary

way of selecting snapshots of targets for Relaxed Complex

Scheme experiments [10, 36–39] and virtual screens.

The binding modes calculated by AD Vina (when

docking the 451 models of the 321 SAMPL4 compounds

against these 13 targets) were accurate enough to enable

the following: (1) achieving a hit rate of 24 % using visual

inspection of the poses predicted by AD Vina; (2) obtain-

ing a hit rate of 24 % by re-ranking the docked poses using

our new common pharmacophore engine (without any

visual inspection); and (3) by using the docked poses that

passed the visual inspection process as inputs for BEDAM

replica exchange re-scoring calculations, the hit rate was

further improved to 34 %.
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These results have helped to validate the efficacy of the

virtual screening pipeline that we are developing. In par-

ticular we have established the following conclusions: (1)

The common pharmacophore engine approach was more

efficient than the visual inspection process in terms of the

amount of human time involved and definitely merits fur-

ther exploration and development. (2) The binding modes

predicted by AD Vina were of sufficient accuracy to serve

effectively as input to the free energy calculation of BE-

DAM. (3)The BEDAM post-processing of virtual screen-

ing results provided a significant improvement in false

positive reduction.

Considering that SAMPL4 involved (A) three different

allosteric sites of a flexible enzyme and (B) a very chal-

lenging library of compounds that displayed a low amount

of structural diversity and that contained ligands that could

bind to more than one type of allosteric site, the hit rates

that our collaborative, multi-institution HIVE team

achieved were impressive.

We have applied our new knowledge of structural detail

about these three allosteric sites of HIV IN motivating us to

test and hone our tools and protocols. These aspects will help

advance the goals we are pursuing as part of the new HIVE

center, which is devoted to understanding and defeating the

multidrug-resistant strains of HIV that are constantly

evolving and spreading. In addition, the 13 models of these

allosteric sites of HIV IN that we identified in our positive

control cross-docking experiments are currently being used

as targets for the FightAIDS@Home project.
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