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Abstract Alchemical free energy calculations hold

increasing promise as an aid to drug discovery efforts.

However, applications of these techniques in discovery

projects have been relatively few, partly because of the

difficulty of planning and setting up calculations. Here, we

introduce lead optimization mapper, LOMAP, an auto-

mated algorithm to plan efficient relative free energy cal-

culations between potential ligands within a substantial

library of perhaps hundreds of compounds. In this

approach, ligands are first grouped by structural similarity

primarily based on the size of a (loosely defined) maximal

common substructure, and then calculations are planned

within and between sets of structurally related compounds.

An emphasis is placed on ensuring that relative free ener-

gies can be obtained between any pair of compounds

without combining the results of too many different

relative free energy calculations (to avoid accumulation of

error) and by providing some redundancy to allow for the

possibility of error and consistency checking and provide

some insight into when results can be expected to be

unreliable. The algorithm is discussed in detail and a

Python implementation, based on both Schrödinger’s and

OpenEye’s APIs, has been made available freely under the

BSD license.
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Introduction

A good deal of early-stage drug discovery focuses on

finding small molecules with suitable affinity for a target

binding site in a receptor, while simultaneously having

good physical and pharmacological properties to make

orally available drugs [17, 49, 31]. The very earliest stages

of the process involve finding hits, small molecules which

bind to the target receptor relatively weakly. Then, these

hits need to be turned into leads—molecules which have

suitable properties to potentially become drugs while also

having sufficient affinity for the target receptor [17, 31].

Ideally, computational methods could play a role in

guiding early stage drug discovery, which has traditionally

been slow and time-consuming, filled with trial and error.

Even the process of finding molecules which bind with

sufficient affinity to the target compound can be slow and

involve synthesizing hundreds of molecules [49, 64]

resulting in substantial costs, both in terms of material and in

time spent [17, 58]. However, developing computational

tools with sufficient accuracy to reliably guide this
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discovery and optimization process has proven challenging

[11, 64]. Some of the most popular methods, such as

docking, while seeing widespread use, do not reliably yield

any correlation between predicted binding strength and the

corresponding experiments [64]. The path to improve these

methods has often been unclear, in part because of the

number of approximations made. So, while computational

methods are used in early stage drug discovery, in most

discovery projects they do not play a key role in guiding the

process [16, 64, 46, 47]. More quantitative methods could

have a more dramatic impact on the early stage discovery

process.

Some methods promise higher accuracy, and thus the

potential for more of a role in guiding early stage drug

discovery. More rigorous methods for binding affinity

prediction are available, such as alchemical binding free

energy techniques. These compute binding free energies, or

differences in binding free energies, from molecular sim-

ulations using techniques based on perturbations [12, 33,

18, 54]. These techniques can be used to compute both

absolute binding free energies (ABFE) [8, 39, 13] or, more

commonly, relative binding free energies (RBFE) between

related inhibitors [58, 59, 12, 33, 11]. While in a number of

cases these techniques show considerable promise, a key

obstacle hampering their more widespread use has been the

difficulty of setting up and performing these calculations,

which typically requires considerable expert intervention

[9, 10]. So, while more rigorous methods are available,

they, too, do not typically help guide drug discovery [11].

Here, our focus is on automating setup of alchemical

relative free energy calculations, allowing their application

to large numbers of molecules with relatively little human

intervention in a discovery-type setting. We had previously

worked only on small numbers of molecules, and the

overhead involved in setup was not a huge concern.

However, an abrupt collision with the realities faced every

day by modelers in the pharmaceutical industry helped us

realize we need to do better, as we sought to use free

energy calculations to screen a modest library of potential

inhibitors. Essentially, our problem (not unlike that facing

many early stage drug discovery projects) was this: Given a

set of knowns, and a library of tens to a few hundred

potential other molecules of interest (some related to

knowns, some not related), predict which of this library

might be best to follow up on experimentally. The rele-

vance of this task to drug discovery motivated the present

development of an automated setup tool for alchemical free

energy calculations. The importance of this problem has

similarly motivated a recent tool for automated setup of

endpoint free energy calculations [22].

In planning calculations of binding free energies for

these compounds, we chose to compute RBFE, comparing

binding strengths of related compounds, rather than com-

puting ABFE for individual compounds. Several reasons

motivated this choice. First, RBFE calculations between

related compounds are often considered more efficient than

ABFE calculations since they involve insertion and dele-

tion of relatively few atoms, historically one of the most

computationally expensive steps [1, 68, 60]. Also, any

protein motions or conformational changes that happen on

binding but are common to all ligands do not necessarily

need to be sampled, as can be seen from decomposing the

thermodynamic cycle for binding into a conformational

change step and a binding step [36, 40]. Second, many

molecules in our initial set were charged, and free energy

calculations involving changes in the system net charge, as

we would be doing in ABFE calculations, pose technical

challenges that are not yet well understood for systems

more complicated than individual ions in water [26, 27, 23,

24]. Preserving the net charge of the system by doing rel-

ative free energy calculations between molecules sharing

the same net charge bypasses these problems.

It is worth noting that RBFE calculations do have one

major limitation, in that they do require knowledge of the

likely binding mode of the compounds of interest. Such

knowledge will often be available in structure-based drug

design projects, especially at the lead optimization phase,

but it is worth noting this requirement. This challenge is

not unique to RBFE calculations, though—the same issue

also confronts most other techniques, including ABFE

calculations, which also must either take the likely binding

mode as input, or at least sample it adequately in the

resulting simulations. However, in cases where there is

substantial uncertainty as to the compound’s likely binding

mode and multiple possibilities are available, ABFE cal-

culations may actually be preferable to RBFE calculations

as multiple binding modes can be difficult to handle within

the RBFE framework [40]. Overall, though, it is generally

thought that RBFE calculations are easier and more effi-

cient than ABFE calculations.

While RBFE calculations avoid some problems with

ABFE calculations, they do require a planning step that is

not needed for ABFE calculations: For a possible 50

compound lead series, which of 50 9 49/2 = 1,225 pos-

sible relative free energy calculations should we actually

do? Each relative free energy calculation compares binding

of a pair of inhibitors, so we need an automated way to

decide which pairs of inhibitors we ought to plan relative

calculations between. Rather than doing 1,225 RBFE cal-

culations, we ought to be able to span the entire library

with just over 50 relative calculations, yielding relative free

energies for all of the molecules. Hence, our main focus

here is development of a tool which can automatically plan

RBFE calculations spanning a library of compounds.
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LOMAP method

Design goals

What criteria make for a good relative free energy calcu-

lation? That is, for a library of n compounds, with

n 9 (n - 1)/2 possible relative free energy calculations,

which calculations can we expect to actually work rea-

sonably well? Some choices are clearly bad. For example,

if two molecules share absolutely no atoms in common,

computing an RBFE between the two requires subtraction

of two ABFE calculations. Beyond this obvious consider-

ation, we specified a number of other design goals. These

are broadly based on efficiency considerations identified in

the literature, and also focus to some extent on minimizing

error accumulation and building in ways to identify cal-

culations which may be wrong due to poor convergence.

Goal 1: Compounds being compared should be as similar

as possible, minimizing atomic deletions and insertions

Generally, we would prefer the compounds being compared

to be as chemically similar as possible, maximizing the

likelihood that they have the same or similar binding modes

and minimizing the number of atomic deletions and inser-

tions required [1, 68, 60, 3, 25]. For example, changes in

atomic partial charge and atom type can be typically done

using molecular dynamics simulations involving relatively

few intermediates (k values) spanning between the two end

states, perhaps even as few as 5–11 [29, 33, 30, 62].

Insertions of individual atoms can also be done in a rela-

tively straightforward way [25, 60, 3] but deletions or

insertions of entire functional groups may require up to 2–3

times as many simulations [56, 57, 38, 1, 68, 60] because of

the need to spread out deletions/insertions across multiple

simulations. Additionally, these larger chemical changes

typically lead to larger free energies, and hence the chance

of larger errors. So, a major goal is to plan relative calcu-

lations between the most similar molecules, minimizing the

number of atomic deletions and insertions.

It is worth noting, however, that from the standpoint of

classical fixed-charge simulations, ‘‘similar’’ means some-

thing slightly different than it typically does in drug dis-

covery. Specifically, in simulations, atom type changes are

quite straightforward, and need not be avoided. For example,

changing benzene into chlorobenzene is easy—no atoms are

deleted or inserted, and there is only a modification of the

atomic partial charges and minor changes to some Lennard-

Jones parameters. Similarly, changing a nitrogen-containing

heterocycle into a sulfur-containing one is straightforward as

long as the pattern of connected atoms is the same. So we are

willing to grant considerable chemical leeway when decid-

ing which molecules are ‘‘similar’’. Figure 1 shows an

example of a variety of favorable transformations beginning

from 2-methylnaphthalene.

Goal 2: Rings should be preserved as much as possible

The larger the functional group being deleted, the larger the

potential problems with insertion/deletion, so we prefer to

avoid deletion and insertion of ring systems as much as

possible (though this is to be preferred over breaking or

forming rings [53], as noted below). Additionally, deletion

of large bulky functional groups such as rings may provide

a molecule with substantially more room in a binding site,

reducing the likelihood that it will remain in the expected

binding mode, and increasing the potential for problems

adequately sampling potential binding modes [40]. Hence,

we choose to try and retain ring systems as much as

possible.

Goal 3: Ligands being compared must share the same net

charge

As noted above, for technical reasons, relative free energy

calculations involving changes of the net charge of a system

are to be expected to be unreliable. Specifically, changing

one charged ligand into a ligand of a different charge in the

binding site leads to a contribution to the free energy due to

the change in charge and its interaction with the surround-

ing solvent dielectric, periodic copies of the system, and

other factors [26, 27, 23, 24]. This would cancel out if these

contributions were the same in solvent, but in general they

are not, partly due to differences in system size and com-

position in the two environments. Therefore, we choose to

plan relative calculations only between subsets of ligands of

the same net charge. To allow estimation of the affinity of

all compounds, selected compounds of known affinity could

be included in each subset, if such compounds are available

(see Section ‘‘Calculation planning builds up a graph based

onsimilarity scores’’). In our view, RBFE calculations for

chemical modifications which change the net charge (such

as addition of a carboxylic acid) must wait for algorithmic

developments

Goal 4: Portions of multi-ring systems can only be deleted

if rings are planar, and this should be avoided

when possible

Alchemical free energy calculations rely on a thermody-

namic cycle, which must properly close to yield relative

free energies. When deleting atoms, we leave behind so-

called ‘‘dummy atoms’’ which still have bonds to the

remainder of the molecule but do not interact with the

system in any other way [53]. For our thermodynamic

cycle to close, the contribution of these dummy atoms to
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the free energy of the system must be independent of the

molecular environment. For example, if we delete a methyl

group in a binding site and in solution, the free energy of

the dummy methyl group must be the same in both envi-

ronments. This criterion is met for methyl groups, because

a dummy methyl group, in our simulations, is a simple set

of masses and springs (and potentially torsions) with an

energy that does not depend on the environment. Thus, any

free energy contributions from the dummy atoms in the

binding site rigorously cancel with contributions from the

dummy atoms in solution, the other side of the thermo-

dynamic cycle. Thus, the bonded terms of dummy atoms

make no contribution to the relative free energy [5, 4].

In general, dummy atoms do not contribute to the rela-

tive free energy for all transformations of groups of atoms

into dummy atoms except when the geometry is modified

due to the influence of external forces [5, 4]. That is,

cancellation will occur for any simple deletion of singly-

connected groups of atoms. However, bonded terms can in

some cases contribute to relative free energies under the

influence of external forces [5, 4]. The main scenario in

which this can be expected to happen is for deletion of

multiply connected groups. For example, for mutation of

cyclohexane into butane, dummy carbon atoms left behind

from cyclohexane can affect the free energy in at least two

ways. First, since the dummy atoms are still bonded to the

butane atoms, they can affect the conformation of butane,

altering which states are preferred. Second, the free energy

of the system of dummy atoms (masses and springs)

depends on the conformation of butane. If the preferred

conformation of butane is different in complex versus in

solvent (such as due to contacts with the receptor), the free

energy of the dummy atoms will be different, producing a

thermodynamic cycle which does not properly close due to

free energy contributions from these bonded terms. This

has the potential to happen whenever portions of rings

(partial loops of atoms) are being deleted. Practical com-

plexities such as the necessity to break or form bonds when

opening or closing rings also make these cases difficult, as

discussed elsewhere [5, 4].

So, we can avoid any contributions from the bonded

terms of dummy atoms by avoiding breaking or forming

rings, but in some cases this may be necessary, as we

explain below. If ring breaking or forming is necessary,

Fig. 1 Favorable mutations of 2-methylnaphthalene, based on our

design goals. Black and green arrows show allowed transformations

from 2-methylnaphthalene. Red arrows show transformations which

are not allowed. Transformations marked by the black arrow are

considered the most favorable, and similarity (and hence favorability)

decreases from left to right, based on design Goal 1. Mutation from

2-methylnaphthalene to 1-butyl-4-methylbenzene is prohibited (red

arrow to left) because it would involve breaking a ring in a bi-cycle

(Goal 4). Mutation to toluene (green arrow) is allowed only under the

‘‘loose’’ scoring scheme, and only if necessary to span the set (Section

‘‘Calculation planning builds up a graph based onsimilarity scores’’),

while mutation to methylcyclohexane is prohibited (red arrow to

right) because it involves breaking a ring in a bi-cycle and leaving a

flexible ring behind (design Goal 4)
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any contributions from dummy atoms will be small

whenever the conformation of the molecule, with its

dummy atoms, is essentially the same in water versus in

complex, which will happen when the portion of the

molecule being left behind is rigid. For example, for a

naphthalene to benzene transformation or similar (Fig. 1),

benzene is quite rigid, and has a very limited range of

motion regardless of environment. It is unlikely that a

binding site could alter the conformation of benzene

enough in order to induce a significant change in the

bonded energies of the naphthalene dummy atoms left

behind. In such cases, there may still be a small contribu-

tion of bonded terms to the overall relative free energy

(that is, the thermodynamic cycle may not quite close

formally) but we believe the effect will be quite small. In

contrast, a naphthalene to cyclohexane transformation is

much more risky, because the ring behind left behind now

becomes flexible (cyclohexane) and its bond lengths will

change appreciably, substantially affecting the bonded

energies of the dummy atoms left behind from the addi-

tional ring system.

Here, then, our goal is to avoid inserting or deleting any

partial rings as by so doing we can avoid introducing any

errors due to bonded contributions to relative free energies.

However, making this an absolute rule proves to be a bad

idea. For example, consider a set of molecules containing

one group consisting of benzene derivatives (potentially

with R-groups attached in various places) and another

group based on the naphthalene scaffold, with two aromatic

rings (again potentially with R groups) linked together. If

we abide by the rule of never inserting or deleting partial

rings, we will end up with two disconnected groups of

molecules and no way to compare their binding affinities.

We propose that in such cases, where rigid rings are being

retained in a proposed partial ring deletion, it is acceptable

to delete the partial ring in question and assume that bon-

ded contributions to the free energy cancel (green arrow,

Fig. 1). So, our goal is to prefer relative free energy cal-

culations which preserve rings or avoid deleting partial

rings, but when absolutely necessary, we will tolerate

deletion of partial rings as long as the components being

left behind are essentially rigid.

Goal 5: Every molecule must be part of at least one closed

thermodynamic cycle

Free energy calculations can yield accurate free energies,

or results which are wildly wrong [8, 69, 14]. When the

latter situation occurs, the source of error can be difficult to

discern. Assuming the system being modeled is represen-

tative of experimental conditions, there are two main

sources of error—poor convergence (i.e. the free energies

would have been correct if only enough simulation were

done) or force field inadequacies (i.e. additional simulation

would have kept computed free energies the same and only

reduced the uncertainty). One way to check for conver-

gence problems is to add some redundancy into relative

free energy calculations, introducing additional calcula-

tions between some molecules and hence adding some

cycles—closed paths around which relative free energies

must formally sum to zero. The difference from zero is

called the cycle closure error. This has been done in some

relative free energy calculations in the past (for example

refs. [6, 9, 14, 61, 34, 44, 48, 63]) and provides a lower

bound on the amount of convergence error in the calcula-

tions. The literature suggests that this can be a useful lower

bound, in the sense that sometimes the cycle closure error

is extremely large, as much as several kcal/mol [6, 19, 14,

61, 34]. One frequently requested feature from modelers in

industry is the ability to know when calculations are

expected to fail, and this provides at least some information

in that regard.

Overall, then, in order to provide some level of consis-

tency checking and detection of convergence errors, we

require every molecule be part of at least one closed

thermodynamic cycle.

Goal 6: The set of planned calculations should be spanned

by relatively few calculations

When computing relative free energies across a large set of

molecules, we may need to combine results of multiple

calculations, leading to an accumulation of statistical error.

To prevent these errors from becoming too large, we want

to be able to get between any two molecules with no more

than a certain maximum number of calculations.

Algorithm

Our main goal, then, is to construct a undirected graph

where each node (or vertex) is a compound of interest and

each edge (or arc) a relative free energy computation for

the two flanking compounds. The edges should be assigned

in a way to accomplish our design goals mentioned above.

Effective free energy computation typically requires that

the two molecules be sufficiently similar. So the edges

(planned calculations) will depend heavily on the com-

puted similarities between molecules. In the following, we

introduce our definition of the similarity concept.

We want a similarity measurement to assess ease

of computation

Intuitively speaking, similarity refers to the ‘‘likeness’’ of

two molecules and is one of the factors that strongly

influences the success of relative free energy calculations.

J Comput Aided Mol Des (2013) 27:755–770 759
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For this reason, similarity is a pivotal concept in our

algorithm, and we define it as a scalar quantity measuring

the feasibility of a specific calculation. The higher the

similarity, the more feasible the calculation is. To measure

similarity, we seek scores spanning a known range, with

the minimum representing total dissimilarity, and the

maximum representing identity. We choose the range [0, 1]

to denote the similarity score. This choice of the range is

somewhat arbitrary but has several advantages described

below.

This definition of similarity relates directly to how we

construct the graph of planned calculations. When the

similarity between two compounds is high, we should

have a higher likelihood of connecting them by an edge.

Often, the term ‘‘similarity’’ in the literature refers to a

simple measurement of chemical similarity. Here, how-

ever, we move past simple chemical similarity and define

similarity scores which ensure our design goals will be

met. Thus, we are more concerned with assessing the

computational difficulty of particular transformations than

rigorously scoring chemical similarity. That is, we are

more interested in scoring computability. To appreciate

this, consider a possible transformation between methane

and ethane, and another transformation between benzene

and toluene. Chemically, benzene and toluene are more

similar, but in (in the absence of other sampling consid-

erations) RBFE calculations between both pairs are

expected to require roughly the same amount of compu-

tational resources because the mutation is identical for

both pairs (hydrogen to methyl). Thus, to measure com-

putability, similarity scores should be very close (if not

identical) for methane-to-ethane versus benzene-to-tolu-

ene transformations.

Scoring efficiency of transformations based on a

chemical similarity metric requires one major assump-

tion—that the most important contribution to a transfor-

mation’s difficulty is the magnitude of the transformation

itself. This will certainly not always be the case. For

example, in a hypothetical receptor, one extremely small

chemical modification (introduction of a methyl at a par-

ticular location, for example) might introduce a dramatic

binding mode change or a new receptor conformation,

posing substantial computational challenges, while a much

more dramatic modification (introducing a phenyl group

elsewhere in the molecule, for example) might do very

little to the binding mode and receptor conformation and be

computationally straightforward. However, in the limit of

adequate binding mode and receptor sampling, transfor-

mation difficulty is an important metric. Even when facing

potential problems in binding mode and receptor sampling,

if we lack information on when to expect these effects, we

should still be best served by focusing on the difficulty of

particular transformations.

Our similarity measurement starts with the size

of the maximum common substructure

A common theme of Goals 1–2 above (Section ‘‘Design

goals’’) is the desire to minimize the number of atomic

insertions and deletions, which we can build in to our

similarity scores by using the size of the maximum com-

mon substructure (MCS) as the foundation for scoring. An

MCS search determines the largest common substructure

shared by two molecules. Once this is known, the number

of atomic deletions or insertions is immediately apparent,

as is the change in any ring systems.

Here, we can make an MCS search better suit our needs

by modifying it slightly. Specifically, we treat all heavy

atoms as equivalent in the search, since as noted in Goal 1

(Section ‘‘Design goals’’) , changes in atom types are

straightforward. Thus our search focuses on molecular

topologies rather than atom types. We also adjust the

search to prefer substructure matches which preserve ring

systems as much as possible (Goal 2). The resulting

modified MCS search forms the foundation for our simi-

larity scores.

Initial similarity scores are calculated based on the size

of the MCS using the expression

S ¼ exp �b� ðNA þ NB � 2NMCSÞ½ � ð1Þ

where b is an arbitrary constant value, and NA, NB, and

NMCS are the number of heavy atoms of the two input

molecules and of the MCS, respectively. Thus the term

NA ? NB - 2 NMCS is the total number of atoms inserted

or deleted in the transformation. We use an exponential

both to ensure that scores range between 0 and 1, and to

strongly favor small structural changes.

We construct similarity scores based on the modified MCS

search, and fold in other scoring rules

We want similarity score calculations to be easy to auto-

mate and extend. As noted, the MCS similarity provides

the foundation for our scores, but we still have several

other goals (Section ‘‘Design goals’’) to achieve. The eas-

iest way to do this is by modifying our similarity score to

include these aspects as well. Specifically, we need to also

ensure that compounds being compared share the same net

charge, and avoid broken or partial ring systems in our

transformations. To include these factors in similarity

scores, we built a simple rule engine, which provides a

mechanism to combine multiple requirements (rules) or

scores into a total. A rule here represents a regulation for

similarity calculation, and its application involves taking in

a pair of input molecules and outputting a similarity score

based on the rule. The MCS search above can be recast in

this format as a ‘‘maximum common substructure rule’’
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(MCSR), which computes the size of the MCS and outputs

a score in the range [0,1].

Our rule engine allows straightforward combination of

multiple rules, typically by multiplication to maintain the

score range. In addition to the MCSR, we also apply a

‘‘minimum number of common atoms rule’’ (MNCAR)

which says that the two molecules must share at least

n heavy atoms to be regarded as similar. This simple rule

outputs a score of 1 if the number of common atoms is

larger than n, and 0 otherwise. A composite of the MCSR

and MNCAR rules amounts to checking the number of

heavy atoms in the MCS, and if it is greater than n,

returning a score based on the MCSR, otherwise returning

0. The score of the composite rule is given by the simple

formula: S = SMCSR 9 SMNCAR, and thus S remains a

number in the range [0,1] . This approach is useful because

it decouples rule definitions from the scoring process,

making it simple to add additional rules without modifying

existing ones. For example, to add a new ‘‘equal charge

rule‘‘ (ECR), which, given a molecule pair, outputs 1 if

they have same the net charge and 0 if not, to we simply

calculate SECR (the score for the equal charge rule) and add

it to the composite rule, which is now using S = Sold 9

SECR. For more details, interested readers are encouraged to

read the LOMAP source code and the documentation

therein.

Here, we are able to build Goals 1–4 (Section ’’Design

goals‘‘) into our similarity scores by forming a single

composite score out of just four specific rules. These goals

are handled as follows:

• Goal 1 (minimize atomic insertions and deletions): This

is built into the definition of the MCS score itself (and

the corresponding rule, MCSR), as described above.

• Goal 2 (preserve rings as much as possible): This, too,

is built into the MCSR.

• Goal 3 (preserve net charge): The equal charge rule

(ECR) zeros similarity scores for molecule pairs having

different net charges.

• Goal 4 (avoid breaking rings, and only break them if

planar): Here, we examine the MCS to see whether it

contains broken or partial ring systems. If it does, we

delete atoms in the broken or partial ring systems (and

any unconnected moieties due to the deletion). Since

this rule is based on the deletion from the MCS, we call

it trimmed-MCSR (TMCSR) and calculate the resulting

score using the formula: S ¼ exp½�2� bNdel�, where b
is the same constant value as in the MCS rule, and Ndel

is the number of deleted heavy atoms. Here, we actually

assign two different TMCSR scores, one we call ‘‘strict

ring deletion’’ and a second we call ‘‘loose ring

deletion’’. In both approaches, ring atoms in one

molecule cannot be mapped to non-ring atoms in

another molecule. The difference is in handling of

joined ring systems, as in Fig. 1. In strict ring deletion,

if any component of a joined ring system no longer

remains a ring after MCS calculation, the entire ring

system is deleted. In contrast, in loose ring deletion,

ring atoms in the MCS are kept if the portion of the ring

system being left behind remains planar. The latter

allows transformations like naphthalene to benzene,

while the former does not.

Besides applying the above rules and constructing a

composite rule by taking the product of their scores, we

also define a simple cutoff rule (the minimum similarity

score, ‘‘MSS’’): Compare the similarity score with a

threshold value, return 1 if it is greater than the threshold,

otherwise return 0. The goal of this rule is to ensure that

calculations in the final graph meet at least a certain min-

imum level of similarity. This rule is not used in con-

struction of the composite similarity scores, and we discuss

its application below.

Calculation planning builds up a graph based on similarity

scores

We construct our graph of planned RBFE calculations

following this procedure:

1. First, we calculate two sets of similarity scores from all

pairs of the molecules. The first set, called the loose

scores, are obtained by execution of a composite rule

consisting of the rules from Goals 1–3 and Goal 4

(loose). The second set, called the strict scores, are

obtained by execution of a composite rules composed

of the rules from Goals 1–3 and Goal 4 (strict). We

store these two sets of scores in two separate matrices.

The strict scores are used throughout except where

otherwise noted.

2. We use the strict score matrix to assign an edge

connecting any pair of nodes with a final similarity

score greater than zero, and then we remove all the

edges with scores less than the MSS cutoff, thus

obtaining an initial graph. The following steps will

refine this initial graph and reduce the number of

edges.

3. The initial graph often has several connected compo-

nents—subgraphs that have no connections between

one other but within which there is a path between

every pair of nodes. The more similar molecules are,

the more likely they will be within the same connected

component, and vice versa. We call all of the nodes

within a connected component a cluster. Within each

cluster, there are, at this point, typically far too many

edges because most nodes are directly connected. We

then reduce the number of edges while ensuring the
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cluster continues to meet our design goals (especially

Goals 5–6, which are not encoded into the similarity

scores), which we can think of as constraints. Specif-

ically, we want the minimum number of edges such

that (1) every node should be in a cycle, and (2) the

length of the shortest path from any one node in the

cluster to any other node in the cluster should be less

than a specified maximum distance (MAXDIST). For

(1), we use Paton’s algorithm [45] to calculate the

cycle basis [2], and use this to determine if all the

nodes are in a cycle. For (2), we use a breadth first

search to calculate the diameter of the cluster; from the

diameter, we determine if the cluster meets the

distance constraint. Following this procedure, if the

constraints are met, we then sort and list the edges by

their similarity score, from lowest to highest. We then

remove the least similar edge and check if the cluster

still meets the constraints. If it does, we then remove

the next least similar edge, and so on, until we have

checked every edge and there are no remaining edges

that can be removed without violating the constraints.

Thus, at the end of this process we obtain a graph with

a minimum number of connections, which we call the

minimized graph.

4. At this point, different structural clusters still remain

disconnected. Therefore, we use the loose score matrix

to merge clusters from the minimized graph into a final,

connected graph. This step has two passes. In the first

pass, we connect as many of the clusters as possible,

while in the second pass we build in cycles between

clusters. The first pass connects clusters via a weighted

maximum spanning tree. For the second pass, we repeat

the procedure used in the first pass, but omit any edges

created in pass one, thus creating a second weighted

maximum spanning tree. Thus, each cluster will now be

connected via two routes, ensuring our goal about cycles

is met. It is important to note, however, that only

connections with nonzero similarity scores are allowed,

so clusters of different net charge will remain discon-

nected, as will any compounds or clusters which share

no similarity with other compounds.

The MSS rule described above is applied when planning

all intra-cluster calculations, but it is not applied at the

stage of planning calculations spanning structural clusters,

simply because we wish to ensure a path between all

compounds of the same net charge if at all possible. Thus

the final graph may have connections with similarity below

the minimum similarity score, though this will only happen

if it is necessary, since there is still a preference for con-

nections with higher similarity scores.

Because MAXDIST (step 3) applies only within each

structural cluster, the total number of calculations across

the final graph is actually larger than MAXDIST, in a way

that depends on the nature of the set of compounds. If there

are m initial structural clusters, then the upper bound on the

maximum distance across the graph after step 4 is

m 9 MAXDIST ? (m - 1) = m(MAXDIST ? 1) - 1. In

general we expect that for a typical congeneric series, the

maximum distance across the final graph will end up being

MAXDIST since all molecules will be in a single structural

cluster. However, for more diverse compound libraries

there may be several distinct structural clusters (such as for

the ‘‘trypsin’’ dataset in our Supporting Information, which

contains the Maybridge fragment library as a subset).

In some sets of planned RBFE calculations, it may be

desirable to include a set of knowns—compounds having

known binding free energies—both to allow calculation of

absolute binding free energies of the unknowns by referring

to the knowns, and as a consistency check. Our code allows

the user to provide a set of known compounds which are a

subset of the whole, and in this case, the maximum distance,

MAXDIST, is set to apply to the distance between any given

unknown and some known compound. So the calculation

planning algorithm will ensure every compound is within

MAXDIST of a known compound. This actually reduces the

number of required calculations (since now unknowns are

allowed to be more than MAXDIST apart).

Our implementation is in Python

We implemented the above algorithm in Python 2.7. The

third party libraries used here include Schrödinger’s [51] or

OpenEye OEChem’s APIs [43] for general molecular

manipulation, MCS searches, and modification of MCS

output (such as removing partial rings, etc.), networkx [20]

for graph creation, traversal, and manipulation, OpenEye

OEDepict’s APIs [43] for molecule depiction and graphviz

[15] for visualization of the graph.

Our toolkit is available through SimTk as Lead Opti-

mization Mapper, LOMAP, at https://simtk.org/home/

leadoptmap.

Simulation methods

Topology construction

While a tool for automatic setup of input files for relative

free energy calculations is not currently part of LOMAP,

this will be a subject of future work. Here, we built a

prototype tool to construct GROMACS topologies for

relative calculations in a single-topology, explicit-inter-

mediate manner (Fig. 4), essentially the simplest approach

possible given LOMAP’s output of the common substruc-

ture. If one ligand is A, the second is B, and the MCSS is M,
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we set up the transformations A! M and B! M. We are

operating in a deletion-only mode, where transformations

always involve only deletion and/or mutation of atoms,

never insertion of new atoms. Free energy calculations for

these transformations are conducted both in vacuum and in

water, and from the respective free energy differences we

can obtain the relative hydration free energy. Since the

substructure M is based on either A or B, in general it will

differ in atom type from one of the two (for example, a

‘‘common’’ atom in a ring might change type, or even a

hydrogen atom might be changed into a carbon atom).

Thus A! B or B! M will in general involve atom type

changes (with associated changes in bonded atoms) as well

as transformations of atoms into dummy atoms, and

changes in partial charges. We implemented setup of

topologies via this approach in a Python tool which will be

further developed as part of a separate work

Simulation protocols

Here, relative free energy calculations were conducted with

essentially the same protocol we have used in the past for

absolute hydration free energy calculations [28, 41],

updated by using the Parrinello-Rahman barostat for pro-

duction simulations (switching from the constant NVT

ensemble to constant NPT) with a time constant of 10

picoseconds. Simulations were conducted at 298.15 K, and

a brief overview of our protocol is as follows. We used

Langevin dynamics, and production simulations were 5 ns

in length, after 50 ps of constant volume equilibration,

50 ps of constant pressure equilibration with the Berendsen

barostat and a time constant of 1 picosecond, and a further

50 ps of constant pressure equilibration with the Parrinello-

Rahman barostat and the same 10 picosecond time constant

used for production. Except as noted below, a time constant

of 2 fs was used and bonds to hydrogen were kept con-

strained. We used 20 k values, with Coulomb and van der

Waals transformations conducted separately, with Cou-

lomb k values 0.0, 0.25, 0.5 and 1.0, followed by other

alchemical changes (van der Waals and bonded interac-

tions) being made according to the scheme k = 0.0, 0.5,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95,

1.0. Soft core potentials were used for the van der Waals

portion of the transformation as previously. Simulations

were conducted with a beta of GROMACS 4.6.2, and

because of a bug involving mass changes in this version of

GROMACS, atomic masses were left constant for chang-

ing atom types, as these are irrelevant for free energies.

Free energies were computed with MBAR [55]. Our

starting molecule structures and force field parameters

were taken directly from our previous work on this set [55].

Our protocol was modified slightly for those transfor-

mations in which a hydrogen atom was mutated into a

heavy atom upon transforming to the common substruc-

ture. Since bonds to hydrogen were kept constrained in our

standard protocol, but these transformations involve a

change in bond length, they would have been incorrect.

Thus in these cases we turned off constraints on hydrogen

bonds, reduced the time step to 1 fs, and ran twice as many

steps to obtain the same total simulation length and capture

the free energy of changing the bond length.

Results

LOMAP calculation plans

In some sense, our key result here is LOMAP itself, which

provides a general tool for automatically planning RBFE

calculations. It also outputs the trimmed MCS for each

planned calculation, making setup of the actual input files

for RBFE calculations straightforward in at least several

common simulation packages (DESMOND [50, 7] and

GROMACS [21], for example). However, it is worth

briefly assessing the output of LOMAP on some test sets.

Here, we applied LOMAP to several different sets of

molecules, and full detail test sets and output are provided

in the Supporting Information. Our main focus here is on a

set of 50 Factor Xa (FXa) inhibitors taken from various

literature sources [32, 66, 65, 52, 67], and the LOMAP plan

for the full set is shown in Fig. 2 (with structures for a

smaller subset in Fig. 3). We also tested a set of potential

trypsin inhibitors (a fragment library which was screened

for binding to trypsin [42], as well as a substantial number

of known trypsin inhibitors), the SAMPL3 [41] set of small

molecules, and our set of 504 fragment-like molecules [37,

35]. Results for these are provided in the Supporting

Information, and statistics on the resulting graphs are

shown in Table 1.

Here, we used LOMAP’s default parameters, setting b =

0.1 and the similarity cutoff to 0.05. These parameters

correspond to a cutoff of (NA ? NB - 2 NMCS) = 30.0 in

the MCS rule1. This means that we will not consider any

calculations involving 30 or more heavy atom insertions or

deletions. This specific choice is somewhat arbitrary and

we plan on testing the specific choice using detailed free

energy calculations in the future. At this point, our choice

was made based on the assumption that for transformations

larger than this, the expected error in computed relative

binding free energies will be large and/or convergence will

be extremely difficult. We also set MAXDIST to 6, again

somewhat arbitrarily, knowing that statistical error accu-

mulates with each additional edge (and so larger MAXDIST

will introduce additional error) while at the same time

1 assuming Ndel = 0; if it is not, the threshold is adjusted slightly.
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smaller MAXDIST requires substantially more computa-

tional effort. Again, systematic investigation of the optimal

balance here will require a large number of free energy

calculations, and is an important topic for future work.

In the FXa set, LOMAP automatically divides the

molecules into 3 separate groups with different net charges.

The total number of calculations is 65, only marginally

larger than the number of molecules in the set (50), and

much smaller than the 1,225 possible pairwise combina-

tions of molecules. In general, the final product (Fig. 2)

meets our design goals, including building in closed cycles

(Goal 5). (One specific cycle is highlighted via green lines

in Fig. 2). However, one node, 20523 (red in Fig. 2) is not

in a cycle. This ends up being because, due to the MSS

rule, 20523 and 20577 are the only two members of one

structural cluster. While 20577 is similar enough to other

molecules that it ultimately gets connected to other nodes,

20523 is not, so it is left not belonging to a cycle. Similar

cases are found in the trypsin dataset we examined. The

final maximum distance across the graph is 9 (Table 1).

Because the full set of molecules is still relatively large,

even for FXa, it is worth examining a more detailed version

of the map, along with chemical structures, to see whether the

final graph makes intuitive sense. Figure 3 focuses on the

portion of the graph with compounds having a net charge of

?1. LOMAP automatically generates similar graphs, which

contain some additional information (such as the trimmed

common substructures), though these are too large to show

here and samples are shown in the Supporting Information.

Some features of the FXa subset shown in Fig. 3 high-

light advantages of LOMAP over planning calculations

manually by inspection. For example, the blue node in the

center is selected by LOMAP to essentially serve as a hub

(particularly highly connected), because it is the structure

common to the largest number of molecules in the series.

Having this scaffold as a hub dramatically reduces the

distance between other compounds sharing the same scaf-

fold. Furthermore, a manual search might propose a cal-

culation between the compounds shown in orange circles.

However, these, though sharing substantial similarity, have

bicyclic rings of different sizes, which (because we seek to

avoid breaking rings) would involve larger mutations—a

transformation would involve deleting and reinserting both

bicyclic rings. Instead, our algorithm connects these com-

pounds by passing through the purple node, which involves

modifying only one bicyclic ring at a time. Observations of

this type highlight how automatic planning algorithms are

essential for large scale relative free energy calculations, as

planning at this level of detail would be impossible on large

sets of molecules since there are simply too many possi-

bilities to consider (see the trypsin dataset in the Support-

ing Information, for example).
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Another important result of these calculations is the

common substructure for each planned calculation, and the

mapping of ligand atoms onto this common substructure,

which is also an output. This information makes it simple

to set up what we call ‘‘single topology, explicit interme-

diate’’ binding free energy calculations (Fig. 4). In these

calculations, each ligand is perturbed to the common sub-

structure, both in the binding site and in solution. From the

difference in free energies one can obtain the relative

binding free energy. These calculations are conceptually

(and algorithmically) typically very straightforward to set

up, since they involve simply turning any atoms being
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‘‘deleted’’ into dummy atoms and making any changes to

atom type (and corresponding bond, angle, and torsion

parameters) needed to get to the common substructure.

Unlike calculations going directly between ligands, these

do not require a mapping of atoms from one ligand onto the

other, nor do they require simultaneous transformations to

and from dummy atoms, which simplifies setup. We are

working on automated tools to set up such calculations in

some common simulation packages, and plan to release

these separately.

Automated planning of relative free energy calculations

may not be necessary for very small sets, but it becomes

increasingly important as the set size grows. Would simpler

algorithms for planning calculations work as well as the one

proposed here? Perhaps, but the most naive approach of

simply randomly connecting compounds appears not to be

wise, at least for diverse sets. An exhaustive test of feasibility

as a function of chemical similarity and similarity score is

beyond the scope of this work, but as a crude test, we picked

compound pairs at random from our set and manually

inspected them for similarity. We inspected 10 such pairs,

shown in Supporting Information Figure 1. From the figure,

it is fairly clear that this selection process is far from ideal.

Random selection proposes mutating piperazine into n-butyl

acetate, for example, a transformation which violates Goal 2

and in fact is probably not possible in many simulation

packages (since it involves breaking a ring, which would

change the exclusion interactions within the molecule). This

ring breaking problem happens in two of the 10 transfor-

mations we examined (also tetrahydropyran to n-octane),

whereas to the eye, the solution is immediately obvious—

mutate piperazine to tetrahydropyran and n-octane to n-butyl

acetate or similar. Aside from these two cases which are

impractical, a number of others are far from ideal—p-tolui-

dine to 1,1,2-tetrachloroethane, for example, and ethyl

phenyl ether to iodomethane. While these transformations

could work in principle, there are other molecules which

make better partners which are immediately apparent to the

eye. In fact, for this set of 10 pairs, there is only one pair

which we would not remove based on inspection—the

transformation methyl trifluoroacetate to 2-methylpentan-2-

ol, since there is no clearly preferable partner for 2-meth-

ylpentan-2-ol. Other simple approaches might work better

than randomly pairing compounds. We also performed some

tests looking at pairing compounds by shape similarity, but

these often resulted in molecule pairs without sufficient

topological similarity; for example, a flexible molecule

which does not contain a ring can have substantial shape

similarity to a ring, despite the fact that ring breaking

transformations are not practical for us. One might object

that a fragment library is an especially stringent test, but the

contents of this library are not that dissimilar to functional

groups which might be added or modified within a conge-

neric series, so this simple analysis may provide some useful

insight.

Validation on relative hydration free energies

While an extensive validation of our approach on binding

free energy calculations is outside the scope of this work,
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Fig. 4 Single topology, explicit intermediate free energy calcula-

tions. Here, these calculations would be used to compare binding of

5-chloro-2-methylphenol and 2-ethylphenol. Fully interacting atoms

are shown in black with underlying shaded contours, while nonin-

teracting atoms (dummy atoms) are shown in gray with no shaded

contours. The intermediate (scaffold) is specified explicitly, at the

bottom. At left, the chlorine atom and one hydrogen are changed into

dummy atoms, while at right, one hydrogen atom and a methyl group

are changed into dummy atoms. The two scaffolds at bottom differ in

number of dummy atoms, though these contributions cancel when

computing free energies. The free energy calculation involves turning

the specified atoms into dummy atoms in both molecules

Table 1 Statistics of LOMAP plans for the sets examined

Dataset Number

of nodes

(n)

Potential

edges
nðn�1Þ

2

� �
Planned

edges

Final

maximum

distance

FXa 50 1,225 65 9

Trypsin 576 165,600 785 23

SAMPL3 36 630 50 6

Fragment 504 126,756 763 6

Properties of LOMAP plans for relative free energy calculations

spanning the different test sets used here. The number of nodes

(molecules) is shown, along with the number of possible free energy

calculations between these molecules. Planned edges is the number of

planned calculations spanning the set, and the maximum final distance

is the maximum distance between any pair of molecules across the

final graph
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we here test it on relative hydration free energies of related

compounds. These calculations are relatively easy to con-

verge, providing an excellent opportunity for validation,

since we already know correct (for the force field) hydra-

tion free energies for a large number of small molecules

[35]. These also provide a chance to test the approach in

the absence of concerns about adequate sampling of the

environment.

Thus, we planned 763 hydration free energy calculations

spanning our 504 molecule fragment set, and selected 9 of

these planned calculations for validation by relative free

energy calculation. Future work will look at computational

efficiency of relative calculations spanning this library as a

function of similarity. However, such a large study is

outside the scope of this paper, so our focus here is simply

on validation for a small number of compounds. Thus, we

ran single-topology relative hydration free energy calcu-

lations, and compared computed free energies with those

obtained from our previous absolute hydration free ener-

gies [35]. Results are shown in Table 2, where uncertain-

ties are reported as the standard error in the mean. Here,

our discrepancy from the previous results is always under

0.4 kcal/mol, despite calculated relative free energies

spanning a range of -3.7 to 4.6 kcal/mol. The difference

between our LOMAP values and those previously calcu-

lated is also within twice the standard error in the majority

of cases, though not all. This is because the error estimates

for our previous calculations were too small by typically

around 0.2–0.3 kcal/mol, because the transformations were

done with constant volume production, with box sizes

chosen to match those at the end of the equilibration sim-

ulation. In instances (at particular k values) where the box

size at the end of equilibration deviated from the correct

average box size, this resulted in a somewhat incorrect

density at that particular lambda value, introducing a small

amount of noise which we have empirically observed to be

up to 0.2–0.3 kcal/mol. Our more recent work has instead

fixed the box size to yield the correct density [28, 41], or

(as here) switched to constant pressure production simu-

lations, both of which eliminate this noise. Thus, our rel-

ative hydration free energies from LOMAP are consistent

with our previously calculated hydration free energies.

It is worth noting that uncertainties in our computed

relative hydration free energies are quite small, and in

many cases substantially smaller than those from our pre-

vious absolute hydration free energy calculations. This is

presumably because transforming one solute into another is

an easier (and more precise) calculation than computing the

hydration free energy for an entire solute, and hence the

resulting uncertainties are smaller. It also may be because

LOMAP has selected transformations which are particu-

larly efficient, though tests of this will be the subject of

future work.

Discussion and conclusions

LOMAP provides an automatic way to plan relative bind-

ing free energy calculations, which has been one major

hurdle hampering more widespread application of these

calculations to problems in drug discovery. As input, it

takes a set of potential ligands of interest, and outputs a

map of planned free energy calculations spanning the set

with relatively few transformations which are designed to

be relatively efficient, based on the number of atomic

insertions and deletions required. This map also has several

other features designed to aid overall accuracy and provide

consistency checking. Specifically, it keeps overall dis-

tance across structural clusters below a specified threshold,

and it builds in closed cycles of mutations to allow con-

sistency checking and provide additional information about

when the calculations may be performing poorly. Our

Table 2 Computed relative hydration free energies

Compound pair Previous study

[35] (kcal/mol)

LOMAP

(kcal/mol)

Difference

(kcal/mol)

1,1,1,2-tetrachloroethane to 2,2-dimethylbutane -2.62 ± 0.15 -2.42 ± 0.03 0.20 ± 0.15

1,1,1-trichloroethane to 2,2-dimethylpentane -2.21 ± 0.17 -2.15 ± 0.03 0.06 ± 0.17

1,1,1-trifluoro-2,2,2-trimethoxyethane to 2-chloro-1,1,1-trimethoxyethane 1.31 ± 0.13 1.04 ± 0.04 -0.27 ± 0.13

1,2,3-trichlorobenzene to 2,3-dimethylphenol 4.60 ± 0.11 4.29 ± 0.04 -0.31 ± 0.12

1,2,3,4-tetrachlorobenzene to 2,6-dimethylaniline 4.49 ± 0.27 4.55 ± 0.04 0.06 ± 0.27

1,2,3,5-tetrachlorobenzene to 1,3,5-trichlorobenzene -0.21 ± 0.24 -0.47 ± 0.03 -0.26 ± 0.24

1,2,4,5-tetrachlorobenzene to 1,2,4-trichlorobenzene 0.12 ± 0.42 0.43 ± 0.03 0.31 ± 0.42

1-chloro-2,2,2-trifluoroethane to 2,2,2-trifluoroethanol 4.42 ± 0.06 4.11 ± 0.04 -0.31 ± 0.07

1-methyl-imidazole to 1-methyl pyrrole -3.80 ± 0.04 -3.74 ± 0.04 0.06 ± 0.05

Relative hydration free energies for selected compound pairs, computed both from absolute hydration free energies reported in a previous study,

and from relative free energy calculations set up via LOMAP here
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approach also folds in several other major considerations

for accuracy, such as avoiding calculations between mol-

ecules of different net charge, proper handling of partial

ring deletions, and so on.

LOMAP provides a first effort at systematically plan-

ning efficient free energy calculations. Much follow up

work needs to be done to determine whether the choices

make here actually lead to the most efficient free energy

calculations, or whether other choices are better. While

here, we have focused on minimizing the number of atomic

deletions and insertions (which is supported by the free

energy literature) one might imagine other criteria might

also be important measures of the efficiency of potential

relative free energy calculations. For example, swapping

one bioisostere for another might be preferable even if it

results in a larger number of deletions or insertions. Sim-

ilarly, a transformation which preserves the topological

location of hydrogen bond donors and acceptors might be

preferable over one that does not, even if it involves a few

more deletions and insertions. So far, we are not aware of

any efficiency data from free energy calculations which

sheds light on these issues, so the current implementation is

likely a good starting point.

We believe further work on the issue of efficiency of

different possible transformations is needed. Hopefully the

approach presented here will provide the foundation a

systematic approach to looking at efficiency as a function

of transformation type, and we are beginning some new

work in this direction. Transformation efficiency can be

measured by computing a gold standard estimate of the

relative free energy using extremely long simulations, and

then looking at how quickly computed relative free ener-

gies approach that estimate. Transformations which are

more efficient will in general more quickly approach the

correct relative free energy (and possibly require fewer

alchemical intermediate states) than those which are less

efficient. This will be an interesting avenue for future work,

and likely can provide new insights to help improve

LOMAP.

Since we hope this will be the foundation for much

further development in the area, our code is open source,

under the BSD license. We have designed the graph

planning algorithm itself to be modular, taking a set of

arbitrary similarity scores as input, so that the planning

component can be easily modified and extended. Also, our

rule engine is designed to allow easy incorporation of

additional rules, and/or replacement of existing rules with

new ones.

Overall, we believe this approach provides a promising

way to begin automating the setup of large scale relative

binding free energy calculations. As noted above, with the

output of these calculations—the plan of calculations and

the common substructure for each planned calculation—it

is simple to automate setup of input files for many common

simulation packages which perturb each ligand in a pair to

the common substructure. Thus we hope that Lead Opti-

mization Mapper will pave the way to applying binding

free energy calculations on a larger scale in a wide range of

applications.

Supporting information

In the Supporting Information, we provide .mol2 files for

the FXa, trypsin, fragment, and SAMPL3 test sets, as well

as graphs automatically constructed by LOMAP for these

sets, with edges labeled by the corresponding trimmed

maximum common substructures. We also provide details

of the origins of the trypsin test set, and a figure of com-

pound pairs selected at random from the fragment set.

Supporting information in PDF format is available through

the journal, and supporting files are available at http://

mobleylab.org/paper_support/LOMAP_SI.tar.gz.
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