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Abstract Alkane/water partition coefficients (Palk) are

less familiar to the molecular design community than their

1-octanol/water equivalents and access to both data and

prediction tools is much more limited. A method for pre-

dicting alkane/water partition coefficient from molecular

structure is introduced. The basis for the ClogPalk model is

the strong (R2 = 0.987) relationship between alkane/water

partition coefficient and molecular surface area (MSA) that

was observed for saturated hydrocarbons. The model treats

a molecule as a perturbation of a saturated hydrocarbon

molecule with the same MSA and uses increments defined

for functional groups to quantify the extent to which logPalk

is perturbed by the introduction each functional group.

Interactions between functional groups, such as intramo-

lecular hydrogen bonds are also parameterized within a

perturbation framework. The functional groups and inter-

actions between them are specified substructurally in a

transparent and reproducible manner using SMARTS

notation. The ClogPalk model was parameterized using data

measured for structurally prototypical compounds that

dominate the literature on alkane/water partition coeffi-

cients and then validated using an external test set of 100

alkane/water logP measurements, the majority of which

were for drugs.

Keywords Alkane/water � ClogPalk � Ligand efficiency �
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Introduction

Lipophilicity, usually quantified as the logarithm (to base

10) of the 1-octanol/water partition coefficient (Poct) or

distribution coefficient, (Doct) is the most widely used

physicochemical property in drug discovery and the key

molecular design parameter in medicinal chemistry [1, 2].

Lipophilicity has been of interest in the physiological

context for many years and it was in 1847 that von Bibra

and Harless [3] suggested that the narcotic effects of

Schwefeläther might be due to its affinity for brain lipids.

The essential features of partitioning between liquid phases

had already been articulated by Nernst [4] when Meyer [5]

and Overton [6] published their studies relating anesthetic

potency to solubility in olive oil. The 1-octanol/water

partitioning system appears to have first been used by

Collander [7] who also measured the partitioning of com-

pounds between water and oleyl alcohol, a solvent rec-

ommended by the younger Meyer [8] for studies of this

nature. Collander certainly recognized the influence of

hydrogen bonding on partitioning and noted the existence

of linear relationships between partition coefficients mea-

sured for different monohydric alcohols and water [7]. The

adoption of the 1-octanol/water system for partitioning

studies in drug discovery can be traced to a 1963 article by

Hansch et al. [9]. With the benefit of hindsight, the original

selection of 1-octanol/water as the favored partitioning

system does appear arbitrary and it was also incorrectly

stated that Collander had observed linear correlations

between logP for systems other than alcohols and water.
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This is not to deny that logPoct has proved a useful

parameter in drug discovery or that the concept of lipo-

philicity has shaped the thinking of medicinal chemists.

The main uses of logPoct in contemporary drug discov-

ery are for modeling the association of compounds with

cell membranes that is a necessary, but not sufficient,

condition for passive diffusion through membranes and as a

general purpose descriptor of desolvation for modeling

affinity and properties, such as aqueous solubility, that are

relevant to pharmaceutical design [10–14]. A number of

researchers have questioned [15–21] the suitability of

1-octanol/water partition coefficients for these purposes

since 1-octanol is capable of forming hydrogen bonds with

polar solutes. It can be argued that this capacity for

hydrogen bonding makes 1-octanol a poor model for the

hydrocarbon-like interior of a lipid bilayer or for polar-

apolar contacts that can be either intermolecular (drug-

target complex) or intermolecular (folded protein). It is

noteworthy that while the lower polarity limit for the Rule

of 5 [1] is defined in terms of lipophilicity, the upper for

polarity is specified by numbers of hydrogen bonding

groups. Another characteristic of the 1-octanol/water sys-

tem that compromises its general applicability as a

descriptor of aqueous desolvation is its relative inability to

sense hydrogen bond donors in solute molecules [22]. In

the context of direct measurement of partition coefficients,

1-octanol is also much wetter (2.5 M water) [23] than

hydrocarbon solvents such as hexadecane (2 9 10-3 M

water) [21] or cyclohexane (1.5 9 10-3 M water) [24].

Water in the organic phase stabilizes polar solutes and

makes them appear more lipophilic than if the partition

coefficients had been determined by the solubility ratio

[26]. Self-association (e.g. for lactams) [27] in the organic

phase has an analogous effect and can present difficulties

when solubility ratio is used to measure partition coeffi-

cients since the experiment is performed at saturation and

solute concentration cannot be varied.

Alkane/water partitioning systems also have a long

history and the insights of Golumbic et al. [28] into steric

effects on hydrogen bonding by phenols, gained from

measuring cyclohexane/water partition coefficients (Pchx),

actually pre-dated the Collander study [7]. More recently,

logPchx measurements have been used to investigate the

effects of intramolecular hydrogen bonding and steric

control of conformational preferences [29]. The alkane/

water partition coefficient (Palk) of a compound is typically

lower than Poct and the difference (DlogP) between the

logarithms of the two quantities reflects the potential of the

compound to make electrostatic interactions, such as

hydrogen bonds, with polar solvents [30]. Measured values

of logPalk differ in in the choice of alkane (e.g. cyclohex-

ane, hexadecane), experimental conditions (e.g. tempera-

ture) and whether or not the organic and aqueous phases

are mutually saturated when measurement is made. There

is no single consistent data set that is sufficiently large and

structurally diverse for developing predictive models for

logPalk. It has been suggested [31] that logP values mea-

sured for alkanes other than cyclohexane do not differ

significantly from each other and that these can be com-

bined for analysis. Although statistically significant dif-

ferences have been observed [30, 31] between logP values

measured for cyclohexane and other alkanes, the differ-

ences are small and it is not clear how widely applicable

the published regression equations are for inter-conversion.

In the current study, no attempt was made to convert

logPcyc values to their equivalents in other alkane/water

solvent systems and the term logPalk will be taken to mean

any partition coefficient that has been measured in a satu-

rated hydrocarbon/water partitioning system.

While a number of approaches to predicting logPalk have

been reported, practical access to predictive tools is lim-

ited. The most extensive body of work is that of Abraham

et al. who use a general solvation equation to model par-

tition coefficients measured in a range of solvent systems

[22, 24, 31]. Using the general solvation equation to predict

alkane/water appears [31] to require some experimental

measurements (e.g. logPoct) for compounds of interest and

it is not clear how reliably or generally the approach can be

used to make predictions from molecular structure alone.

Molecular surface area [33] (MSA) and volume [34] have

been used with atom-typing to model logPalk, as have

molecular electrostatic properties [35], molecular interac-

tion fields [36] and implicit solvent models [37]. The

alkane/water partition coefficient has also been treated as a

perturbation of its 1-octanol/water equivalent by making

DlogP the target for predictive modeling [21]. The ClogPalk

model introduced in the current study also treats logPalk as

a perturbation although, in this case, the reference state is a

saturated hydrocarbon molecule with the same MSA as the

molecule for which prediction is being made. A rationale

for this approach is provided by the strong correlation of

logPalk with MSA that is observed for saturated hydrocar-

bons. The perturbation, which can be regarded as a mea-

sure of molecular polarity, is quantified for functional

groups using atom types and it is the development and

parameterization of this model that forms the basis for this

work.

Computational details

The molecular modeling software described in this article

was either provided by OpenEye Scientific Software [38]

or built using OpenEye programming toolkits. Molecular

structures were encoded as isomeric SMILES [39, 40]

strings and Omega [41, 42] was used to generate a single
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conformation for each. Molecular geometries were energy-

minimized (MMFF94S) [43] using the Szybki [44]

molecular mechanics program. Omega failed to generate

3D coordinates for sulfur hexafluoride and the molecular

model for this compound was built with octahedral sym-

metry using the experimentally determined bond length

[45]. Molecular surface area was calculated from atomic

coordinates and Bondi [46] radii using a probe radius of

1.4 Å. Molecular similarity was calculated as Tanimoto

coefficient using path-based fingerprints (1,024 bits; paths

up to 5 bonds) using the GraphSim toolkit [47] The JMP

software [48] was used for all data analysis.

Two pieces of software were created in the course of this

study. SSProFilter was built with the OEChem [49] toolkit

and combines the functionality of the previously described

Filter [50] program (which should not be confused with the

OpenEye product of the same name) with the ability to

profile molecular structures by counting matches with

Table 1 Atom types defined as vector bindings

Name SMARTS Description

Csp3 [CX4] sp3 carbon

Cnotsp3 [#6;!$Csp3] Unsaturated carbon

CDoubBond c=[C,N,O,S] Doubly bonded ‘aromatic’carbon

ArC [c;!$CDoubBond] Normal aromatic carbon

ArN [n&D2] Pyridine-like aromatic nitrogen

ArCN [$ArC,$ArN] Aromatic carbon or nitrogen

ArNH [nH]1[$ArCN][$ArCN][$ArCN][$ArCN]1 Pyrrole-like aromatic nitrogen

ArNR n1([#6])[$ArCN][$ArCN][$ArCN][$ArCN]1 Substituted pyrrole-like nitrogen

ArO o1[$ArCN][$ArCN][$ArCN][$ArCN]1 Aromatic oxygen

ArS s1[$ArCN][$ArCN][$ArCN][$ArCN]1 Aromatic sulfur

OS [O,S;X1] Doubly-bonded oxygen or sulfur

NH2 [N;H2;X3] Amino

NHR [N;H1;X3][$Csp3] Alkylamino

NR2 [NX3]([$Csp3])[$Csp3] Dialkylamino

GenAmino [$NH2,$NHR,$NR2] Amino and alkylated analogues

PrimAmine [$NH2][$Csp3 Primary amine

SecAmine [$NHR]([$Csp3])[$Csp3] Secondary amine

TertAmine [$NR2]([$Csp3])([$Csp3])[$Csp3] Tertiary amine

Amine [$PrimAmine,$SecAmine,$TertAmine] Amine

Ether O([$Csp3])[$Csp3] Ether

Nitro1 N(=O)=O Nitro with pentavalent nitrogen

Nitro2 [N?]([O-])=O Ylid nitro

Nitro [$Nitro1,$Nitro2] Nitro group

ArNoxid1 [nX3]=O Aromatic N-oxide with pentavalent nitrogen

ArNoxid2 [n;?;X3][O-] Ylid aromatic N-oxide

ArNoxid [$ArNoxid1,$ArNoxid2] Aromatic N-oxide

AlNoxid1 [NX4]=O Aliphatic N-oxide with pentavalent nitrogen

AlNoxid2 [N;X4;?][O-] Ylid aliphatic N-oxide

AlNoxid [$AlNoxid1,$AlNoxid2] Aliphatic N-oxide

SO2 [SX4](=O)(=O)([$Csp3])[$Csp3,N&X3] Sulfones and sulfonamides

EWG1 [C,S]=[N,O,S] Electron-withdrawing group for defining imides

and related substructures

HBD [O&H,n&H,$([NH][C,S]=O),$([N;H,H2]c)] HB donor

HBD2 [$HBD;!$(N1CC(=O)AC1=O)] Restrict HB donor definition

Am4Pyr [$ArN]1[$ArCN][$ArCN]c([$GenAmino])[$ArC][$ArC]1 4-Aminopyridines and aza-substituted

BzCorr [$Amine,O&!H][$Csp3][$Cnotsp3] For applying the benzyl correction

CyAmine CyAmine [$(C1CNCC1),$(C1CNCCC1),$(C1CCNCC1)]

NOCCNO [$Amine,$Ether][$Csp3][$Csp3][N,$Ether] Interactions through bonds (2)

NOCNO [$Amine,O&!H][$Csp3][N,O] Interactions through bonds (1)

J Comput Aided Mol Des (2013) 27:389–402 391

123



substructural patterns encoded as SMARTS [51]. The

SSProfilter program was used to identify molecular struc-

tures containing only the atom types of interest for deriving

parameters. The ClogPalk program that is the focus of this

article was built using the OEChem [49] (SMARTS

matching; structure handling) and OESpicoli [52] (MSA

calculation) toolkits. Measured logPalk values were

obtained from a number of literature sources [16, 17, 21,

22, 24, 25, 29–32, 36, 53–65] and the data set is provided

with structures (in isomeric SMILES format) as supple-

mental material.

The ClogPalk predictive model is defined by Eq. 1:

C log Palk ¼ log P0 þ s�MSA�
X

i

D log PFG;i

�
X

j

D log PInt;j ð1Þ

The first two terms of Eq. 1 relate the logPalk values

measured for saturated hydrocarbons to MSA and describe

reference state of the model. The last two terms quantify

the extent to which this saturated hydrocarbon reference

state is perturbed by the introduction of non-carbon atoms

and unsaturation into the molecular structure. Each

functional group (DlogPFG,i) and interaction (DlogPInt,j)

term is associated with a substructural target defined using

the OpenEye implementation of SMARTS notation. In

both cases vector bindings (e.g. $Csp3:[CX4]) were used

to make the patterns more human-readable and the vector

bindings used by the ClogPalk model are listed in Table 1.

It can be helpful to think of the functional group and

interaction terms in Eq. 1 as first and second order

perturbations respectively.

Each functional group term is calculated, using Eq. 2

from the number of matches (Ni) with the relevant

SMARTS target. In the context of the model a functional

group is simply a substructure, which can even be a single

atom (e.g. aromatic carbon), with which a perturbation is

associated. It is important to note that Eq. 2, which has an

intercept term (kFG,i), is only applied if the relevant func-

tional group actually occurs in the molecular structure for

which prediction is being made and this intercept term was

only rarely used (e.g. for the aromatic carbon atom type).

D log PFG;i ¼ fFG;i � Ni þ kFG;i ð2Þ

Atoms are typed when the functional group terms are

calculated which means that each atom is linked to, at

most, one SMARTS pattern when Eq. 2 is applied. For

multi-atom SMARTS patterns, only the atom mapped by

the first atom (the head atom) of the SMARTS string is

typed and the contribution of the entire functional group

(e.g. sulfonamide) is loaded onto the head atom (e.g.

sulfur). The SMARTS patterns are matched in the order in

which they occur in the parameter file and each atom is

linked to the last SMARTS target with which it matches.

This facilitates customization of the model because a

generic parameter can simply be over-written by a more

specific one that might, for example, have been derived

using proprietary data. Each interaction term is calculated,

using Eq. 3 from the number of matches (Nj) with the

relevant SMARTS target and, in contrast with the

functional group terms, an atom can be associated with

more than one interaction term.

D log PInt;j ¼ fInt;j � Nj ð3Þ

The ClogPalk model is perturbation-based and its

parameterization can be described as ordered in that

parameters were not derived simultaneously. The first

step in deriving a functional group parameter is to assemble

logPalk values measured for compounds in which only

hydrogen, saturated carbon and the relevant functional

group are present in the molecular structure. This creates a

training set specific to the relevant functional group and

parameters are derived independently of each other using

Eq. 2 (the intercept term kFG,i is only rarely used). The

interaction parameters (Eq. 3) were set in the final step of

the process. The model was validated using an external test

set of 100 measured logPalk values.

Alkane/water partition coefficients for saturated

hydrocarbons

The basis for the ClogPalk predictive model is the strong,

linear relationship between logPalk and MSA observed for a

set of 48 saturated hydrocarbons that included linear,

branched and cyclic species (Fig. 1; Eq. 4).

log Palk ¼ 0:0340�MSA=Å
2 � 0:309 ð4Þ

N = 48; R2 = 0.987; RMSE = 0.152.

MSA/Å
2

lo
gP

al
k

Fig. 1 Relationship between logPalk and calculated molecular surface

area observed for saturated hydrocarbons
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Derivation of functional group parameters

The ClogPalk model is perturbation-based and its parame-

terization can be described as ordered in that parameters

were not derived simultaneously. Functional group

parameters can be derived directly when the only atom

types in the molecular structure are those that define the

functional group, saturated carbon and hydrogen. In these

situations, values of DlogPFG,i, obtained by subtracting

measured logPalk from the value calculated from Eq. 4, can

be fit using Eq. 2. In other cases, functional group X (e.g.

aromatic nitrogen) cannot be found except when another

functional group Y (e.g. aromatic carbon) is also present. If

parameters have already been derived for functional group

Y then these can be used to adjust the predicted (Eq. 4)

value of logPalk prior to calculating DlogPFG,i and fitting

Eq. 2. The first step of the parameterization of the ClogPalk

model was to investigate the need for aromatic carbon

parameters since this atom type is almost ubiquitous in

compounds of pharmaceutical interest. When using

SMARTS notation, certain carbons (e.g. pyridone car-

bonyl) are considered to be aromatic and a more restrictive

aromatic carbon atom type was defined using vector

bindings to prevent matches with these. A number of atom

types, including the re-defined aromatic carbon [$Car], are

listed in Table 1, and these were used to build SMARTS

definitions and make them more easily read by humans.

Parameters for alkene, alkyne and aromatic atoms are listed

in Table 2 and it should be noted that intercept terms

(kFG,i) were used for alkene and aromatic carbon but not

alkyne carbon. Intercept terms were also used for chlorine

and bromine bonded to either aromatic or saturated carbon.

Parameters for these atom types are included in Table 2 for

convenience because intercept terms are not used for any

other functional groups. The value of the root mean square

error (RMSE) provides an indication of the internal con-

sistency of the data used to derive parameters for the rel-

evant functional group.

It was possible to derive parameters for a number of

functional groups that were not dependent on the values of

the parameters for unsaturated carbon atom types and these

are listed in Table 3. Parameters for urea and thiourea were

observed to be similar and SMARTS definitions for amides

were generalized to match thioamides although the mea-

sured data corresponded only to amides. Parameters for

imines were generated by taking the mean of the primary

amine and nitrile parameters. Parameters for functional

groups that were dependent on the parameter values for

Table 2 Functional group contributions for unsaturated carbon and halogen-substituted aromatic carbon

Atom type SMARTSa fFG,i
b kFG,i

b Nc RMSEd

Aromatic C [$Car] 0.0526 0.965 47 0.17

Alkene C C=C 0.16 0.26 18

Alkyne C C#C 0.74 Not used 8

Aromatic N (HB acceptor) [$Nar] 2.50e Not used 30 0.26

Aromatic N (HB donor) [$ArNH] 2.16e Not used 9 0.16

Aromatic N (with substituent) [$ArNR] 1.07e Not used 3 0.04

Aromatic N-oxide [$ArNoxid] 6.09e Not used 3 0.5

Aromatic oxygen [$OAr] 0.17e,f Not used

Aromatic sulfur [$SAr] 0.10e Not used 2 0.10

Aromatic F Fc -0.13e Not used 2 0.14

Aromatic Cl Clc -0.15e -0.23 24 0.16

Aromatic Br Brc -0.20e -0.11 4 0.09

Aromatic I Ic -0.38e Not used 2 0.08

C with hydrogen and F [C;X4;!H0]F 0.60g 0.66g

C with hydrogen and Cl [C;X4;!H0]Cl 0.60 0.66 24 0.15

C with hydrogen and Br [C;X4;!H0]Br 0.60 0.49 13 0.10

C with hydrogen and I [C;X4;!H0]I 0.83 Not used 8 0.11

a See Table 1 for vector binding definition
b Equation 2
c Number of data points used to determine parameters
d Root mean square error from parameter fitting
e Parameter values dependent on aromatic carbon parameters
f Parameter derived using assumption that logPalk = logPoct for furan and benzofuran
g Parameters set to chlorine equivalents
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aromatic carbon are listed in Table 4. A generic unsatu-

rated carbon atom type was used in the SMARTS although

in most cases the measured data correspond only to the

aromatic carbon type.

Interaction parameters

Interactions between atoms within molecules such as

intramolecular hydrogen bonds affect partition coefficients

and are treated as secondary perturbations in the ClogPalk

model. While these effects can also be accounted for within

the functional group framework, treating interactions in

this manner allows more flexibility in parameterization and

simplifies the process of specifying substructures. Values

for the interaction parameters depend on the functional

group parameters and their derivation represents the final

step of the parameterization process. The data set available

is sparse and deriving interaction parameters typically

involves an element of extrapolation. The interaction

parameters are listed in Table 5.

The nature of the interaction parameters is best illustrated

with reference to examples. The logPalk value measured for

Ephedrine was used to set an intramolecular (5-membered

ring) hydrogen bond term for the interaction of amine

nitrogen with hydroxyl. A parameter of the same value was

then assigned to describe the contribution of the analogous

intramolecular hydrogen bond in a 6-membered ring and the

substructural specification for the hydroxyl was broadened to

match other hydrogen bond donors such as amides and sul-

fonamides. The effect of an intramolecular hydrogen bond

(6-membered ring) involving carbonyl oxygen as the

acceptor was parameterized using logPalk measured for

2-hydroxybenzaldehyde. A parameter for the through-bond

interactions between ether oxygen atoms was derived by

comparing the logPalk measurement for 1,4-dioxane with the

value calculated using the ether oxygen parameter in

Table 3. Heteroaromatic rings with more than one hetero-

atom were also treated using interaction parameters. For

example, the interaction between the nitrogen atoms in

quinoxaline was quantified by comparing its measured log-

Palk with the value predicted using aromatic nitrogen

Table 3 Functional group contributions

Description SMARTSa fFG,i
b Nc RMSEd

Primary amine [N;H2;X3][$Csp3] 4.23 20 0.15

Secondary amine [N;H;X3]([$Csp3])[$Csp3] 4.17 10 0.24

Tertiary amine [NX3]([$Csp3])([$Csp3])[$Csp3] 3.81 7 0.22

Nitrile C(#[NX1])[$Csp3] 3.39 5 0.15

Guanidine C(=N)([$GenAmino])[$GenAmino] 8.73 1

Alcohol [OH][$Csp3] 4.48 56 0.16

Ether O([$Csp3])[$Csp3 2.96 10 0.20

Aldehyde [CH](=[$OS])[$Csp3] 3.38 9 0.08

Ketone C(=[$OS])([$Csp3])[$Csp3] 3.72 26 0.09

Ester C(=[$OS])([$Csp3])O[$Csp3] 3.52 37 0.19

Carboxylic acid O=C([OH])[$Csp3] 5.52 19 0.13

Primary amide C(=[$OS])([$Csp3])[NH2] 7.28 5 0.10

Secondary amide C(=[$OS])([$Csp3])[NH][$Csp3] 6.99 1

Tertiary amide C(=[$OS])([$Csp3])N([$Csp3])[$Csp3] 6.77 1

Urea C(=O)([$GenAmino])[$GenAmino] 7.80 1

Nitro [$Nitro][$Csp3] 3.21 14 0.14

Sulfoxide [SX3](=O)([$Csp3])[$Csp3] 6.95 1

Thiol [S;X2;H][$Csp3] 1.47 5 0.27

Thioether [SX2]([$Csp3])[$Csp3] 1.85 5 0.50

Disulfide [SX2][SX2] 0.72 2 0.37

Thiourea C(=[SX1])([$GenAmino])[$GenAmino] 7.80 3

These parameters were set independently of the aromatic carbon parameters
a See Table 1 for vector binding definition
b Equation 2
c Number of data points used to determine parameters
d Root mean square error from parameter fitting
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parameters derived from logPalk values measured for pyri-

dine, quinolone, isoquinoline and their alkylated derivatives.

Validation

The ClogPalk model is applied using 82 functional group

definitions and 41 interaction definitions and it is important

to stress that the functional group parameters are either

derived independently of each other or depend on the

parameter(s) for at most one other atom type (e.g. aromatic

carbon). In this respect it differs from a multivariate

regression model in which the parameters are dependent on

each other (and the extent to which descriptors are corre-

lated with each other). One of the reviewers of the manu-

script raised questions about the number of degrees of

Table 4 Functional group contributions

Description SMARTSa fFG,i
b Nc RMSEd

ArNH2 [NH2]c 2.59 18 0.20

ArNHR [NH](c)[$Csp3] 2.00 2 0.10

ArNR2 N([$Csp3])([$Csp3])c 1.34 3 0.15

ArC#N C(#[NX1])c 1.73 4 0.08

ArOH [OH]c 3.22 43 0.36

ArOR O(c)[$Csp3] 0.94 6 0.11

ArCHO [CH](=[$OS])[$Cnotsp3] 1.66 7 0.15

ArC(=O)R C(=[$OS])([$Cnotsp3])[$Csp3] 2.19 7 0.15

ArC(=O)Ar C(=[$OS])([$Cnotsp3])[$Cnotsp3] 1.54 4 0.26

ArCO2H O=C([OH])[$Cnotsp3] 3.75 4 0.14

ArCO2R C(=[$OS])([$Cnotsp3])O[$Csp3] 2.01 5 0.28

RCO2Ar C(=[$OS])([$Csp3])O[$Cnotsp3] 2.65 1

2-Pyrone [$OS]=c1occcc1 3.02 1

4-Pyrone $OS]=c1ccocc1 3.54 1

ArC(=O)NH2 C(=[$OS])([$Cnotsp3])[NH2] 5.26 2 0.27

ArC(=O)NHR C(=[$OS])([$Cnotsp3])[NH][$Csp3] 5.57 1

RC(=O)NHAr C(=[$OS])([$Csp3])[NH][$Cnotsp3] 5.37 7 0.17

ArC(=O)NR2 C(=[$OS])([$Cnotsp3])N([$Csp3])[$Csp3] 5.19 2 0.20

RC(=O)N(R)Ar C(=[$OS])([$Csp3])N([$Cnotsp3])[$Csp3] 4.37 4 0.45

Imide C(=[$OS])[ND3][$EWG1] 2.0 1

Imide c(=[$OS])[nD3]c=[$OS] 2.0e

Imide with NH C(=[$OS])[NH][$EWG1] 2.6 1

Imide with NH c(=[$OS])[nH]c=[$OS] 2.6e

2-Pyridone (NH) c(=[$OS])[nH] 6.9f

2-Pyridone (NR) c(=[$OS])[nD3] 5.68 1

4-Pyridone c1(=[$OS])[$ArCN][$ArCN][nX3]cc1 9.04 1

ArNO2 [$Nitro][$Cnotsp3] 1.31 6 0.17

Sulfone S(=O)(=O)([#6])[#6] 4.60 1

Primary/secondary sulfonamide S(=O)(=O)[N;H2,H1] 6.19 1

Tertiary sulfonamide S(=O)(=O)[N;!H;!H2] 4.21 1

P=O P=O 7.1 10 0.41

Thiol [SH]c 0.45 1

Thioether [SX2](c)[$Csp3] 0.68 1

These parameters are all dependent on the values of the aromatic carbon parameters
a See Table 1 for vector binding definition
b Equation 2
c Number of data points used to determine parameters
d Root mean square error from parameter fitting
e Determined from aliphatic equivalent
f Determined from N-alkyl equivalent by adding 1.2 log units
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freedom in the model. In responding to this question we

note that a separate training set was generated for each

functional group so the relevant parameters were derived

independently of each other. Each training set was specific

to the functional group being parameterized so that there

was only a single degree of freedom in the fitting process

unless an intercept term was used, in which case there were

two. The number of logPalk measurements used to derive

each parameter is given in Tables 2, 3 and the values of

RMSE listed in those tables indicate how well each

parameter fits its training set. Interaction terms were typi-

cally set using single pairs of logPalk measurements.

Although orthogonal training sets were used to fit param-

eters, they can be combined to provide a summary of how

well the model fits the data used to train it. The combined

training sets consisted of a total of 743 logPalk

Table 5 Interaction parameters for ClogPalk model

SMARTSa fInt,j
b Description

[OH]-[#6]*[#6]-[OH] -0.7 HB between hydroxyls

[OH]-[#6]*[#6]-O[$Csp3] -1.3 Hydroxyl/ether HB

[$HBD]-[#6;!$(C=[$OS])]*[#6]-C=O -3.3 Intramolecular HB (e.g. 2-hydroxybenzaldehyde

[$HBD]-[#6;!$(C=[$OS])]*[#6]-[$Nitro] -2.8 Intramolecular HB (e.g. 2-nitrophenol)

[$HBD2]-[#6]*[#6]=O -5.0 HB to carbonyl; 5-membered ring

[$HBD2]-[#6]*[#6](=O)*[#6]-[$HBD2] 2.5 Avoid double counting of intramolecular HB

O=[#6]*[#6]([$HBD2])*[#6]=O 2.5 Avoid double counting of intramolecular HB

[$HBD]-[#6;!$(C=[$OS])]*[#6]-C=O -3.7 HB to carbonyl; 6-membered ring

[$HBD]-c[aR3][$ArN] -4.0 HB to aromatic nitrogen; 5-membered ring

[$HBD]-[$Csp3;!$CyAmine]-[$Csp3]-[$Amine] -3.2 HB to amine; 5-membered ring

[$HBD]-[$Csp3;!$CyAmine]-[$Csp3]-[$Csp3]-[$Amine] -3.2 HB to amine; 6-membered ring

[$BzCorr] -0.9 Benzyl groups tend to make amines and alcohols more lipophilic

[$NOCCNO] -0.75 Through bond (2) interaction between ether O or amine N

[$NOCNO] -0.75 Through bond (1) interaction between ether O or amine N

[$Amine]-[$Csp3]-C=O -1.6 Through bond interaction between amine and oxygen

[$ArNH,$ArNR][$ArC][$ArN] 0.8 Heteroatomatic interaction (imidazole)

[$ArNH,$ArNR][$ArN] -0.2 Heteroaromatic interaction (pyrazole)

[$ArO,$ArS][$ArC][$ArN] -0.9 Heteroaromatic interaction (oxazole/thiazole)

[$ArO,$ArS][$ArN] -0.7 Heteroaromatic interaction (isoxazole/isothiazole)

[$ArN][$ArN] -0.6 Heteroaromatic interaction (1,2-diaza)

[$ArN][$ArC;R2][$ArN] -0.9 Heteroaromatic interaction (1,3-diaza)

[$ArN]1[$ArC][$ArC][$ArN][$ArC][$ArC]1 -0.6 Heteroaromatic interaction (1,4-diaza)

[$ArN]1[$ArC][$ArC]([$ArN])[$ArC][$ArC][$ArC]1 -0.7 Heteroaromatic interaction (e.g. 1,5-naphthyridine)

[$ArN]1[$ArCN][$ArCN][$ArN][$ArO,$ArC,$ArS,n&X3]1 -1.2 Heteroaromatic interaction (1,4-diaza in 5-membered ring)

[$ArN;r5][aR3][aR3][$ArN&r6,$(c=O)] -1.4 Purines

[$OS]=c1[nX3][$ArC][$ArN][$ArC][$ArC]1 -1.3 Pyrimidones

[$OS]=c1[$ArN][$ArC][nX3][$ArC][$ArC]1 -4.6 Pyrimidones

[$OS]=c1[nX3][$ArC][$ArC][$ArC][$ArN]1 -3.2 Pyrimidones

n1([$Csp3])[$ArC][$ArN][$ArC][$ArC][$ArC]1[$ArN 3.75 3-Alkylpurine

[$Am4Pyr] 2.4 4-Aminopyridines and aza analogues

O=[C;!R]c(c[$Csp3])c[$Csp3] 0.7 Carbonyl flanked by alkyls

O=C[N;X3;!R]c(c[$Csp3])c[$Csp3] 0.5 Amide flanked by alkyls

[C;R](=[$OS])[O;R] 1.4 Lactones

[$([CR][$Csp3]),$([CH])](=[$OS])C=C 1.5 Unsaturated aldehyde or cyclic ester

c(=[$OS])([nX3])[aR3] -1.4 Carbonyl next to ring fusion

c1(=[$OS])([aR3])[$ArCN][$ArCN][nX3][$ArC][$ArC]1 -1.6 Carbonyl next to ring fusion

[$SO2] 1.8 Aliphatic sulfone/sulfonamide correction

a See Table 1 for vector binding definition
b Equation 3
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measurements for 515 compounds. The distribution of

residuals (logPalk-ClogPalk) is summarized as percentiles

in Table 6 and the histogram in Fig. 2.

The ClogPalk model was validated using an external test

set of 100 logPalk measurements for 91 compounds, most of

which were drugs (Fig. 3). Residual (logPalk-ClogPalk)

values are listed in Table 7 and their distribution is sum-

marized as percentiles in Table 6. The interquartile range

for these residuals is 0.90 log units. The most negative (over-

predicted) residual is the value of -2.76 that was observed

for one of logPalk measurements for atropine although the

residual (-0.69) corresponding to the other measurement

for this compound is smaller in magnitude. The two most

positive residuals calculated for the test data correspond to

the steroids cortisone (4.65) and hydrocortisone (3.86)

although the residuals for other steroids such as cortexolone

(0.55), estradiol (-0.06), estrone (-0.03) and testosterone

(-0.02 and 0.02) are much smaller in magnitude. Cortisone

(logPalk = -0.55) and hydrocortisone (logPalk = -2.04)

are respectively keto and hydroxy derivatives of cortexolone

(logPalk = -1.00) and the observation that the introduction

of ketone functionality into the latter appears to increase

lipophilicity raises questions about the consistency of the

data. The logPhxd values [22] measured for cyclohexane

(3.91), cyclohexanone (0.19) and cyclohexanol (-0.25)

suggest that cortisone and hydrocortisone would be

expected to be at least 3.5 log units less lipophilic than

cortexolone in alkane/water systems. Although self-associ-

ation in the alkane might be invoked to explain these

observations, one would still need a convincing argument

for why it was not an issue for cortexolone.

Another suggestion made by a reviewer of the manu-

script was that it would be helpful to illustrate the simi-

larity of the training and external test sets as a histogram of

nearest neighbor similarities. This addresses the concern

that a model predicts by locating neighbors rather than by

capturing the response of the property to the descriptors.

Although this is less of an issue for a perturbation-based

model like ClogPalk than it would be for a multivariate

regression model, the information is still useful. The

quantity of interest here is the similarity between each

molecular structure in the external test set and its closest

analog amongst the structures used to train the model. A

histogram of nearest neighbor similarities is shown in

Fig. 4 and the maximum value found was 0.74.

Discussion

The primary objective of this study was to investigate how

far what is an essentially cheminformatic approach to

prediction of logPalk could be taken. The performance of

the ClogPalk model against an external test suggests that it

represents a tractable approach to predicting alkane/water

partition coefficients. The parameters are completely

external to the software so the method could also be

applied to the prediction of logP for other partitioning

systems. It should be explicitly stated that the atom-typing

scheme used in this study is unlikely to be of much use for

scoring of poses generated by docking because the per-

turbation due to a functional group is loaded onto a single

atom within the functional group that has typically been

chosen to facilitate coding of the SMARTS.

Availability of data is always an issue when developing

predictive models like ClogPalk that are based on

Table 6 Distribution of logPalk-ClogPalk for training set and exter-

nal test set

Quantile(logPalk-ClogPalk) Training set

(N = 743)

External test

set (N = 100)

0 % (minimum) -1.604 -2.762

10 % -0.214 -1.079

25 % (lower quartile) -0.099 -0.313

50 % (median) 0.001 0.038

75 % (upper quartile) 0.102 0.591

90 % 0.252 1.407

100 % (maximum) 1.097 4.647

A B 
Training set (N = 743) External test set (N = 100)

logPalk − ClogPalk logPalk − ClogPalk

Fig. 2 Distributions of

residuals for training set (a) and

external test set (b)
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Table 7 Measured logPalk values and residuals for external test set

(N = 100)

Compound logPalk logPalk-

ClogPalk

Reference

17-a-Methyltestosterone 0.84 0.02 30

3-Acetylpyridine -1.18 0.30 22

4-Acetylpyridine -0.93 0.55 22

5,5-DiethylbarbituricAcid -2.00 -0.05 30

5-Ethyl,5-(s-Pentyl)barbituricAcid -1.16 -0.83 30

Aldosterone -2.70 2.10 60

Alprenolol 1.30 0.23 36

Aminopyrine -0.59 -0.26 30

Anabasine -0.58 0.41 30

Androstene-3-17-dione 1.09 0.00 30

Antipyrine -2.15 -1.68 30

Aspirin -2.00 -0.17 32

Astemizole 0.95 -0.33 36

Atropine -1.02 -0.69 32

Atropine -3.09 -2.76 30

Azatadine 1.82 0.52 36

Benzoquinone -0.40 -0.16 58

Chlorphenamine 2.09 0.07 36

Chlorpromazine 5.24 0.33 55

Cortexolone -1.00 0.56 60

Corticosterone -1.62 -0.09 60

Cortisone -0.55 4.65 60

Deoxycorticosterone 0.48 -2.30 60

Deoxycorticosterone 0.56 -2.22 30

Deprenyl 2.81 1.07 32

Desipramine 3.38 -0.17 32

Diclofenac 1.88 -0.06 32

Diltiazem 1.37 1.68 36

Dimetindene 1.65 -0.06 36

Diphenhydramine 2.56 -1.08 36

Diphenhydramine 2.67 -0.97 36

Epinastine 1.76 0.86 36

Eserine -0.46 1.42 36

Estradiol -0.2 -0.06 60

Estriol -0.64 2.32 60

Estrone 0.48 -0.03 60

Fluoroxene 1.30 -2.14 24

Fluoxetine 3.62 -0.17 32

Fluoxetine 3.10 -0.69 36

Fluphenazine 3.28 -0.11 55

Flurbiprofen 1.49 0.33 36

Furosemide -0.60 0.12 36

Haloperidol 1.53 1.42 36

Halothane 2.10 0.21 22

Hydrocortisone -2.04 3.86 60

Hydroxyprogesterone 0.40 -2.25 60

Hydroxyzine 1.25 0.43 36

Table 7 continued

Compound logPalk logPalk-

ClogPalk

Reference

Ibupofen 2.08 1.06 36

Ibuprofen 1.88 0.86 32

Imipramine 3.60 -0.72 36

Indomethacin 0.98 -1.05 36

Isoflurane 1.65 -0.15 22

Lidocaine 1.23 1.31 32

Methoxyflurane 2.04 -0.95 32

Metoprolol -0.38 -0.02 36

Miconazole 3.39 -0.58 32

N,N-Dimethyl-4-chlorocinnamide 0.70 0.10 54

N-Acetyltryptamine -1.93 1.52 17

Naproxen 0.53 0.60 36

N-Ethyl-4-methoxycinnamide -0.70 -0.11 54

Nicotine 0.20 0.76 30

N-Pentylcinnamide 1.38 0.03 54

Papaverine 0.75 -2.34 36

Papaverine 2.56 -0.53 32

Pecazine 4.80 0.15 55

Penbutolol 3.06 0.11 36

Phenothiazine 3.97 -0.82 30

Phenytoin -0.30 -1.44 36

Pregnenolone 0.62 -0.74 60

Procaine -0.13 0.69 56

Prochlorperazine 4.28 0.13 55

Progesterone 1.23 -0.75 60

Promazine 3.96 -0.20 30

Promethazine 4.41 -0.14 55

Propranolol -0.64 -2.05 32

Propranolol 1.75 0.34 36

Pyrene 5.22 0.40 65

Quinine -0.39 -0.39 32

Quinine 0.04 0.04 36

Sulfamethizole -3.66 0.95 30

Sulfathiazole -4.42 0.35 30

Sulfisoxazole -3.40 0.62 30

SulfurHexafluoride 2.11 -0.62 24

Teflurane 1.74 0.14 22

Testosterone 0.41 -0.02 60

Testosterone 0.45 0.02 30

Tetracaine 2.04 0.82 32

Tetraethylsilane 6.36 0.10 24

Tetramethysilane 4.37 0.07 24

Theophylline -1.70 1.74 30

Thiopental 0.52 0.49 36

Thioridazine 5.81 0.18 55

Thymol 1.40 -0.08 36

Timolol -1.00 1.22 36
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substructural rules and derivation of parameters typically

requires assumptions to be made. For example, a number of

substructural patterns include match sp2 or sp carbon

although there may only have been measured data when the

relevant atom is aromatic carbon. The urea parameters

were observed to be similar to those derived for thioureas

and substructural patterns used to identify amides were

extended to match the corresponding thioamides. Interac-

tions, either direct or through bonds, between polar atoms

present the main challenge when deriving parameters for

substructurally-based lipophilicity models and these inter-

action terms are likely to represent the weak link in the

current parameterization of the model. Experimental data

for compounds in which these interactions are most pro-

nounced would have the greatest value for developing

models like ClogPalk. Heterocycles in which a high pro-

portion of the atoms in the ring are heteroatoms and

compounds, such as tetrazole and 4-dimethylaminopyri-

dine that can present particularly strong hydrogen bond

donors or acceptors to solvent would be of particular

interest in this regard. While intramolecular hydrogen

bonding does present a challenge for prediction method-

ology, it should be noted that measurement of logPalk is

actually a powerful tool for studying intramolecular

hydrogen bonding and investigating conformational effects

on solvation [29]. Measured logPalk is also a more widely

accessible property than gas to water transfer free energy

that is normally used when developing models for aqueous

solvation. For example, a data set [66] that has been widely

used for parameterization of aqueous solvation models

consists of thermodynamic measurements for structurally

prototypical compounds that are largely monofunctional.

Models derived from this data set are then used to predict

solvation energies for polyfunctional compounds and

occasionally regions of protein molecular surfaces.

The parameters for the ClogPalk model are read from a

text file and visible to the user. The model has been

explicitly designed to facilitate customization by users

since we believe this adds value to predictive modeling

software. The most likely customization scenario is one in

which proprietary data is available for compounds with

substructures that are inadequately parameterized in the

current model and there are two ways in which parameters

can be added. Typically the substructure in question will be

a variation of a substructure that has already been param-

eterized and an interaction term can be used to encode the

variation as a perturbation of the existing substructure.

Alternatively, the substructure can be included as a new

functional group and inserted into the parameter file after

the existing functional groups, ensuring that the more

specific definition takes priority over the more general one

in the existing model.

When considering how a model like ClogPalk might be

used in drug discovery, it is important to stress that logPoct

is likely to remain an important design parameter in lead

optimization which is often carried out within the frame-

work of structural series. At the same time, it should be

remembered that the original selection of 1-octanol/water

ob
s−

pr
ed

(obs + pred)/2 

Fig. 3 Plot showing relationship between observed (logPalk) and

predicted (ClogPalk) values of alkane/water partition coefficient for

external test set. Median and quartile values for (obs–pred) are shown

as horizontal lines

Tanimoto coefficient

Fig. 4 Histogram showing distribution of nearest neighbor (external

test versus training data) similarity for external test set structures

Table 7 continued

Compound logPalk logPalk-

ClogPalk

Reference

Tramadol 1.82 -0.16 36

Trifluoperazine 4.53 0.75 55

Triflupromazine 5.42 0.77 55

Tryptamine -0.60 1.15 32

Verapamil 2.27 -0.09 36

Warfarin 0.05 2.04 36
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for partitioning studies was arbitrary and not based on an

objective comparison of different solvent systems. Often

polar functionality is relatively conserved within a struc-

tural series and logP values measured using different par-

titioning systems will tend to differ by a constant when this

is the case. Provided that the properties of interest respond

linearly to logP, the choice of partitioning system will not

usually be critical when optimizing within a single lead

series.

The situation is different in lead identification where

lipophilicity measures are used to prioritize compounds

and structural series for hit-to-lead chemistry and further

optimization. The difference, DlogP, between logPoct and

logPalk can be considered as a measure of the hydrogen

bonding capacity of a compound and, outside structural

series, cut off values cannot simply be shifted by a constant

to account for differences between partitioning systems.

Lipophilicity is also used to create efficiency metrics [67]

(e.g. pIC50-logP) which can be used to compare com-

pounds and structural series. Offsetting potency or affinity

by lipophilicity in this manner has the effect (at least for

neutral compounds) of shifting the reference state for the

binding equilibrium from the aqueous to an organic phase.

Affinity can also be scaled by molecular size and the ori-

ginal measure of ligand efficiency [68] was obtained by

dividing the standard Gibbs free energy of binding (DG�)

by number of non-hydrogen atoms. Reference states also

need to be considered carefully when affinity is scaled

because relative values of ligand efficiency for compounds

differing in molecular size depend on the standard con-

centration used to define DG� [69]. Whether one scales or

offsets affinity or potency, one is implicitly assuming that

the relationship with the relevant physicochemical or

molecular property is linear. When biological activity is

offset by lipophilicity one assumes a unit slope in the linear

relationship while scaling by molecular size implies an

assumption that Kd and IC50 values in all assays will tend

to the same concentration (usually 1 M) in the limit of zero

molecular size. An alternative to using efficiency metrics

for evaluating compounds that differ in their activity and

physicochemical characteristics is to fit affinity or potency

to measures of lipophilicity and/or molecular size and use

the residuals to quantify the extent to which compounds

beat (or are beaten by) the underlying trend in the data. One

advantage of analyzing measured biological activity in this

manner is that the results are invariant with respect to

standard concentration. This is not the case when ligand

efficiency is ‘corrected’ for molecular size [70].

The ClogPalk model calculates logPalk as the sum of two

components, one of which can be taken as a measure of

molecular size and the other of polarity. This may prove

useful in gaining a better understanding the nature of

drug-likeness although the assumption that marketed drugs

represent a separate and contiguous region of chemical

space can be challenged. One issue that must be addressed

when using lipophilicity in modeling is whether logP or

logD is more relevant to phenomena of interest. Typically,

logP will be more relevant when compounds bind to their

targets (and anti-targets) in their ionized forms while logD

is more likely to be the measure of choice when the con-

centration of neutral form is a limiting factor as would

normally be the case for aqueous solubility and passive

permeation through membranes. It is instructive to write

logD as a function of logP and the fraction of compound in

its neutral form (Fneut):

log D pHð Þ ¼ log Pþ log Fneut pHð Þ ð5Þ

When logD is used to model phenomena that are influ-

enced by ionization, the responses to partition coefficient

and ionization in the resulting models are constrained to

be equal in magnitude even though the two components

of logD describe completely different aspects of a

compound’s behavior. In drug discovery programs, logD

(at a single pH) is usually the only lipophilicity mea-

surement that is available on a routine basis and options

are limited if one needs to use an experimentally mea-

sured lipophilicity value. If, however, logD is calculated

from predicted values of logP and pKa, there is no

longer any need to use the composite parameter and the

response of the property of interest to each component of

logD can be modeled independently. One advantage of

ClogPalk over predicted logPoct in this type of analysis is

the ease with which it can be resolved into molecular

size and polarity components. These could in turn be

combined with predicted (possibly at more than one pH)

logFneut to create a basis for describing physicochemical

characteristics of compounds in the context of drug

discovery.

We have described a method for predicting alkane/water

partition coefficient from molecular structure and make the

source code publicly available so that the ClogPalk model can

be evaluated more widely. This could also have the benefit of

drawing more data into the public domain. Our study also

shows how views of chemistry can be imposed automatically

on chemical structures using systems of SMARTS defini-

tions in a manner that is both reproducible and transparent.

We hope that the model will prove useful in pharmaceutical

research and that our study will stimulate debate about the

relative merits of different partitioning systems.
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