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Abstract The estimation of free energy of binding is a

key problem in structure-based design. We developed the

scoring function HYDE based on a consistent description

of HYdrogen bond and DEhydration energies in protein–

ligand complexes. HYDE is applicable to all types of

protein targets since it is not calibrated on experimental

binding affinity data or protein–ligand complexes. The

comprehensible atom-based score of HYDE is visualized

by applying a very intuitive coloring scheme, thereby

facilitating the analysis of protein–ligand complexes in the

lead optimization process. In this paper, we have revised

several aspects of the former version of HYDE which was

described in detail previously. The revised HYDE version

was already validated in large-scale redocking and

screening experiments which were performed in the course

of the Docking and Scoring Symposium at 241st ACS

National Meeting. In this study, we additionally evaluate

the ability of the revised HYDE version to predict binding

affinities. On the PDBbind 2007 coreset, HYDE achieves a

correlation coefficient of 0.62 between the experimental

binding constants and the predicted binding energy, per-

forming second best on this dataset compared to 17 other

well-established scoring functions. Further, we show that

the performance of HYDE in large-scale redocking and

virtual screening experiments on the Astex diverse set and

the DUD dataset respectively, is comparable to the best

methods in this field.

Keywords Protein–ligand interactions � Desolvation �
Binding affinity � Virtual screening � Lead optimization �
Docking

Introduction

The application of computational methods has become

standard during the drug discovery process [1]. Virtual

screening, which aims to find new bioactive agents for a

certain protein target, is one of the first steps in this pro-

cess. When a three-dimensional structure of the target

protein is available, molecular docking is used to predict

potential binding modes of several hundreds of thousands

of compounds and to estimate their binding strength. In the

optimal case, compounds suggested by the docking tool

can then be experimentally validated and found to exhibit

strong binding constants and the predicted binding mode

[2]. The scoring functions integrated into these docking

tools have to successfully carry out three tasks to achieve

this goal: Firstly, the potential bioactive conformations of

the compounds must be selected from a pool of docking

poses. Secondly, from the hundreds of thousands of com-

pounds tested during virtual screening, non-binders must

be discriminated from true binders. Finally, the binding

affinity of a compound must be correctly predicted. To

date, the estimation of the free energy of binding is still a
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largely unsolved problem [3]. At the same time, it is

probably the most crucial issue that needs to be addressed

for all kinds of structure-based design applications.

A lot of different scoring functions have been developed

over the last 20 years, relying on very different approaches

to solve these problems [4, 5]. They model the interactions,

energies or preferred contacts between the protein and its

ligand. The first scoring functions mostly consider only

favorable contributions to the binding energy [6, 7]. Today

it is known that unfavorable contributions also comprise an

important part of the free energy of binding [8, 9]. How-

ever, quantifying these contributions remains problematic:

Most scoring functions are calibrated on experimental

binding affinities and/or protein–ligand complexes and

herein favorable contributions predominate. Attempts to

model these unfavorable contributions have been made

using different approaches, by including, for example,

artificial ‘‘negative data’’ in the parameterization [10], new

terms to model the desolvation penalty [11–14] or other

parameters, like logP values, to try and quantify these

contributions [15, 16]. In this paper we describe how we

model unfavorable contributions to the binding energy in

our recently developed scoring function HYDE [17–19].

The first version of the HYDE function was developed

by Reulecke et al. [17]. HYDE is based on the estimation

of HYdrogen bond and DEhydration energies emerging

during protein–ligand binding. Using only these two major

contributions of the binding energy, we are able to con-

sistently describe hydrogen bonding and the hydrophobic

effect as well as the unfavorable contribution of hydro-

philic dehydration. In this study, we revise several aspects

of the HYDE function. We retain the basic concept of

HYDE [17, 18], while the calculation of the binding energy

contribution from polar groups changes substantially. We

also re-parameterized the logP increments using a reduced

set of atom types. Furthermore, a completely new and

faster algorithm is used to calculate molecular surface

components. Additional terms concerning the arrangement

of waters around both molecules before binding are intro-

duced. Finally, the HYDE function is integrated into an

optimization procedure to allow a more accurate prediction

of the structure of protein–ligand complexes. All these

changes are described in detail in the Methods section. In

the Results section, we summarize our results of the revised

HYDE function we have obtained in a previous validation

study [19]. Additionally, we evaluated the revised HYDE

function in the prediction of binding affinities on conge-

neric compound series and the PDBbind2007 coreset. The

results are critically discussed to demonstrate the benefits

and the drawbacks of the HYDE scoring function and we

compare our results with that of others in this field. Finally,

we conclude and give an outlook on the future trend con-

cerning the development of the HYDE scoring function.

Methods

The HYDE scoring function relies on an intuitive concept:

Both molecules—protein and ligand—are solvated in

aqueous solution in the unbound state. During the binding

process, the water molecules around the ligand are stripped

off and those in the binding pocket of the protein are

squeezed out by the ligand. The hydrogen bonds of the

protein and the ligand to water molecules are broken,

which leads to an unfavorable enthalpic contribution, even

though the water molecules are released to bulk. New

hydrogen bonds established between the protein and ligand

may counterbalance this energy loss. In addition, hydro-

phobic moieties of ligand or protein in contact with water

molecules lead to a discontinuity in the water hydrogen

bond network and, therefore, to an unfavorable energy. The

removal of these water molecules from the hydrophobic

surfaces and their release to the bulk water induces a gain

in energy, the so-called hydrophobic effect [18]. We pro-

pose that these processes represent the main contributions

to the binding energy and exactly these contributions—

hydrogen bonding, the hydrophobic effect and dehydra-

tion—are modeled in the HYDE scoring function:

DGHYDE ¼
X

atoms i

ðDGi
dehydration þ DGi

H�bondsÞ ð1Þ

We calculate the change in dehydration (DGdehydration)

and hydrogen bond (DGH-bonds) energy for every atom i in

the protein–ligand interface.

Dehydration energy calculation

Whereas the dehydration (desolvation) of hydrophobic

atoms contributes favorably to the overall binding energy,

the dehydration of hydrophilic groups is foremost ener-

getically unfavorable. In the revised HYDE function, we

have developed two separate terms to evaluate the dehy-

dration energy for hydrophobic and hydrophilic atoms

respectively:

DGi;hydrophobic
dehydration ¼ �2:3RT � p log Pi � ðacci

unbound � acci
boundÞ
ð2Þ

DGi; hydrophilic
dehydration ¼ �2:3RT � p log Pi � f i

bur � f i
water

�
X

H�bond functions j

w j � p j
dehyd ð3Þ

Hydrophobic atoms are still treated similarly to the way

they were treated in the first version of the HYDE scoring

function. We calculate the change in solvent accessible

surface Dacci [Å2] of an atom i and multiply it by its

logP increment plogPi [J/Å2] to estimate its dehydration

energy. We have completely changed the calculation con-

cerning hydrophilic atoms in the revised HYDE function.
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Beforehand, the dehydration was estimated according to

Eq. 2 for all atoms using a weighted solvent accessible

surface area (WSAS) [17]. This meant that for hydrophilic

groups, only the parts of the surface area which were

located in the preferred direction of a hydrogen bond

contributed to the WSAS. In the revised version of HYDE

function we have replaced the WSAS by the molecular or

Connolly surface area [20–22]. The accessibility of

hydrophilic atoms is now assessed by testing whether

there is sufficient space to accommodate a water molecule

in the preferred direction of a hydrogen bond. A similar

approach was recently published in the revision of the

Autodock force field function [23]. More precisely, we

calculate the probability of dehydration pdehyd
j of each

hydrogen bond function j (= hydrogen bond donor or

acceptor) of a hydrophilic atom. Deeply buried hydrogen

bond functions, as well as functions involved in hydrogen

bonding, are given a dehydration probability of pdehyd
j = 1.

Otherwise, the dehydration probability linearly decreases if

space for at least one half of the volume of a water

molecule is available at the preferred direction of a

hydrogen bond. Details of our algorithm concerning the

calculation of the surface and accessibility are described

below.

Additionally, we introduced weights w j for multiple

hydrogen bonds which can be formed by a single hydro-

philic atom. These weights reflect an important finding of

our logP study [24]. Atoms which are able to form several

hydrogen bonds (e.g. primary amines) were compared to

atoms which only can establish one hydrogen bond (e.g.

tertiary amines). The results showed that the same contri-

bution to the logP value was made, indicating that the

ability of an atom to form multiple hydrogen bonds does

not induce a higher hydrophilicity. For this reason, the

contributions of hydrogen bond donors/acceptors of a sin-

gle atom to the dehydration or hydrogen bond energy are

weighted according to the following scheme: The geo-

metrically best hydrogen bond gets a weight of 100 %. The

weight of the second best is decreased to 20 % and a third

hydrogen bond contributes with 10 %. Any further

hydrogen bonds have no contribution at all. In the case that

donors/acceptors form no hydrogen bonds, their weights

are sorted depending on their dehydration probability (from

low to high probability).

The factor fbur
i is a scaling factor which takes the bu-

riedness of a hydrophilic group in the unbound state into

account. For hydrophilic ligand atoms this factor is set to 1.

In the protein, this factor is scaled according to whether the

hydrophilic atom is highly exposed or not. The value is

calculated based on an approach developed by Stahl [25].

Since HYDE only considers water molecules implicitly,

we introduced a correction factor fwater
i which accounts

for the local arrangement of water in proximity to the

hydrogen bond function. This factor is calculated for each

polar atom i as follows:

f i
water ¼

X

H�bond functions j of atom i

water j
overlap � water j

interaction

ð4Þ

The two factors wateroverlap and waterinteraction aim to

describe the quality of solvation before binding and its

influence on the extent of the unfavorable dehydration

energy. The underlying concept of the HYDE function [17,

18] uses an ideal model: each hydrogen bond function is

assumed to be saturated by a single water molecule in the

unbound state. This scenario is true for isolated hydrogen

bond functions. However, in a binding pocket and also for

ligands with many adjacent polar groups, the local

arrangement of the water molecules is subjected to

restrictions. This may lead to a lower dehydration cost of

these hydrogen bond functions since they are not ideally

satisfied in the solvated state. Our assumption is confirmed

by the observation that the logP value of molecules does

not linearly decrease with the number of attached polar

groups.

wateroverlap: overlapping waters.

The wateroverlap term gives an estimate for the number of

water molecules which can be arranged around a hydro-

philic atom allowing the dehydration cost to be shared

between groups. First, water molecules are placed at the

ideal position of a hydrogen bonding partner at the

hydrogen bond functions of the polar groups. This is done

for the unbound ligand and the empty binding site

respectively. For each water molecule i, the overlap with

all surrounding water molecules j is calculated:

wateri
overlap ¼

1�
P

surrounding waters j
1
2
� overlap volume ðwateri;water jÞ

volume ðwaterÞ
ð5Þ

Figure 1a shows a schematic of a small hydrophilic

pocket where three polar groups interact with the same

water molecule. In contrast, Fig. 1b shows the overlap of

three ideally placed water molecules in the active site. We

calculate the overlap volume of water molecule i with the

water molecules j and k respectively (Eq. 5) (Fig. 1c, d).

The sum of these volumes is normalized by the volume of a

water molecule (radius = 1.4 Å). In this case, the

wateroverlap term of water i would amount to about a

third. Consequently the dehydration cost of the polar group

of which water molecule i originates is reduced by one-

third.
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Waterinteraction: conserved waters

The waterinteraction factor is complementary to the

wateroverlap term. It provides an estimate for the saturation

of a water molecule interacting with a certain polar group.

Depending on the number of hydrogen bonds a water is

able to form, the dehydration cost can differ substantially.

In most cases, water molecules are highly conserved and

displacing these is enthalpically unfavorable. On the con-

trary, if a water molecule is situated in a small hydrophobic

pocket and is only able to form one interaction with a polar

group, the dehydration cost at the polar group might be

overestimated due to the entropically and enthalpically

unfavorable water molecule. For calculating the

waterinteraction factor a water molecule is placed at the ideal

position of a hydrogen bonding partner at each hydrogen

bond function. This water molecule is rotated to find the

best possible interaction network and to reduce the number

of unsatisfied hydrogen bond functions of the water mol-

ecule itself. Eventually, the waterinteraction factor is deter-

mined by a combination of the number of interactions and

the number of unsatisfied hydrogen bond functions of the

water.

Hydrogen bond energy calculation

The hydrogen bond energy in HYDE takes the following

form:

DGi
H�bond ¼

2:3RT

FsatðTÞ
� p log Pi � f i

bur

X

H�bonds j

w j � f j
dev ð6Þ

To express the complementary nature of the hydrogen

bonding and dehydration term, a similar functional form is

used. In HYDE, the hydrogen bond energy contribution

arises from the fact that not all hydrogen bonds in the

hydrogen bond network of bulk water are perfectly real-

ized, thus the energy needed to disrupt these hydrogen

bonds is lower than that for an ideal hydrogen bond [18].

We integrate this phenomenon into HYDE by using the

saturation factor Fsat (see Eq. 6). This factor describes the

incomplete saturation of the water hydrogen bond network

at a certain temperature. At a temperature of 273 K the

saturation factor is Fsat(273 K) = 0.89, while at 310 K it is

only about Fsat(310 K) = 0.84 [18]. We use T = 298 K

resulting in Fsat(298 K) = 0.85 for estimating the

saturation energy for a protein–ligand complex, since

most experimental affinity values are measured at room

temperature. Consequently, the energy gain of an

intermolecular hydrogen bond in HYDE is roughly 17 %

(= 1/Fsat(298 K)) higher than the dehydration cost

associated with both of the hydrogen bond functions. The

geometrical quality of a hydrogen bond j is accounted for

with the factor fdev
i . It is well known that the energy of a

hydrogen bond diminishes considerably with the deviation

from ideal hydrogen bonding geometry in terms of both the

angles and distance between donor and acceptor. In HYDE,

the preferred hydrogen bond directions of different atom

types are modeled as sections of spherical surfaces. These

interaction surfaces represent the optimal location for

potential interaction partners and are based on the FlexX

interaction model [7] which has been further developed in

its current implementation in the LeadIT software package

[26]. Hydrogen bonds that deviate from the perfect

geometry are linearly scaled until a certain threshold at

which HYDE considers the hydrogen bond to no longer be

made. The other two factors w j and fbur
i were already

introduced in the dehydration energy calculation of

hydrophilic atoms (see Eq. 3).

PlogP re-parameterization

The atom-based logP (plogP) increments used in HYDE

were derived from experimental logP values taken from the

PHYSPROP database [27]. Nearly all chosen compounds

Fig. 1 Lowering dehydration cost of hydrophilic pockets by inves-

tigating the number of displaced water molecules. a Small hydrophilic

pocket, three polar atoms interact with the same water molecule.

b Overlap of three ideally placed water molecules in the small

hydrophilic pocket. c Overlap of water molecule i with water

molecules j and k. d Overlap volume of water molecule i and water

molecules j and k
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and experimental values stem from the collection of Han-

sch and Leo [28–30] meaning most values were determined

in the same laboratory and are therefore consistent. Com-

pared to the compounds that were used to derive plogP

values for the former version of HYDE [17], we selected

only compounds with one heteroatom per molecule. The

reason for using only these simple molecules was to avoid

proximity effects which are known to influence the logP

value of a compound [31]. We considered N, O, S, F, Cl,

Br, and I as heteroatoms resulting in a dataset of 445

molecules.

Using these molecules we performed multiple linear

regression (MLR) to obtain the plogP increments. We

reduced the number of atom types to eight for our re-

parameterization. The new atom types resulted from an

intensive logP analysis we recently accomplished [24].

Only nitrogen and oxygen atoms were considered as

hydrogen bond acceptors or donors. All other atoms—

carbon, sulfur, and halogens—were treated as hydrophobic.

Overall, a correlation coefficient of R2 = 0.94 is achieved

for the training dataset.

Surface calculation and accessibility estimation

To determine the dehydration energy of a protein–ligand

complex we calculate the degree of buriedness of each

atom in the final complex geometry. The change of

accessibility of each atom is estimated as the change of its

molecular surface area induced by complex formation. In

contrast to many other methods/functions, instead of the

solvent accessible surface (SAS) [32] of a molecule, we

actually calculate the molecular surface or Connolly sur-

face [20–22] (Fig. 2a orange line) to estimate the change in

accessibility. Firstly though, we do use the SAS for gen-

erating a 3D surface net around both molecules–the pro-

tein’s binding pocket and the ligand—and assign the

underlying molecular surface area increment to each sur-

face node of the net.

The surface net is generated as follows: Firstly, the

molecule’s SAS [20, 32, 33] is generated using standard

van der Waals radii [34] and a surface sphere radius of

1.4 Å (Fig. 2a blue dots). In order to attain a uniform

distribution of surface nodes, a 2-stage icosahedron sub-

division for each atom is generated which results in 162

surface nodes per atom. These are then scaled to lie on the

SAS of the molecule. Hydrogen atoms are only considered

implicitly by increasing the vdW radii of heavy atoms by

0.1 per hydrogen atom. All surface nodes buried by

neighboring atoms were eliminated. Additionally, we

generate surface nodes for representing the re-entrant

regions of the molecular surface (see Fig. 2b). The actual

underlying molecular surface increment in Å2 is calculated

for each surface node. Summing up the underlying surface

areas annotated at each surface node gives the total surface

area of a molecule.

We generate a surface net for the ligand and for the

binding pocket of the complex. We use the same confor-

mation of the ligand in the unbound and bound state and

the protein is treated as rigid. Hence, the change in solvent

accessible area for both molecules is only that induced by

complex formation.

For hydrophobic atoms, the change of accessibility is

calculated by adding the surface increments of surface

nodes covered by the heavy atoms of the other molecule in

the final complex geometry. Using this value, the dehy-

dration energy of a hydrophobic atom can be estimated in

HYDE by using Eq. 2. Figure 3b shows the covered sur-

face nodes of the ligand after complex formation while

Fig. 3c shows those of the binding pocket.

To calculate the accessibility of a hydrophilic atom, a

hypothetical water molecule is placed at the optimal

location for a hydrogen bonding partner (see Fig. 3a). In

the bound state, the overlap of this water molecule with all

surrounding heavy atoms of the other molecule is calcu-

lated. Figure 3b sketches the overlap of two hypothetical

waters placed at the ligand’s carbonyl group with the

binding pocket. If the overlap constitutes more than one

half the volume of a water molecule, this hydrogen bond

function j is treated as dehydrated (pdehyd
j = 1). Otherwise

the dehydration probability pdehyd
j is scaled down linearly

with respect to the overlap.

Energy estimation for metals ions

In the HYDE scoring function interactions made between

metal ions embedded in the binding pocket and ligand

metal acceptor atoms are considered as follows:

DGmetal
HYDE ¼

X

metal ions i

DGi
interaction þ DGi

dehydration ð7Þ

DGi
interaction ¼ emetal

interact �
X

interactions j

f j
dev ð8Þ

DGi
dehydration ¼ emetal

dehyd �
X

coordination sites j

p j
dehyd ð9Þ

Since no reliable logP values are available for metal

ions, we investigated the metallo-enzyme complexes

contained in the Astex diverse set [35] to empirically

derive an energy increment for the metal interaction energy

of emetal
interact ¼ �20 kJ=mol and emetal

dehyd ¼ 10 kJ=mol for the

metal dehydration energy. A full coordination of metal ions

is crucial for a strong binding affinity. Therefore, we

explicitly check for saturation of each coordination site of

the metal which is not occupied by a receptor atom.

Unsatisfied metal coordination sites, including those

covered by apolar atoms, are penalized in HYDE in a

J Comput Aided Mol Des (2013) 27:15–29 19
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similar way to unsatisfied hydrogen bond functions. We

consider nitrogen, oxygen and sulfur atoms as ligand metal

acceptors. They are treated the same way as in hydrogen

bonding interactions (see Eq. 5).

The metal interaction geometry is based on the coordi-

nation geometry of the metal [36]. An interaction between

a metal ion and a ligand metal acceptor is modeled by

using overlapping interaction surfaces as already described

for hydrogen bonds. Metal interactions that deviate from a

perfect geometry are linearly scaled until a certain

threshold at which the interaction is no longer considered.

Hence, we include a geometrical quality factor fdev
j in the

estimation of the metal interaction energy (Eq. 8). The

calculation of this factor is analogous to the calculation of

fdev
j for hydrogen bonds (see Eq. 6). To estimate the

dehydration energy of a metal ion, the dehydration prob-

ability pdehyd
j is calculated for each coordination site j of the

metal that is not occupied by a receptor atom (Eq. 9).

Fig. 2 Surface net generation. a Blue dots surface net lying on the

SAS of the molecule. Orange line molecular surface or Connolly

surface of the molecule. b Detail: Generation of surface nodes for re-

entrant regions of the molecular surface. Surface increments are

defined by grey dotted lines

Fig. 3 Accessibility calculation. a Generate surface net of the mole-

cule (blue dots). For hydrophilic atoms, place water molecules at the

preferred hydrogen bonding directions. b Change of accessibility of

ligand atoms induced by the binding pocket. c Change of accessibility of

binding pocket atoms induced by the ligand

20 J Comput Aided Mol Des (2013) 27:15–29
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Hydrogen bond network and geometry optimization

In the HYDE function, no terms are included to assess the

steric arrangement of a protein–ligand complex or the

strain energy of the ligand. Furthermore, the HYDE scoring

functions only tolerates small deviations from ideal

hydrogen bond geometries. To ensure a protein–ligand

complex is properly prepared for scoring with HYDE, two

optimization procedures can be employed prior to scoring.

First, the hydrogen bond network within the protein and

between the protein and ligand can be optimized using

ProToss [37] and the stringent definition of hydrogen bond

geometries in HYDE. Second, an optimization/minimiza-

tion of the ligand in the active site can be carried out which

takes clashes between the ligand and the protein as well as

within the ligand, plus the relaxation of the ligand strain

energy, into consideration. This procedure uses a numerical

optimization algorithm for a local optimization or, alter-

natively, a stochastic Monte-Carlo optimization strategy

with simulated annealing for searching a global optimum.

Due to the high computational cost, an approximate HYDE

function is used in both optimization strategies [19]. In

addition to approximate terms of the HYDE function the

optimization uses a (12,6)-Lennard-Jones term and an

estimate of the torsional strain energy of the ligand which

is taken from the FlexX approach [7]. It was found to be

important to consider these terms in the optimization to

eliminate unfavorable complex geometries, as they are not

part of the HYDE energy estimate.

Visualization of the HYDE score: HYDE coloring

scheme

To facilitate the easy detection of favorable and unfavor-

able contributions to binding affinity, we use the intuitive

atom-based HYDE coloring scheme [17]—available in the

HYDE module of the LeadIT software [26]. A coloring

scale from dark green for the most favorable score con-

tributions through white for neutral to red for unfavorable

contributions is applied to the atoms. For example, atoms

involved in hydrogen bond interactions with good geom-

etry, metal coordination or the hydrophobic effect, are

colored in green. In contrast, atoms in unfavorable regions,

such as donor–donor, acceptor–acceptor or polar–apolar

contacts, are marked in red. White atoms do not contribute

to the binding affinity. Figure 4 shows an example of a

favorable interaction and an unfavorable contact with CPK

coloring (Element color mode) and in the HYDE coloring

scheme (HYDE color mode). Note that hydrogen bonds

which deviate too far from the ideal hydrogen bond

geometry in terms of both angles and distance are also

considered unfavorable in HYDE and are therefore also

colored red.

This coloring scheme allows direct visualization of the

impact individual atoms have on the binding energy. We

often choose, however, to map the scores of protein atoms

onto their nearest ligand atom neighbor and color only the

ligand atoms according to this accumulated score, to thus

facilitate the identification of potential optimization sites at

the ligand during the lead optimization process.

Results and discussion

The performance of the revised HYDE scoring function has

been evaluated in several different aspects: Firstly, we

assess the ability of HYDE to predict experimental binding

constants of protein–ligand complexes. Here, two smaller

series of congeneric compounds binding to thrombin and

p38 MAP kinase respectively were analyzed in detail.

Furthermore, the performance of HYDE was benchmarked

on the PDBbind2007 coreset [3, 38, 39] and compared with

the first version of HYDE [17], as well as with other well-

established scoring functions. Secondly, HYDE is used as a

post-docking rescoring function in cognate docking

experiments to identify the bioactive conformation of a

ligand from the pool of docking poses produced by FlexX

[7, 26]. The results are compared with FlexX, as well as

with GOLD [40–42] and PLANTS [43–45] which were

also evaluated on the Astex diverse set [35]. Finally, in a

large-scale virtual screening experiment using the Direc-

tory of Useful Decoys (DUD) [46] the ability of HYDE to

discriminate between binders and non-binders is assessed

and compared to other popular docking methods.

Fig. 4 Hyde coloring scheme: Green atoms contribute favorably to

DGHYDE. Red atoms contribute unfavorably to DGHYDE. White atoms
are energetically negligible. On the left, a hydrogen bond with ideal

geometry is depicted; both atoms—donor and acceptor—are colored
green. On the right, two hydrogen bond acceptor atoms (ether and

carbonyl) making an unfavorable contact are both colored red
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Binding affinity prediction: congeneric series

In this section, the binding affinities of compounds in two

congeneric inhibitor series—one for thrombin and one for

p38 MAP kinase—are estimated using the revised HYDE

scoring function. Using detailed examples, we demonstrate

in depth how the atom-based HYDE score and color scheme

highlight the features of binding. We also use these examples

to assess the ability of HYDE to predict binding affinity.

Thrombin

The crystal structures of five thrombin inhibitors (2ZFF,

2ZDV, 2ZF0, 2ZC9, 2ZDA) [47] were scored with HYDE.

These D-Phe-Pro-based inhibitors differ only in the moiety

binding to the S1 pocket of thrombin. In four complexes, a

hydrophobic phenyl meta-substituted with H, CH3, F or Cl

occupies the S1 pocket. All five inhibitors are depicted in

Fig. 5. The free energy of binding DGexp of these structures

(Fig. 5) is measured by isothermal titration calorimetry

(ITC) [47]. Figure 5 also shows the five inhibitors in the

HYDE coloring scheme with the predicted HYDE score

DGHYDE. For all of the compounds the HYDE score agrees

well with the experimental binding affinity.

Some of the atoms in four of the inhibitors contribute

unfavorably to the overall energy. We exemplarily use the

thrombin complex 2ZC9 to give a more detailed explana-

tion of the atom-based score contributions of the HYDE

scoring function (see also Fig. 6). The D-Phe moiety of the

inhibitor binds in the S3/S4 pocket of thrombin. The Pro

moiety can be found in the S2 pocket and the m-chloro-

phenyl is situated in the S1 pocket (see Fig. 6 left).

In Fig. 6a, an unfavorable contribution to the HYDE

score is shown. In this case, a hydrogen bond is formed

between the amide nitrogen of the ligand and the backbone

carbonyl of SER214. This hydrogen bond deviates from the

ideal hydrogen bond geometry as the out-of-plane angle of

the carbonyl lone-pair plane is 49�. HYDE tolerates a

deviation up to 20� from the ideal angle and so considers

this deviation too large (Fig. 6a). The hydrogen bond

deviation factor fdev (see Eq. 6) is 0.5 for this hydrogen

bond which means that the hydrogen bond energy contri-

bution is reduced by a half (-8.2 kJ/mol). Consequently,

this hydrogen bond cannot compensate the desolvation

costs of both hydrogen bonding partners and in fact turns

out to make a destabilizing contribution to the overall

energy of ?6.4 kJ/mol.

Figure 6b shows an example of a favorable score con-

tribution from the hydrophobic effect. The meta-substituted

chlorine atom fits perfectly in the small hydrophobic sub-

pocket of the S1 pocket leading to the full desolvation of

this subpocket (-3.2 kJ/mol) and the chlorine itself

(-3 kJ/mol).

Another kind of unfavorable contribution to the HYDE

score is shown in Fig. 6c, a polar atom is desolvated by the

m-chlorophenyl moiety. This desolvation of the polar

Fig. 5 Congeneric series of thrombin inhibitors. The PDB code for

each inhibitor complex is shown in the middle. On the left the

experimental binding affinity (DGexp) is shown below the inhibitors.

On the right, the inhibitors are depicted with the HYDE coloring

scheme while the HYDE score (DGHYDE) is shown below each

inhibitor
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backbone carbonyl GLY219 is heavily penalized in HYDE

(?6.4 kJ/mol) and cannot be compensated by the favorable

contribution of the desolvated apolar carbon atom of the

ligand (-1.7 kJ/mol). Both contributions are mapped onto

the carbon atom of the ligand which is then colored in red

(see Fig. 6 left).

p38 MAP kinase

Regan and coworkers have described their development of

an inhibitor for p38 MAP kinase from lead structure to a

clinical candidate [48]. Two crystal structures were sub-

mitted by them to the PDB [49]: the lead structure (1KV1)

and the final clinical candidate BIRB (1KV2). We used the

structure 1KV2 of the clinical candidate to model five of

the intermediate synthesized compounds in the lead opti-

mization process published by Regan et al. [48]. All

compounds including the lead and the clinical candidate

were scored with HYDE. We achieve a correlation coef-

ficient RP of 0.88 between the experimental measured

affinity and the predicted binding energy for this conge-

neric compound series.

The lead optimization process is outlined in Fig. 7: the

lead structure, the five modeled compounds and the clin-

ical candidate BIRB are shown with the change in

experimental binding affinity DDGexp with respect to the

binding affinity of the lead structure, and for the modeled

compounds. The respective modifications are highlighted.

Additionally, each compound is also depicted with the

HYDE coloring scheme and DDGHYDE is given. In all

cases except for compound 46, the change in the HYDE

score agrees well with the change in experimental affinity.

The modifications found in compound 46 lead to a gain in

experimental affinity, whereas a small decrease in the

binding energy is predicted by HYDE. One of the urea

nitrogen atoms is colored red and contributes unfavorably

to the binding energy due to its desolvation. In the lead

structure both urea nitrogen atoms form a bidentate

hydrogen bond with the side chain of GLU71. The intro-

duction of the phenyl ring at the N2 of the pyrazole causes

GLU71 to adopt an alternative side chain conformation,

thereby allowing the phenyl ring to get in close contact

with the alkyl portion of the GLU71 side chain. In addi-

tion, this leads to the disruption of the bidentate hydrogen

bond of GLU71 with the urea moiety of the inhibitor and

the formation of a monodentate hydrogen bond between

one urea nitrogen and the carboxylate group of GLU71

[48]. Consequently, the other urea nitrogen becomes des-

olvated which is then heavily penalized by HYDE. In the

case of compound 46, the favorable contribution of the

hydrophobic effect of the newly introduced phenyl ring

cannot compensate this high desolvation cost together with

the loss of binding energy caused by the removal of the

chlorine at the other phenyl ring. The reason for this may

be that the cost of desolvating the urea nitrogen is cur-

rently overestimated by HYDE.

Fig. 6 Details of thrombin complex 2ZC9 as scored with HYDE. On

the left, the binding pocket of thrombin is schematically depicted with

the inhibitor in HYDE coloring scheme. On the right, three detailed

scenarios are shown (note that the contributions of the protein atoms

are not mapped to the ligand atoms in these illustrations): a Hydrogen

bond deviating from ideal geometry between amide nitrogen of the

ligand and backbone oxygen of SER214. The out-of-plane angle of

the lone-pair plane amounts to 49�. b Hydrophobic effect of the

chlorine atom in the small hydrophobic pocket. c Desolvation of

GLY219 O by the hydrophobic phenyl ring
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Binding affinity prediction: PDBbind 2007 coreset

We used the PDBbind 2007 coreset [38, 39] to evaluate

HYDE on a larger dataset and to compare the performance

of HYDE with other well-established scoring functions.

Cheng and coworkers [3] assessed the ability of 16 dif-

ferent scoring functions, some of which are highly

parameterized on experimental data, to predict experi-

mental binding constants on the PDBbind 2007 coreset.

This dataset consists of 195 protein–ligand complexes with

high resolution crystal structures (less than or equal to

2.5 Å) and experimentally measured inhibition constant

(Ki) or dissociation constant (Kd) values. We processed the

crystal structures using the receptor preparation default

settings in the LeadIT software [26]. The defaults are as

follows: The active site is selected by taking all amino

acids, cofactors and ions lying within 6.5 Å of any crystal

structure ligand heavy atoms, then a coarse hydrogen bond

network optimization of the active site with the crystal

structure ligand is carried out by ProToss [37]. Finally,

metal coordination geometries are automatically assigned.

Some metal coordination geometries were manually

adjusted after close visual inspection of the complexes. All

ligands of the dataset were processed using NAOMI [50].

We scored the 195 protein–ligand complexes of the dataset

with both the first version of HYDE (HYDE1.0) and the

revised version of HYDE (HYDE2.0). We also re-scored

the 195 protein–ligand complexes that were optimized with

HYDE2.0 and test some combinations of the revised

HYDE scoring function terms. All results are summarized

in Table 1.

We observed an improved performance of the revised

HYDE function (Table 1: HYDE2.0) over the first version

(Table 1: HYDE1.0) with a correlation between experi-

mentally measured binding affinity and predicted binding

affinity of RP = 0.323. Optimizing with the numerical or

stochastic optimization procedure only marginally

improved the correlation [Table 1: HYDE2.0, column 7

(optimized structures)].

Table 1 initially shows that on this dataset, in compar-

ison to other scoring functions, HYDE performs quite

poorly and lies in the lower third of the table ranked

according to the Pearson correlation coefficient. Some of

the scoring functions (Table 1: e.g. PHOENIX or XScore)

Fig. 7 Congeneric series of p38 MAP Kinase inhibitors. The

development from lead structure (1KV1) to clinical candidate

(1KV2) is shown. The modifications to the compounds with respect

to the lead structure are highlighted with orange circles. The change

in experimental affinity (DDGexp) and Hyde score (DDGHYDE) is

shown below the compounds
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were calibrated on similar datasets to the PDBbind 2007

coreset which may explain their superior performance to

HYDE. However, a lower performance than that of using

the number of heavy atoms (Table 1: NHA) cannot by

explained by training alone. Since we know from experi-

ence that HYDE is very sensitive to even small inaccura-

cies in structural data [19], we examined the dataset more

closely and found that structural deficiencies can be

observed in many of the complexes. A detailed assessment

of the structures including classification criteria can be

found in the Supplementary Material (Table S1). Figure 8

shows structural deficiencies of four exemplary complexes.

In all four cases, missing electron density for large parts of

the ligand can be observed. In two of the complexes, there

are alternative conformations for the active site. Sonderg-

aard and coworkers also analyzed the PDBbind 2007

refined dataset for structural artifacts. They found that

36 % of the protein–ligand complexes were influenced by

crystal contacts and that the performance of a scoring

function will be affected by these [52]. We assume that the

hydrogen bond definition used in HYDE, where HYDE

penalizes hydrogen bonds deviating from the optimum

geometry, introduces noise when using these structures of

lower quality.

To test this theory, and to understand better which of the

terms in HYDE are influenced the most by the structural

quality, we separately tested different components of the

HYDE scoring function: the hydrophobic effect, the

hydrogen bond energy and the dehydration penalty. Using

only the term for the hydrophobic effect, the correlation

coefficient vastly increased to RP = 0.602 (Table 1:

HYDE2.0::Hydrophobic). Including the hydrogen bond

Table 1 Correlation between experimental binding constant and predicted binding affinity for the PDBbind2007 coreset

Scoring function On original complex structures On optimized complex structures

Na RP
b SDc RS

d Na RP
b SDc RS

d

X-Score::HMScore 195 0.644 1.83 0.705 195 0.649 1.82 0.701

HYDE2.0::HbondsHydrophobic 195 0.620 1.893 0.669 – – – –

PHOENIX 194 0.616 2.16 0.644 – – – –

HYDE2.0::Hydrophobic 195 0.602 1.91 0.642 – – – –

DrugScoreCSD 195 0.569 1.96 0.627 195 0.589 1.93 0.649

SYBYL::ChemScore 195 0.555 1.98 0.585 194 0.622 1.87 0.668

DS::PLP1 195 0.545 2.00 0.588 194 0.529 2.03 0.569

GOLD::ASP 193 0.534 2.02 0.577 194 0.518 2.04 0.558

SYBYL::G-Score 195 0.492 2.08 0.536 195 0.522 2.03 0.579

DS::LUDI3 195 0.487 2.09 0.478 194 0.477 2.10 0.478

DS::LigScore2 193 0.464 2.12 0.507 194 0.479 2.10 0.505

GlideScore-XP 178 0.457 2.14 0.435 187 0.555 2.01 0.556

DS::PMF 193 0.445 2.14 0.448 194 0.471 2.11 0.482

GOLD::ChemScore 178 0.441 2.15 0.452 186 0.528 2.05 0.553

By NHAe 195 0.431 2.15 0.517 195 0.431 2.15 0.517

SYBYL::D-score 195 0.392 2.19 0.447 195 0.388 2.20 0.443

HYDE2.0 161 0.323 2.26 0.340 189 0.345 2.24 0.378

DS::Jain 189 0.316 2.24 0.346 190 0.339 2.26 0.362

GOLD::GoldScore 169 0.295 2.29 0.322 188 0.329 2.26 0.386

HYDE1.0 150 0.271 2.30 0.321 – – – –

SYBYL::PMF-score 190 0.268 2.29 0.273 180 0.235 2.31 0.235

SYBYL::F-score 185 0.216 2.35 0.243 181 0.238 2.31 0.208

Scoring functions are ranked by the Pearson correlation coefficients obtained on the original complex structures. Results are given for both

original and optimized structures

Results (excluding HYDE and PHOENIX [51]) are taken from Cheng et al. [3]
a Number of complexes receiving favorable binding scores by this scoring function
b Pearson correlation coefficients
c Standard deviations in linear correlation (in log Kd units)
d Spearman correlation coefficients
e Using the number of heavy atoms on each ligand as the only variable in correlation
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energy term together with the hydrophobic effect lead to a

further improvement in the correlation to RP = 0.620

(Table 1: HYDE2.0::HbondsHydrophobic), second best of

all the scoring functions. This confirms that it is the polar

dehydration penalty relative to the hydrogen bond energy

gain that leads to the strong sensitivity of HYDE against

structural inaccuracies. Using only these two rather simple

components of HYDE, which most notably are not cali-

brated on experimental binding affinities or protein–ligand

complexes, we can predict binding affinity better than

nearly all of the other highly parameterized scoring func-

tions. Despite these results on the PDBbind 2007 coreset,

we found that the polar dehydration term of the HYDE

function largely reduces the number of false positives in

virtual screening (e.g. on the DUD dataset [46]).

Redocking and virtual screening performance

Recently, we evaluated HYDE in large-scale redocking and

screening experiments using a revised version of the Astex

diverse set [35] and the Dataset of Useful Decoys (DUD)

[46], respectively [19]. Here, we show the performance of

HYDE in cognate docking on the original Astex diverse set

and compare it to FlexX [7, 26] and two other methods,

PLANTS [43–45] and GOLD [40–42], which also used this

dataset for validation. Furthermore, we compare the virtual

screening performance of HYDE with several well-estab-

lished structure-based methods on the DUD. This section

provides a comparison of HYDE to other methods rather

than a detailed analysis of our results. A very detailed study

of both datasets using HYDE and the exact set-up of the

experiments can be found in [19].

The Astex diverse set contains 85 high-quality crystal

structures of relevant protein–ligand complexes [35]. The

PDB crystal structures of the complexes were processed

using the receptor preparation in the LeadIT software [26].

The hydrogen bond network of the complexes is pre-opti-

mized. All amino acids, cofactors and ions lying within

6.5 Å of any crystal ligand heavy atom were included in

the binding site definition. The automatically assigned

metal coordination geometry for ions by LeadIT was

manually corrected in some of the complexes (for more

information see the Supplementary Material of [19]). The

reference ligands were converted from the mol format to

mol2 format using NAOMI [50]. Random start conforma-

tions were generated for all reference ligands from

SMILES format with CORINA 3.48 [53, 54]. We gener-

ated 200 docking poses for each ligand using the latest

version of the FlexX docking algorithm [7] which is

included in the LeadIT software suite (version 2.1.1) [26].

Table 2 shows our result in comparison to other methods.

A good performance of HYDE in cognate docking is

achieved using the stochastic optimizer (HYDE2.0

Table 2). We performed three iterations due to the sto-

chastic nature of the optimizer and yielded a success rate of

76 % for the best scored pose with RMSD better than 2 Å.

By considering the 20 best scored poses this success rate is

even enhanced to 94 %. Comparing these results to the

Fig. 8 Examples of electron density

for complexes in the PDBbind2007

coreset. Ligands are highlighted with

oranges circles. a Almost no electron

density for the ligand (1HK4). b No

density for the ligand (1GNI).

c Missing electron density for the

ligand and the binding site, plus

alternative conformations for PHE146

and ARG145 (1AJP). d Missing

electron density for the ligand and

the binding site, ligand is fragmented

and has an alternative conformation for

the nitrobenzene, waters are

modeledinside the ligand, alternative

conformation for LYS33 (1PXO)
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performance of the FlexX score the success rates are 7

percentage points for both the best scored pose and best 20

poses. The results of HYDE are comparable to the per-

formance of PLANTS and GOLD on this dataset (Table 2).

However, it is important to again note that HYDE is not

calibrated on any protein–ligand complexes.

The Directory of Useful Decoys (DUD) [46] contains 40

different relevant protein targets and a number of experi-

mental validated binders for each of the targets. Appro-

priate decoys for each target, being physically similar but

topological distinct to the binders, were chosen from the

ZINC database [55]. Hence, this dataset presents a chal-

lenging large-scale virtual screening test set. Recently, we

published our results on the DUD, comprising a detailed

analysis on exemplary targets of this dataset [19]. Here, we

compare our results on this dataset to that of other well-

established structure-based methods. In summary the

workflow is as follows: For all compounds—actives and

decoys-docking poses were generated using the LeadIT

software [26]. The best 40 poses according to the FlexX

score were kept for rescoring with HYDE. Both optimi-

zation steps—ProToss optimization of the hydrogen bond

network followed by numerical optimization of the com-

plex geometry—were employed during the rescoring.

Figure 9 shows the comparison of the performance of

HYDE in virtual screening on the DUD with other. All

results shown are based on rigid protein structures—results

including a minimization of the protein are not shown in

this comparison, as this version of HYDE did not include a

protein minimization. The combination of LeadIT and

HYDE achieved a median AUC of 0.73 across all 40

complexes [19] which is comparable with the other best

performing methods on this dataset. This result was also

achieved using a fully automated process without any

manual correction of the input data.

Conclusions

In this paper we described the further development of the

HYDE scoring function. Several aspects of first version of

HYDE were revised even though the overall concept has

been retained. The plogP increments were re-parameterized

and the number of plogP atom types was vastly reduced in

comparison to the first version. We introduced new terms

to better describe the dehydration of hydrophilic atoms and

to allow scoring of metal ions. In addition, the HYDE

scoring function is now embedded in a target function for

optimization of the complex conformation.

Looking at two examples in detail, we have shown that

HYDE is able to predict the experimental binding affinity

of congeneric series of compounds and rank them in the

correct order. The evaluation of HYDE on a larger, very

diverse dataset again highlighted the sensitivity of HYDE

to inaccuracies in the input data. We found that especially

the polar dehydration term of HYDE causes this sensitivity,

since small structural inaccuracies in the data can lead to a

highly amplified penalty. Comparing the ability of HYDE

to estimate the binding energy of protein–ligand complexes

to that of other well-established scoring functions, we

found that HYDE performed as one of the best. This

Table 2 Cognate docking results on the Astex diverse set

RMSD [Å] B

1.0 1.5 2.0

HYDEa

Top 1 53 (2) 67 (2) 76 (1)

Top 20 80 (1) 90 (1) 94 (1)

FlexX

Top 1 35 56 69

Top 20 73 85 87

GOLD::GoldScoreb

av best25 – – 74–81

GOLD::ChemScoreb

av best25 – – 68–79

PLANTS::CHEMPLPb

av best25 – – 76–89

PLANTS::PLPb

av best25 – – 75–86

Results are given as percent
a Due to the stochastic nature of the optimization process the results

are averaged over three iterations, standard deviations are given in

brackets
b Results taken from Korb et al. [45]

Fig. 9 Virtual screening results of different methods using the DUD

benchmark set. Shown in the boxplot are the median AUC (grey line
in the box), the lower and upper quartile (box) and the minimum and

maximum AUC value (black vertical lines). AUC values are taken

from [19] (LeadIT/HYDE), [56] (GlideSP), [57] (Gold::ChemPLP),

[58] (ICM), [59] (FRED::CG, Surflex::Ringflex) and [60] (DOCK 6)
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promising result was obtained using two components of the

HYDE scoring function: the hydrophobic effect and the

hydrogen bond energy. Moreover no parameterization of

HYDE on experimental affinities or protein–ligand com-

plexes is necessary to achieve this result. Although this is a

really satisfying achievement, we would still prefer to

evaluate HYDE on more meaningful datasets, such as a

congeneric compound series complete with crystal struc-

tures and binding affinity data all generated in the same

laboratory ensuring consistency throughout. This would

allow us to draw more reliable conclusions about the per-

formance of our methods.

In addition, we also demonstrated that when HYDE is

applied as a rescoring function in cognate docking or vir-

tual screening, we are able to improve upon the results of

the native scoring function. On the Astex diverse set, we

obtain a success rate of up to 76 % defined as finding a

docking pose with an RMSD below 2 Å at the first rank.

This increases to 94 % if we take the 20 best scored poses

into account. In the virtual screening experiment on DUD,

designed to test the discrimination of true binders from

decoys, HYDE performs as well the other best methods,

achieving a median AUC of 0.73.

Another advantage of HYDE has been illustrated in several

detailed examples: the comprehensible atom-based score

contributions can be translated into a very intuitive coloring

scheme, which allows easy detection of favorable and unfa-

vorable contributions in the protein–ligand complex.

The development of the HYDE scoring function is still

ongoing. We intend to include receptor flexibility during the

optimization process to better handle inaccuracies in crystal

structures. We are currently working on an improved model

of water to replace the correction factor, whilst consideration

of the conformation of the ligand in the unbound state is also

certainly of interest for future work.
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