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Abstract We present the Consensus Induced Fit Docking

(cIFD) approach for adapting a protein binding site to

accommodate multiple diverse ligands for virtual screen-

ing. This novel approach results in a single binding site

structure that can bind diverse chemotypes and is thus

highly useful for efficient structure-based virtual screening.

We first describe the cIFD method and its validation on

three targets that were previously shown to be challenging

for docking programs (COX-2, estrogen receptor, and HIV

reverse transcriptase). We then demonstrate the application

of cIFD to the challenging discovery of irreversible Crm1

inhibitors. We report the identification of 33 novel Crm1

inhibitors, which resulted from the testing of 402 purchased

compounds selected from a screening set containing

261,680 compounds. This corresponds to a hit rate of

8.2 %. The novel Crm1 inhibitors reveal diverse chemical

structures, validating the utility of the cIFD method in a

real-world drug discovery project. This approach offers a

pragmatic way to implicitly account for protein flexibility

without the additional computational costs of ensemble

docking or including full protein flexibility during virtual

screening.

Keywords Docking � Virtual screening � Structure-based

drug design � Induced Fit Docking � Receptor flexibility �
Crm1 � Exportin-1 � Nuclear transport

Introduction

It is well known that proteins are inherently flexible and dif-

ferent ligands can bind to distinctive protein conformations

[1, 2]. While the degree of flexibility varies greatly among

proteins, it is generally agreed that accounting for protein

flexibility is important in structure-based drug design [3, 4].

Most docking algorithms rely on a rigid protein structure,

which in many cases is sufficient to find some active com-

pounds [5–9]. However, a binding site refined around one

ligand, either experimentally or computationally, may not be

adequate to retrieve a wide range of diverse actives in virtual

screening. The binding site shape and amino acid orientations

may not be suitable for accommodating significantly different

chemotypes. Even highly related compounds may fail to dock

well, especially in spatially constrained binding sites where

small differences in the ligands may result in clashes with the

protein that cannot be alleviated within the rigid receptor

framework. Simply softening the potential energy function to

allow for steric overlap is an inadequate strategy, as some-

times even small clashes are important for binding affinity and

selectivity discrimination [10].

There are multiple ways to account for protein flexibility

in docking. The most straightforward approach conceptu-

ally is to include explicit protein sampling during docking.

This approach has been successfully applied in a number of

cases to predict poses for a small number of ligands [11, 12].
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Unfortunately, full protein flexibility makes sampling of the

protein–ligand complex computationally impractical for

virtual screening. Another approach is to use an ensemble of

protein structures, derived either through experiment or

simulation, and dock to each one individually. This

approach has been successfully applied to virtual screening

and has been shown to produce improved retrieval of

actives compared with screening a single rigid receptor

structure [13–15]. A variety of approaches have been taken

to generate receptor ensembles. In some cases crystal

structures have been used [15, 16], although the choice of

structures is not always straightforward [17]. If multiple

crystal structures are not available, it is possible to generate

ensembles using sampling approaches such as molecular

dynamics, Monte Carlo, [18] or low mode analysis [19, 20].

However, as for with crystal structures, the choice of which

receptors structures from the simulation to use for the

ensemble is not straightforward [21]. Recent progress has

been made on the selection of receptor structures for virtual

screening ensembles using a method based on binding site

shape clustering, which was demonstrated to work on

crystal structures and snapshots from molecular dynamics

simulations [22, 23].

However, while ensemble docking is much more com-

putationally tractable than the explicit protein sampling

approach, it still requires docking to each receptor in the

ensemble; thus, an ensemble of five receptors would take

five times longer than a single rigid receptor screen. Hybrid

approaches have also been proposed, where flexibility of

the receptor is partially accounted for by using a restricted

conformational space, such as a selected set of side chains

or normal modes of the receptor [20, 24, 25]. These hybrid

approaches are promising but still require significantly

more computational resources than rigid receptor docking

and often require user knowledge about the protein degrees

of freedom to consider.

One possible solution to implicitly account for protein

flexibility while maintaining the computational efficiency

of screening a single structure has recently been proposed

[26]. This approach utilizes a protocol in which the protein

binding site is preprocessed before virtual screening by

optimizing it in the presence of several bound active

compounds simultaneously, thus generating a single bind-

ing site conformation that can accommodate different

ligand classes. In this protocol, based on the Locally

Enhanced Sampling (LES) concept [27], protein–ligand

interactions are scaled asymmetrically, such that all inter-

ligand interactions are annulled to allow spatial overlap

while each ligand ‘‘feels’’ the full force exerted by the

protein and the protein ‘‘feels’’ the average force exerted by

all ligands. This process has been successfully applied in

structure-based screening of a variety of GPCRs including

mGluR5 and class-A peptide receptors [26].

In this work we propose a new method, called Con-

sensus Induced Fit Docking (cIFD), which combines

Induced Fit Docking (IFD) [28] of multiple ligands for

preliminary binding mode determination followed by

receptor optimization in the presence of a ‘‘hybrid’’ ligand

that combines selected poses of the IFD-docked ligands.

We first describe the cIFD methodology and perform a

retrospective analysis on three targets [Cyclooxygenase-2

(COX-2), estrogen receptor (ER), and human immunode-

ficiency virus reverse transcriptase (HIV-rt)] demonstrating

the potential benefits of using cIFD. We then describe a

successful prospective application of cIFD in an active

drug discovery project to find covalent protein–protein

interaction (PPI) inhibitors blocking chromosome region

maintenance 1 protein/exportin 1/Xpo1 (Crm1) binding to

its cargo proteins.

Crm1 is a key nuclear exporter protein responsible for

shuttling a large number of proteins, including tumor

suppressors such as p53, pRB, FOXO and APC/b-catenin,

growth regulatory proteins such as p21CIP1, p27Kip1 and

NF-jB/I-jB and chemotherapeutic targets such as DNA

topoisomerases I and IIA and Bcr-ABL. Crm1 cargo pro-

teins carry leucine-rich nuclear export signals (NESs),

through which they associate with a shallow binding

groove on the surface of Crm1. These are 10–15 residue

long amino-acid stretches containing regularly spaced

hydrophobic anchors that form combined a-helical exten-

ded or entirely extended tertiary structures [29]. Crm1 is a

validated molecular target for treatment of cancer [30, 31]

and is attractive due to its effect on multiple growth sup-

pressive signaling pathways. A number of Crm1 inhibitors

have been reported in the literature including the struc-

turally related natural toxins Leptomycin B (LMB),

Anguinomycin, Ratjadones (RATs), Goniothalamin and

synthetic analogs [31–34], and synthetic chalcones [35],

maleimides [35], halomethyl(ethyl)ketones [35], N-azolyl-

acrylates [36], Karyopharm compounds [37], and most

recently the pyrrole-2,5-dione CBS9106 [38], all of which

bind covalently to Cys528, which is located in the NES-

binding groove of human Crm1.

Results

Consensus Induced Fit Docking was developed to improve

the enrichment and diversity of active compounds in struc-

ture-based virtual screening while minimizing additional

computational costs. In internal studies at Karyopharm (data

not shown), we frequently observed that rigid receptor vir-

tual screening calculations were failing to retrieve known

active compounds due to small rearrangements needed in the

protein. To overcome this, we developed a method that

would generate one receptor conformation that could bind
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multiple diverse ligands that were not docking properly to a

single crystal structure. The method, called Consensus

Induced Fit Docking (cIFD), involves an initial generation of

a receptor-ligand complex for multiple ligands, followed by

binding site optimization around a hybrid compound frozen

in space. Initial testing showed that while the resulting

binding sites were often highly similar to the original ones,

docking accuracy was improved, providing superior binding

mode consistency for diverse chemotypes. Preliminary

screening experiments utilizing cIFD structures resulted in

improved enrichment rates. Encouraged by these results, we

performed retrospective validation of the protocol on addi-

tional targets and applied the protocol to the structure-based

discovery of Crm1 inhibitors, as described below.

cIFD retrospective validation

To test the benefit and applicability of the cIFD procedure,

we ran calculations on COX-2, ER, and HIV-rt, which were

previously shown to be challenging targets for docking (see

‘‘Methods’’) [39]. Results are compared with rigid receptor

docking using a single crystal structure and ensemble

docking using the individual IFD structures. As seen in

Fig. 1, the cIFD results typically fall between the single

structure rigid-receptor docking and the ensemble docking

results. This encouraging outcome is possibly expected,

given that our hope was for cIFD to improve on rigid

receptor docking while knowing that full ensemble docking

offers a more realistic approximation of the true ensemble

of receptor states. In addition to the favorable enrichments,

the cIFD computational times are equivalent to single-

structure rigid-receptor docking, since docking calculations

scale linearly with the number of structures used. Ensemble

docking, on the other hand, took approximately five times

more computational resources to complete. It is interesting

to note that for each target there is at least one IFD con-

formation that performs significantly better than the crystal

structure (Figure S1), although determining a priori which

structure to use for virtual screening presents a significant

challenge for the field, as noted in previous work [17].

The BEDROC enrichment, which uses a Boltzmann

weighting to favor actives that score well but still accounts

for the entire ROC curve, shows that cIFD performs 25 %

better on average than docking to the crystal structure [0.22

vs. 0.17 using BEDROC(a = 20)]. In addition, the method

was as good as or better than the ensemble docking approach

for both COX-2 and ER. It is also interesting to note that

cIFD performs better or as good as the crystal structure or

ensemble docking when looking at the enrichment in the top

10 % of the database (EF10%). On the other hand, while the

EF1% values are comparable between the crystal structure

and cIFD for both COX-2 and ER, they deteriorated for HIV-

rt. The improved performance for EF10% can be understood

directly from the method, which generates a structure that

should be able to accommodate more of the active com-

pounds but possibly not fit any single active compounds as

well as the ideal receptor structure for that compound. Given

that, very early enrichment may be diminished with the cIFD

approach but overall retrieval of active compounds should be

relatively high because the receptor has been adapted to bind

multiple active ligands. It is also worth noting that the

improvements in enrichment using a cIFD model are based

on specific rearrangements in the protein that allow binding

of actives that would not fit into the rigid crystal binding site

otherwise. This is different than softened-potential docking

where the van der Waals radii are reduced for receptor and/or

ligand atoms. We observed that the enrichment values,

especially EF1%, deteriorate in softened-potential docking

whereas they improve with cIFD docking (Figure S1).

The cIFD results presented above use a fully automated

protocol with no user or experimental input in determining

the structures to use for docking. The only input needed is a

starting crystal structure and a set of active ligands. The

method then combines the best poses for each ligand from

IFD (i.e. lowest energy structures) to be used in the cIFD

calculations. While a fully automated method is useful, in

many cases there is substantial experimental biophysical

data suggesting what ligand binding modes might be cor-

rect even in the absence of crystal structures. Using liter-

ature data to eliminate improbable poses, enrichments can

be improved over the default cIFD protocol. In the cases of

ER and HIV-rt, the poses with the lowest IFD scores

agreed well with the known binding modes of similar

actives. However, for COX-2 the top scoring IFD pose for

one active ligand [ligand 1 (Figure S2)] does not extend

toward the selectivity pocket formed by residues Leu352,

Ser353, Tyr355, Phe518, and Val523 [40]. Taking an

alternative pose for ligand 1 where the fluorophenyl group

binds to the selectivity pocket greatly improves EF1%

values using cIFD, with EF1% enrichments going from 4.3

to 7.7. The binding mode of the other four actives predicted

by using the lowest IFD score agreed with the biochemical

data.

The above results for cIFD assume that only a single

initial crystal structure is available and crystal structures

are not known for any of the active molecules of interest.

While that might be a realistic scenario very early in a

project, many projects have multiple crystal structures that

could be used to reduce the potential for incorrect poses

inherent to IFD predictions. Indeed, using crystal structures

of known actives in cIFD, if available, improves the

average EF1% value calculated for the three targets from

8.8 to 13.0 (Figure S3), with the largest improvement

coming from ER.

COX-2 provides an excellent example for the dependence

of screening results on the choice of X-ray structure. While
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1CVU produces relatively low enrichment (EF1% = 3.4),

using alternative structures, e.g. 3LN1, results in signifi-

cantly improved enrichment (EF1% = 17.0 for 3LN1 rigid

receptor docking). These structures are different in that one is

a COX-2 complex with its substrate arachidonic acid (PDB

ID 1CVU [41]) and the other is a complex with the inhibitor

celecoxib, a non-steroidal anti-inflammatory drug (PDB ID

3LN1 [42]). In the case of the superior 3LN1 template, EF1%

is reduced in cIFD compared to the crystal structure

(EF1% = 17.0 for 3LN1 crystal structure and EF1% = 14.0

for cIFD using 3LN1 as the template). However, diverse

actives with different binding modes were retrieved that

could not be retrieved in rigid receptor docking at top 1 % of

the screening library.

For ER, the early enrichment values (EF1%) were

comparable for all three methods described (single crystal

structure, cIFD, and ensemble docking). However, the

number of unique scaffolds as determined by the scaffold

decomposition tool in the cheminformatics package Can-

vas [43, 44] is higher for cIFD and ensemble docking

(21 for single crystal structure, 27 for cIFD, and 27 for

ensemble docking), highlighting the value of cIFD in being

able to produce results on par with ensemble docking while

being significantly faster. Furthermore, the EF10% values

for cIFD are higher than either crystal structure or

ensemble docking.

Finally, HIV-rt is the only case in which enrichment did

not improve significantly using cIFD. Many of the non-

Fig. 1 Enrichment values for retrospective validation of the cIFD

method. For each graph, enrichment values are shown for docking to

different structures (red crystal, green cIFD, purple ensemble docking

to all 5 IFD structures). Enrichment values shown include BEDROC

with a = 20 (left column), enrichment in the top 1 % of the database

(middle column), and enrichment in the top 10 % of the database

(right column) for each of the targets studied (COX-2 top, HIV-rt

middle, and ER bottom)

1220 J Comput Aided Mol Des (2012) 26:1217–1228

123



nucleoside reverse transcriptase inhibitors (NNRTIs) bind

in different modes to the flexible HIV-rt allosteric binding

site [45, 46]. Alignment of HIV-rt crystal structures in

complex with different NNRTIs shows the plasticity of

HIV-rt allosteric binding site (see Figure S4B). As seen in

the figure, the loops in the binding site change conforma-

tion to adapt to various NNRTIs. This case presents a

limitation of the cIFD method, which works best when

ligands bind in ways that are not mutually exclusive (e.g.

COX-2 ligands shown in Figure S4A), as opposed to cases

with multiple binding modes and large-scale flexibility that

would preclude the simultaneous modeling of multiple

diverse ligands binding to a single protein structure. This

limitation is exemplified by a target like P38 MAP kinase,

in which type I and type II ligands bind to a DFG-in and

DFG-out conformation, respectively [47]. In such a case,

the two binding sites cannot exist simultaneously because

inducing the binding site to accommodate one class of

ligands explicitly excludes the other binding site from

forming. In such cases, ensemble docking should produce

better results and has been shown to be successful for P38

[13].

This retrospective analysis demonstrates that cIFD is

capable of producing a single receptor structure that can

efficiently retrieve diverse active compounds. In the sec-

tions below, we describe the application of cIFD in a

prospective drug discovery project to screen for Crm1

inhibitors.

Structure-based discovery of irreversible Crm1

inhibitors

The primary objective of the Crm1 project, performed at

Karyopharm Therapeutics (KPT), was to discover novel

Crm1 inhibitors by structure-based screening utilizing the

NES-bound crystal structure of Crm1 available at the time.

Initial testing of Glide rigid receptor docking protocols

revealed that not all of the known Crm1 inhibitors could be

docked correctly into the NES-bound crystal structure

binding site, as judged by shape complementarity, ability to

mimic NES hydrophobic interactions (Fig. 2), and the

ability to position a thiol reactive warhead within *4 Å of

the Cys528 sulfur atom. Compounds tested included

inhibitors reported by Kau et al. [35] and N-azolylacrylate

analogs generated at Karyopharm. Our hypothesis was that

small receptor rearrangements were needed to accommo-

date all of the actives. However, due to the requirements at

Karyopharm for a computationally efficient virtual screen-

ing method, it was a principal objective to generate a single

receptor structure that could be used for rigid receptor

docking. Therefore, we used cIFD to generate a new conformation

of the NES binding site that would enable improved chemotype

coverage.

Consensus Induced Fit Docking was performed with

four representative compounds including three N-azolyl-

acrylates and compound 521996 from Kau et al. While the

modeled structure is highly similar to the NES-bound

crystal structure, there are two notable differences that

affect compound binding. One difference is a rotation of

Glu529 toward solvent (Fig. 3), which strongly affects the

electrostatic properties of the binding site. The other is a

domino effect of conformational changes in which Met545

makes way for the bound small molecule inhibitors (ori-

ginal movement spotted in IFD of Kau et al. compound

521996) consequently pushing Met583 away from the NES

binding site (Fig. 3). Strikingly, this conformational change

Fig. 2 Snurportin NES (gray tube and sticks) bound to Crm1 (blue
surface) in the 3GJX X-ray structure [49]. Four main hydrophobic

anchors are clearly observed. Yellow regions correspond to hydro-

phobic pockets identified by SiteMap

Fig. 3 Conformational changes in the Crm1 cIFD model. Gray
ribbons and sticks NES-bound Crm1 crystal structure. Gold sticks
cIFD model side chains. In the cIFD structure E529 assumes a more

solvent exposed conformation and a switching motion is observed for

M545 and M583, which move synchronously away from the NES

binding groove to make way for bound small molecule inhibitors
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was later validated by experimental co-crystal structures with

bound KPT compounds [48].

The quality of the cIFD structure was evaluated by re-

docking the known covalent inhibitors using both con-

strained (thiol-reactive warhead required to approach

Cys528 thiol within *4 Å) and unconstrained Glide

docking (Methods). In general, improved binding modes

(in better accordance with the criteria mentioned above,

comprising our binding hypothesis) were obtained with the

cIFD structure coupled with constrained docking (Meth-

ods), as exemplified for compound 521996 and CBS59106

in Figs. 4 and 5, respectively. The analysis of CBS9106,

which is reported to be a reversible covalent binder [50]

was performed in hindsight since the structure of this

compound was only recently published.

The known inhibitors included in our analysis pose a

significant challenge to the docking software since bind-

ing seems to be guided mainly by hydrophobic interac-

tions and reactivity, of which only the former is

recognized by Glide and in itself does not constitute a

sharp enough signal. As a result, Glide Scores are rela-

tively poor (mostly [-7.0) and binding modes are not

consistent between related molecules. CBS59106 stands

out in clearly forming a hydrogen bond with Lys568. It is

possible that inclusion of this compound in cIFD model-

ing would have resulted in a slightly different model

structure and would have affected the results of the virtual

screen described below. Notably, the recently published

structure of CRM1 bound to Karyopharm compound

KPT-251 [48] provided support for the dominance of

Fig. 4 Predicted binding modes of compound 521996 in the 3GJX

Crm1 crystal structure and cIFD model (constrained docking).

a Binding modes are shown superimposed. Green carbons 521996

docked to crystal structure. Gray carbons 521996 docked to cIFD

model. Both binding modes position the reactive halo-methyl carbon

within *3.3 Å of the Cys528 thiol (dashed red lines), however

binding site occupancy by Met545 coupled to electrostatic attraction

by Glu529 in the X-ray structure lead to a shallower binding and

hydrogen bond formation (dashed orange line) with Glu529. Red
arrows highlight rotamer changes in cIFD structure compared to

3GJX. b, c show 521996 docked to X-ray and model structures,

respectively, along with SiteMap [51, 52] projection of binding site

properties. Yellow hydrophobic region, Blue hydrogen bond donor

region, Red hydrogen bond acceptor region. The binding mode in the

model structure is dominated by hydrophobic interactions and is in

better agreement with our NES-mimetic binding hypothesis discussed

above. These are significantly reduced in the X-ray binding mode,

which also involves electrostatic interactions between amide and

Glu529 (blue patch) and between terminal chlorine and Lys537 (red
patch). Glide score = -5.4 for the X-ray, and -6.1 for the model
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hydrophobic interactions as well as the binding modes

predicted for this class of compounds (results not shown).

Subsequently, the cIFD model was used for structure-

based screening (see ‘‘Methods’’ for details). A screening

library of *250 K potential covalent inhibitors, all con-

taining thiol reactive groups (e.g. a,b-unsaturated ketones,

halomethylketones, nitriles etc.), was prepared. The library

was docked to the Crm1 model structure using constrained

Glide docking and compounds with adequately positioned

warheads were subjected to rescoring followed by a

knowledge based enrichment guided filtering procedure. In

this procedure, a series of structure-based and ligand-based

filters were applied as described in ‘‘Methods’’, reducing

library size to *3,400 compounds (1.3 %) while retaining

60 % of the known actives discussed above, corresponding

to an enrichment factor equal to 46. These were subse-

quently clustered based on molecular similarity and 232

diverse compounds were selected and purchased for testing

in a Rev-GFP localization assay.

The current approach suffers from three main limita-

tions: (1) The majority of known inhibitors discussed above

bind Crm1 without forming hydrogen bonds or salt bridge

interactions and thus Glide scoring is mostly limited to

hydrophobic and weak polar terms, which may not be

sufficient for activity discrimination; (2) There is currently

no computational method that would have enabled efficient

evaluation of the actual reactivity of the diverse warheads

included in the screening library; (3) The assay measures

cell-based functionality rather than direct binding and does

not directly reflect binding affinity.

Despite these limitations, 17 of the tested compounds

were found to inhibit Crm1 activity with an IC50 under

100 lM (Table 1), corresponding to a hit rate of 7.3 %.

While this hit rate represents a successful applications of

the methodology, we were concerned that the knowledge

based filtering procedure was introducing a bias that was

limiting the chemical diversity of the hits obtained and

possibly also reducing the hit rate (lower diversity leads to

a selection of fewer representatives).

Therefore, a rescreen was performed using a smaller

library containing only 11,680 compounds (Methods) and a

blind filtering procedure was performed, in which a simple

GlideScore filter was applied (GlideScore B-6.0) to the

docked compounds. The remaining 3,053 compounds

(26 %) were clustered (Methods) and a set of 170 diverse

compounds were selected and purchased for testing. In this

case, a hit rate of 9.4 % was obtained with a similar dis-

tribution of activities albeit with larger chemical diversity

(Table 2). The aggregate hit rate when combining the two

screens is 8.2 %. The results of this comparison are not

conclusive and may benefit from a larger screen using the

blind filtering process. Examples for hits obtained in the

two screening projects are shown in Table 3.

Fig. 5 Improved binding mode of CBS9106 in the cIFD structure.

Green carbons CBS9106 docked to X-ray structure. Gray carbons
CBS9106 docked to cIFD model, binding more deeply and forming a

hydrogen bond with Lys568 (dashed orange line). The distance of the

maleimide beta carbon from the Cys528 thiol is 3.8 and 3.7 Å for the

X-ray and model structures, respectively. Respective Glide scores are

-6.0 and -7.0

Table 1 Results of in vitro screening of compounds selected with

protocol 1

Activity range (IC50) No. of compounds

30–100 lM 6

10–30 lM 9

1–10 lM 1

\1 lM 1

Total tested in vitro 232

% Active 7.3 %

Table 2 Results of in vitro screening of compounds selected with

protocol 2

Activity range (IC50) No. of compounds

30–100 lM 8

10–30 lM 7

1–10 lM 1

\1 lM 0

Total tested in vitro 170

% Active 9.4 %
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Conclusions

In this work, we presented a new method to generate a

receptor structure conformation that would improve virtual

screening enrichments and boost the retrieval of diverse

ligands. The method, called Consensus Induced Fit Docking

(cIFD), involves an initial generation of a ligand-receptor

complex for several ligands (via crystal structure or Induced-

Fit Docking calculations) followed by a Prime side chain

refinement and minimization of the protein atoms around a

hybrid ligand. The protein ‘‘feels’’ the force of all of the

ligands but the ligands do not interact with each other. The

primary advantage of the cIFD method is the ability to indi-

rectly account for some amount of protein flexibility while not

Table 3 Examples of compounds active against Crm1 retrieved in the virtual screen using the cIFD structure

Structure Vendor Catalogue number RevGFP IC50 (lM)

Otava 1087055 2

Otava 129720256 13

Chembridge 5106795 10

Specs AL-281/14557040 13

Enamine T6657853 9

Maybridge MFCD00204680 6
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adding to the computational costs of rigid receptor docking to

a single target. Although the cIFD structure is unlikely to be a

physically accurate representation for the binding of any single

ligand, it provides a useful model structure that can help

retrieve diverse ligands that might not be able to bind the same

co-crystallized receptor conformation.

We first validated the method in a retrospective study of

three targets (COX-2, ER, and HIV-rt). These three targets

were chosen because they were previously shown to be

particularly challenging for docking programs, possibly due

to the inability of a single receptor structure to dock diverse

ligands. We showed that the method consistently performed

better than using a single rigid crystal structure as the target

for docking. In addition, the method was able to achieve

results on par with ensemble docking, which combines

results from separate docking calculations to different

protein conformations and takes significantly longer than

cIFD. HIV-rt is the only case in which enrichment did not

improve significantly using cIFD. This is mainly due to the

fact that many of the non-nucleoside reverse transcriptase

inhibitors (NNRTIs) bind in distinct modes to the flexible

HIV-rt allosteric binding site. The cIFD method works best

when ligands adopt similar binding modes as opposed to

poses involving large-scale protein rearrangements, which

would compromise modeling of a single protein confor-

mation simultaneously bound to multiple diverse ligands.

We then applied cIFD to an active drug discovery pro-

ject in pursuit of finding novel covalent inhibitors of Crm1.

Our analysis of the model structure suggests that cIFD

improves docking results of known inhibitors by facilitat-

ing receptor movements required for small molecule

binding. Application of cIFD in two separate screens

yielded a total of 33 covalent protein–protein interaction

inhibitors with measured affinity of at least 100 lM.

Analysis of a recently reported Crm1 inhibitor suggests

that as new ligands displaying novel interaction patterns

are revealed, cIFD modeling may be revisited and updated

models could be used in future screening campaigns.

While the results from this study are encouraging, more

work is needed to establish the value of cIFD in virtual

screening campaigns. First, it will be necessary to screen a

larger number of targets from diverse protein classes. Internal

results from ongoing drug discovery programs (data not

shown) suggest great utility in the discovery of Type-I kinase

inhibitors. Next, various aspects of the protocol could be

explored in more detail to determine whether systematic

improvements can be realized. For example, the choice of the

initial receptor structure is likely to be important and for our

studies on COX-2 we saw that starting with a structure con-

taining a potent inhibitor produced better enrichments than a

substrate-bound structure. Also, the number of ligands to use

in the initial cIFD refinement was not explored in this work.

We may find that more or less ligands are needed to obtain

good results, depending on the system and the amount of

receptor movement that is needed. Finally, the method is not

capable of dealing with simultaneous receptor movements

that are mutually incompatible. For example, in kinases it

would not be possible to generate a single cIFD structure that

could bind both DFG-in (type I) and DFG-out (type II)

inhibitors because the movement of the activation loop to

accommodate ligands from one class prohibits the binding of

the other class. While the current framework of cIFD is not

capable of handling systems like this, we aim to develop a

strategy to detect such systems in advance. Then, cIFD could

be performed on each state and the results of screening to each

cIFD structure could be merged using ensemble docking

techniques. The above issues are the aim of our current

research and will be addressed in future publications.

Methods

Target validation set

COX-2, ER and HIV-rt were chosen as the targets because it

has previously been shown that these targets presented chal-

lenges for multiple docking programs [39]. The PDB codes

used for these targets are 1CVU (COX-2), 3ERT (ER), and

1EP4 (HIV-rt). The proteins were prepared with the Protein

Preparation Wizard in Maestro [53]. In short, this included

assignment of bond orders for ligands, addition of hydrogen

atoms, optimization of the hydrogen bonding network, and a

restrained minimization. All default options were used.

Ligand validation set

Active ligands were retrieved from the literature and pre-

pared with LigPrep [54]. For each target, the ligands sub-

jected to hierarchical clustering using Canvas [43, 44]

using radial fingerprints [55] with Tanimoto similarity and

complete linkage. A clustering level of five was chosen as a

reasonable number of compounds for the cIFD procedure.

This value was not varied, so it is possible results could be

improved with more or less compounds. The tightest

binding compound from each of cluster was retained for

cIFD calculations (Figure S2).

Database compounds

The database compounds were taken from the MDDR, as

described in McGaughey et al. [39] The initial database of

approximately 129,000 compounds was clustered using the

Butina algorithm [56] with a similarity cutoff of 0.7

using the Dice similarity metric and atom pair descriptors.

The centroid was chosen as the representative structure
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from each cluster. Molecules with molecular weight greater

than 500 Da were removed, resulting in 28,038 compounds

among which there were 234 actives for COX-2, 54 actives

for ER and 127 actives for HIV-rt.

cIFD protocol

IFD [28] calculations were performed on each target using

the five ligands selected for each, as described above. The

best complex for each ligand (as defined by the lowest IFD

Score) was selected and the ligand poses from each were

merged into a single structure. There are many choices for

the receptor to use for the cIFD refinement with the merged

ligands (initial crystal or one of the IFD structures). We use

the IFD structure with the best ligand efficiency (GlideScore

divided by MW), since that should represent a complex

where most of the ligand is making productive interactions

with the receptor. The other four ligand poses are merged

into this structure and the resulting complex is refined with

Prime [57]. In the refinement, side chains within 5.0 Å from

any of the merged ligand atoms were identified and fully

minimized while keeping the merged ligand frozen in space.

Virtual screening and enrichment calculations

Docking calculations were performed with the SP mode of

Glide [6, 58]. Enrichment values were computed with the

enrichment.py script available from the Schrödinger Script

Center (www.schrodinger.com/scriptcenter). We focused pri-

marily on EF1%, EF10%, and BEDROC(a = 20) [59]. We

also looked at the diversity-weighted enrichment factors

DEF1% and DEF10% to see whether the retrieved actives were

diverse in addition to looking simply at the number of actives,

as described previously [60]. For the studies here, the DEF

results showed the same qualitative trends as the EF values and

therefore are not reported. In addition to the cIFD calculations,

we also performed full ensemble docking, where a separate

docking calculation was run on each of the IFD structures. The

results from each individual calculation were merged and the

top pose for each ligand was selected based on the GlideScore.

Finally, docking was also performed on the prepared initial

crystal structure to ensure that the cIFD procedure offered an

advantage over standard rigid receptor docking.

Crm1 modeling and screening

Binding site optimization in the presence of merged ligand

Ligands were superimposed in the Crm1 X-ray binding site

(3GJX) and merged into a single hybrid ligand structure.

This hybrid structure was excluded from the selection of

residues for Prime side chain refinement, thus keeping it

fixed in space.

Preparation of compound libraries for screening

First screen: Drug like collection were obtained from Asinex

(www.asienx.com), Maybridge (www.maybridge.com),

Bionet (www.keyorganics.co.uk), Specs (www.specs.net),

Chembridge (www.chembridge.com), ChemDiv (www.che

mdiv.com), and Enamine (www.enamine.net). Compounds

were prepared using the Virtual Screening Workflow (VSW)

ligand preparation tab in Maestro. ‘‘Regularize input

geometries’’ was applied and ionization states and tautomers

were determined by the ionizer at a pH 7.4. Compounds

were subsequently filtered using the following chemical

property ranges: 250 B MW \ 600, RB \ 10, HBA B 10,

HBD B 5. In the second screen, only collections from

Maybridge (www.maybridge.com), Specs (www.specs.net),

and Otava (http://www.otavachemicals.com) were included

and were prepared as in the first screen.

Warhead filtering

Extraction of compounds containing thiol-reactive chemi-

cal warheads was performed using the Ligand Filtering

utility in Maestro [53]. SMARTS patterns describing

chemical warhead were defined manually.

Glide docking

Glide docking was performed with the ‘‘expanded sam-

pling’’ option. Constrained docking was performed with a

3.5 Å Glide positional constraint centered at the Cys528 SG.

Several alternative radii were tested and 3.5 Å was found to

produce the superior binding modes for the majority of the

known inhibitors evaluated. During screening, 33 SMARTS

patterns corresponding to different types of chemical war-

heads were allowed to match this constraint.

Re-Scoring

Ranges were determined for the following scores based on

results obtained for docked known inhibitors: Glide Score

[6, 58], XScore [61], Phase Shape similarity [62], MW, and

ClogP o/w, QlogS, FISA, and 2D-PISA calculated with

QikProp [63]. The Phase Shape similarity was based on

one of the Karyopharm lead compounds. These ranges

were used to filter the screening library.

Clustering

Compounds were clustered in Canvas using the linear

fingerprints [64] and hierarchical clustering with default

parameters. Clusters were collected at a Tanimoto cutoff of

0.6 following evaluation of several alternative cutoff

values.
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Rev-GFP assay

U2OS cells were cultured in McCoy’s 5A medium (Invit-

rogen) supplemented with 10 % heat-inactivated fetal

bovine serum (Invitrogen) and 50 ug/ml penicillin/strep-

tomycin (Invitrogen). Stable expression of Rev-GFP

(pRev(1.4)-GFP?PKI, Wolff, 1997) was maintained in

200 lg/ml geneticin. U2OS cells were plated in 96-well

plate (15,000 cells/well) and left overnight to attach. Cells

were treated with serial diluted (started at 10 lM; 1:3

dilution) screening compounds for 4 h to assure steady

state Rev-GFP localization. The cells were collected,

washed with PBS (Invitrogen), and fixed with 3 % para-

formaldehyde solution (3 % w/v paraformaldehyde and

2 % w/v sucrose in 1X PBS) for at least 15 min at room

temperature. Nuclei of fixed cells were stained with DAPI

(Invitrogen) in PBS for at least 10 min at room tempera-

ture. The U2OS cells were imaged using a Nikon fluores-

cent microscope at 10X magnification. A monochrome

camera was used to capture GFP and DAPI images (1 of

each per well). Using the Nikon Imaging Software—Ele-

ments for capture and analysis, the DAPI image was used

to create a threshold of intensity for all wells. The

parameter of this threshold was the outline of the nucleus

of each cell stained with DAPI. This intensity of the GFP

was measured and recorded along with the area for each

cell in all images per plate. Each cell was scored by

dividing the GFP intensity by total nuclear area. Cells with

a ratio (GFP intensity/nuclear area) above a user-defined

threshold were scored as positive nuclei. The number of

GFP positive nuclei was divided by total number of cells

giving the percentage of cells with nuclear Rev-GFP. Three

separate wells were analyzed for each concentration of the

IC50 curves. XLFit model 205 was used to calculated IC50

curves.
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