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Abstract Template CoMFA methodologies extend to-

pomer CoMFA by allowing user-designated templates, for

example the experimental receptor-bound conformation of

a prototypical ligand, to help determine the alignment of

training and test set structures for 3D-QSAR. The algo-

rithms that generate its new structural modality, template-

constrained topomers, are described. Template CoMFA’s

resolution of certain topomer CoMFA concerns, by pro-

viding user control of topological consistency and struc-

tural acceptability, is demonstrated for sixteen 3D-QSAR

training sets, in particular the Selwood dataset.

Keywords 3D-QSAR � Topomers � Selwood �
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Introduction

With lead optimization being the most challenging phase of

drug discovery [1],1 the ability to rank the therapeutic

promises among a project’s candidate structures should be

highly beneficial. However, during lead optimization the

various measured pA50s, whose values must be predicted

to meaningfully rank candidate structures, vary by little

more than a log unit [2, 3]. Thus any actual benefit depends

upon the average error in a pA50 prediction being no

greater than a log unit. This demanding goal is most reli-

ably met by 3D-QSAR studies [4].2 However, the tedium

and subjectivity of the various ad hoc ligand alignment

methods that 3D-QSAR has long required is a major

drawback.

The topomer methodology, originated to provide a very

rapid and objective means of assessing 3D shape similarity

[5, 6], also proved far more successful than 2D fingerprints

in prospectively guiding ‘‘scaffold-hopping’’ during the

earlier ‘‘hit-to-lead’’ phase of discovery [7]. The ensuing

application of topomers as an automatic means of

3D-QSAR alignment [8] further yielded an enormous

improvement to the convenience and objectivity of

3D-QSAR. Of course performance is what really matters,

and so far ‘‘topomer CoMFA’’ 3D-QSAR models have also

performed extremely well in actual lead optimization

projects, yielding a standard error in prospective predic-

tions of *0.6 pA50 units over 144 measurements reported

by four discovery organizations, a result whose unexpected

relative precision has been rationalized statistically [9].3

Any methodology which combines such a remarkable

record of effectiveness with superior convenience and

objectivity would seem worth trial in most lead optimiza-

tion situations.

Yet some methodological concerns remain with topo-

mers for 3D-QSAR alignment.
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1 Lead optimization costs, per new drug introduction, are the highest

of all, exceeding those of Phase II and III development because, being

earlier, they generate more dead-ends and tie up capital for longer.

More specifically, lead optimization accounts for 17 % of total R&D

cost and around 50 % of discovery cost, and may be the 3rd largest

opportunity area for overall R&D cost reduction.
2 Challenges for its chief competitor in practice, binding free energy

calculation, are most recently discussed by Stouch [4]
3 Patents are pending on template-constrained topomers and their

applications.
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• Desire to employ all available structural information

while generating a 3D-QSAR, notably any experimen-

tal receptor-bound conformations, when generating

structural alignments.

• Challenge of producing a single 3D-QSAR from

structurally diverse training sets believed to share a

common structural target (exemplified by the R2

groups in the Selwood data set below).

• Possible structural inhomogeneities among the topo-

mers generated from series of related structures. When

setting the dihedral angle of any acyclic single bond A–

B–C–D, the topomer protocol selects, from among

candidate D atoms, the one attached to the largest count

of more distant atoms. As one outcome, within a lead

series including a phenyl ring bearing a key substituent

and a variety of other substituents, that key substituent

may ‘‘flip’’ by 180� depending on the relative size of

the other substituents (exemplified by the R1 groups in

the Selwood data set below).

• The unacceptable features that a topomer conformation

occasionally includes, such as sterically overlapping

atoms.

The major goal in developing the ‘‘Template CoMFA’’

methodologies was to provide means for a CADD spe-

cialist to address the concerns listed above, while retaining

the objectivity and most of the convenience and speed of

‘‘topomer CoMFA’’. The template CoMFA idea is easily

summarized. To generate the 3D conformation of any

candidate R-group, wherever template and candidate

connectivities ‘‘match’’, directly assign the coordinates of

the template atoms to the corresponding candidate atoms.

To position the remaining ‘‘unmatched’’ candidate atoms,

apply the topomer protocol.

Practicable implementation of this idea requires ‘‘atom

match’’ definitions that produce 3D similarities which

agree with human expectations. Limiting such matches to

strict correspondences between atom and bond types

seems insufficient. For example, usually a cyclohexyl

within a candidate R-group should assume a shape almost

identical to that of a N-piperidinyl R-group corresponding

within a template, despite the N-to-C difference. Yet not

always, for perhaps in a particular lead subseries that

piperidinyl nitrogen is inverted in the receptor-bound

conformation. To provide an analyst with general means

of satisfying a variety of preferences such as these, this

initial template CoMFA idea has been extended in two

ways:

• Multiple templates can be employed. Connectivity

matching of a candidate will then be performed against

each such template, with the template that provides the

optimal set of connectivity-matching atoms becoming

the one guiding that candidate’s geometry.

• Connectivity matching is applied in two successive

stages. The first requires an exact match of atom and

bond types. The second allows ‘‘fuzzier’’ matching of

atom and bond types, with a template-specific definition

of ‘‘match’’ under moderate user control.

This template CoMFA idea is currently embodied in two

distinct protocols, provisionally named ‘‘R-group’’ and

‘‘whole’’, with each believed better suited to lead optimi-

zation or hit-to-lead phases of discovery, respectively. Here

we introduce the general algorithms that generate such

template-constrained structures and present two illustrative

applications of ‘‘R-group template CoMFA’’, with isolated

ligands as the templates. Other studies and extensions, in

particular ‘‘whole template CoMFA’’ with receptor-bound

ligands as templates, will be described separately.

Methodology

R-group template CoMFA shares characteristic methodo-

logical steps with topomer CoMFA, which, having been

detailed elsewhere [2, 8], will here simply be mentioned

where appropriate.

R-group definition by ‘‘fragmentation’’. Once the

templates and the QSAR training set structures have been

selected, the first (and the only user-performable) operation

in template (or topomer) CoMFA is specifying fragmen-

tations of all those structures, by designating within each

structure one or more acyclic bonds whose disconnections

when applied to all template and training set structures

should yield acceptably commensurate ‘‘stacks of

R-groups’’. Each such R-group stack contributes its own

separate set of fields, or ‘‘CoMFA column’’, to the PLS

analysis and the resulting 3D-QSAR model, instead of the

single set of fields and ‘‘CoMFA column’’ that represent

intact structures in other 3D-QSAR methods.

Since in template (or topomer) CoMFA the R-groups are

the only source of field descriptors, the user’s primary goal in

fragmentation should be to ensure that all structural varia-

tions within the training set are included within an R-group

stack. For a series containing an invariant common core, that

goal may be accomplished by disconnecting all the bonds

that attach the varying side chains to that core. More often,

training set structures are simply split into two sets of

R-groups, by designating one acyclic bond within each for

disconnection. Usually that bond connects central heavy

atoms, but even structures lacking acyclic bonds between

heavy atoms (e.g., steroids) can be fragmented, by discon-

necting a C–H bond.

Template fragmentations, specified and performed in the

same way (and, within the released implementation, during

the same process) as training set fragmentations, are also
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needed, to define the template 2D topologies that will be

matched against each candidate’s R-group 2D topologies,

and thence the template atom coordinates that will be

assigned to that candidate’s matching atoms. At the same

time, each template fragment is spatially positioned to

superimpose its open valence onto the X-axis, just as for

topomer-only generation but of course leaving its internal

geometry unaffected.

Two reasons why R-group template (and topomer)

CoMFA process R-group ‘‘stacks’’, rather than whole

structures, may be of interest. One is methodological.

Effective ligand alignment for 3D-QSAR requires compat-

ibility in spatial positioning as well as internal 3D geometry.

The open valence that defines any R-group provides a uni-

versal and unambiguous spatial positioning for a fragment,

simply by its overlay onto an arbitrary fixed Cartesian vec-

tor. The other is the typical project goal during lead opti-

mization, with the structural variations being considered

usually limited to a few peripheral R-group attachment

points, such that any 3D-QSAR need only consider those

R-group variations. On the other hand, R-group template

CoMFA ignores any possible effects of interactions of an

R-group stack with either another R-group stack or a com-

mon scaffold.

Template CoMFA algorithms. To generate the tem-

plate-constrained geometry of an arbitrary candidate

structure, the two fundamental processes are:

1. Identifying the most numerous set of root-connected

atoms within the candidate structure that appropriately

match root-connected atoms within a template struc-

ture (the ‘‘root’’ in R-group template CoMFA being a

cleavage bond).

2. Positioning all of the candidate atoms, by:

• copying the coordinates of the matching template

atoms.

• transforming the existing coordinates of the non-

matching atoms (as initially generated by a 3D

model builder such as Concord) to produce

conformationally acceptable attachments to the

matching atoms

• applying the topomer protocol to those non-

matching atoms

These two fundamental processes occur sequentially and

separately, the only information transferred being an array

mapping each matching candidate atom to the corre-

sponding template atom ID, so they will be described

independently.

Atom-matching. This graph-matching algorithm differs

in several ways from those employed by familiar meth-

odologies such as substructure searching and maximal

common sub-graph (MCS):

• Graph matching is rooted. Every mapped atom must be

connected by at least one unbroken path of mapped

atoms to the open valence of the candidate TC topomer.

• Graph matching is carried out in two successive stages.

As already mentioned, the first stage requires exact

matches of atom and bond types, and the second

extends the first atom mapping by relaxing the

requirements for a match.

• Graph matching is breadth-first rather than depth-first.

A breadth-first search within a chemical structure graph

considers every atom that is separated by the same

number of bonds from a starting atom, or in the same

‘‘layer’’, before considering any atom separated by a

greater number of bonds, in the next ‘‘layer’’. One

reason for choosing breadth-first over depth-first

searching is that when a template (or topomer) CoMFA

model is then sought, the steric field descriptors of

topomers are ‘‘attenuated’’, such that the more rotatable

bonds that separate an atom from the root, the smaller

the steric influence of that atom. Atoms that are nearest

to the root are thus the most influential, and a breadth-

first search prefers those matches.

Figure 1 summarizes template CoMFA’s breadth-first

atom matching algorithm. This algorithm is executed

twice, first in the ‘‘exact-atom-match’’ phase, and then in

the ‘‘approximate-atom-match’’ phase. The two phases

differ at only two places within Fig. 1:

1. In the definition of ‘‘atom match’’ —

a. In the exact phase, a match between atom and

bond states requires:

i. Atom agreement (element identity, including

hybridization and stereochemistry)

ii. Bond agreement (type identity, with matches

of amide to single, and aromatic to Kekule

single/double also being acceptable, and

agreement in ring membership, i.e., (a)cyclic

to (a)cyclic)

b. In the approximate phase, these atom, bond, and

cyclic match requirements become approximate

rather than exact and also become user-specifiable

attributes of an individual template.

2. In the criteria for retaining alternative intermediate

mappings, or ‘‘paths’’, as the possible permutations of

candidate atoms onto template atoms are screened. A

candidate atom may match more than one atom in a

template. For example, within any phenyl ring, the

2-carbon and 6-carbon are indistinguishable so the

2-carbon in a candidate matches both 2- and 6-carbons

in the template. If either ring is unsymmetrically
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substituted, then the path that leads to a particular

substituent may eventually prevail, by containing more

matching atoms. But with a breadth-first search, such a

more distant differential match will not yet be detect-

able, so every acceptable path must be retained and

processed in turn, until a single optimal atom matching

can be identified. It is the definition of ‘‘until’’ that

distinguishes the exact and approximate matching

processes. In the exact match phase, every distinct

mapping is processed until growth of every path in every

mapping is blocked, with selection of the single atom

mapping to be retained (the one having the maximal

count of mapped atoms) being done only then. In the

approximate match phase, because of a potentially

much larger number of active mappings, the list of paths

is pruned whenever a depth level is completed (when all

possible matches to all paths in all mappings to the

current level have been processed). The single mapping

to be continued to the next layer will then be the one

connected to the most heavy atoms in all the layers yet to

be processed, because of being presumed the most likely

winner if all mappings were to be continued (Fig. 2).

As mentioned above, feedback from collective experi-

ence in applying template CoMFA within a variety of

discovery projects is likely to encourage alterations and

extensions to these algorithms, most likely in the form of

user options. An interesting example is that its strictly one-

to-one atom matching algorithm does not always provide

an acceptable 3D similarity. Consider the two situations

depicted in Fig. 3, rather frequent possibilities consider-

ing the heterocyclic variations that medicinal chemists

Fig. 1 Flow charts of the

‘‘exact’’ and ‘‘approximate’’

atom-mapping phases for

generation of template-

constrained topomers
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Fig. 2 Flow charts of the ‘‘mapped’’ and ‘‘unmapped’’ atom-positioning phases for generation of template-constrained topomers
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frequently explore. This strictly one-to-one atom matching

protocol insists on a candidate alpha- or beta-nitrogen atom

being mapped to a template alpha- or beta-nitrogen atom,

as shown by the double-ended arrows, even though alter-

native mappings from nitrogen to carbon yield much higher

3D similarities. Yet not necessarily the 3D similarity

desired, because a close steric overlap of hydrogen-bond

accepting nitrogens might be pharmacophorically pre-

ferred, as the resultant (bottom) structure for Issue A in

Fig. 3 depicts. In this case a user can induce his preferred

mapping by providing multiple templates. However the

Issue B mapping in Fig. 3 can never yield a viable ring

conformation when the coordinates of the matching tem-

plate atoms are copied to the candidate. The conforma-

tional monster that must result is suggested by the bottom

structure for issue B. To prevent such unworkable out-

comes, a loose geometrical constraint has been added.

When an atom match is being evaluated, the dihedral angle

that would result within the candidate is compared with the

corresponding dihedral in the template (both following

their shortest path back to the roots). Denoting these di-

hedrals by A–B–C–D, whenever the B–C and C–D bonds

in both candidate and template are both cyclic, and the

A–B–C–D dihedrals differ by more than 90�, the candi-

date-to-template atom match of atom D’s is not allowed.

Generating a template-cosntrained conformation.

The second phase of template-constrained (TC) structure

generation, the positioning of its atoms, determines, as with

any 3D-QSAR protocol, the non-covalent field intensities

that then become structural descriptors. For 3D-QSAR,

self-consistency is proving to be the primary goal in

structure generation, whether template-constrained or not.

The valence geometry of a structure of interest, or ‘‘can-

didate’’, specifically its bond lengths, valence angles, and

ring dihedral angles, is generated by a 3D-builder such as

Concord or Corina (any open valences having been

blocked temporarily). In R-group template or topomer

CoMFA, this structure is then positioned by placing its

(reopened) valence marker or ‘‘root’’ at the Cartesian

coordinate origin and pointing the open valence bond along

the positive X axis. The remaining positional degree of

freedom, the dihedral of the substituent(s) on the root atom

about the open valence bond, is determined by the tem-

plate. (As noted above, every template R-group will

already have been positioned as just described, except that

the internal geometry of the template R-group of course

remains unaffected.)

The atom positioning process for a template-constrained

structure is summarized in Fig. 2.

1. Proceeding depth-wise from the root, the coordinates of

each candidate atom found in the candidate-to-template

atom mapping list (this mapping as mentioned being

the only information transmitted from the atom-map-

ping phase) are ‘‘copied’’ from the corresponding

template atom. ‘‘Copied’’ is quoted because the valence

geometries of the matched atoms may not satisfactorily

coincide, particularly within ring systems. Currently

such coordinate discrepancies are resolved in favor of

the existing candidate within cyclic topologies, but in

favor of the template for alicyclic topologies. Par-

tially mapped ring systems pose the greatest chal-

lenge, because conformational differences among the

unmapped ring system atoms may seriously distort the

relative geometry of the mapped ring system atoms.

Currently this issue is addressed by retaining the

candidate’s entire ring system geometry, including any

pucker, while adjusting the dihedral of the ring system

attachment bond (the one arriving from the root) to

overlay the bond formed by the first- and second-

encountered in-ring atoms in the candidate onto the

corresponding template bond.

Fig. 3 Illustrations of two

possible atom-mapping issues

during generation of template-

constrained topomers
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2. Next, those ‘‘unmapped’’ candidate atoms whose coor-

dinates were not determined during step 1 are positioned.

Again proceeding depth-first and atom-by-atom through

the directly mapped and the retained ring candidate

atoms, each attached and unmapped atom, along with its

more distant unmatched attachment atoms, is trans-

formed to regenerate the attaching bond, inheriting its

length and valence angles from the candidate. Wherever

there are multiple unmapped atoms attached to the same

mapped atom, both template unmapped-from and can-

didate unmapped-to attachments are ordered by descend-

ing heavy atom count and then assigned in that order.

3. Finally the topomer protocol [6], but leaving existing

stereochemistry unchanged, is independently applied to

each of the unmapped attachments, starting with the

dihedral of the bond attaching a mapped atom to its

unmapped neighbor.

Usage of template-constrained topomers by R-group

template CoMFA. Subsequently, R-group template CoMFA

is algorithmically and operationally indistinguishable from

topomer CoMFA. Thus, from a user’s perspective, R-group

template CoMFA behaves as a simple variant of topomer

CoMFA, the only difference being a requirement for an

additional first step, the designation of at least one template

structure.

However, topomer CoMFA also is not yet widely used,

and so brief mention of its most distinctive characteristics

seems appropriate.

• Conceptually, the most important distinction from other

3D-QSAR workflows, one that a user needs to keep

very much in mind, is that all of its outputs are based on

R-groups, not complete structures. For example, instead

of the familiar contour display, there will result

separate and entirely independent contours for each

R-group stack (as illustrated for example by Figs. 8, 9).

• Operationally, the automated generation of 3D-QSAR

alignments, whether by the template or the topomer-only

protocol, and whether for constructing a 3D-QSAR or for

then performing 3D-QSAR predictions, multiplies the

ease, speed, and objectivity of a 3D-QSAR exercise to an

extent that is difficult to appreciate until it is experienced.

• Finally, this 3D automation also enables ‘‘R-group

virtual searching’’, which as the name suggests within

large structural databases seeks R-groups that promise

to confer both the desirable traits of high 3D similarity

and high predicted potency.

There are a few differences between R-group template

and topomer CoMFA, the most important of course being

the multiple lattices and ‘‘CoMFA columns’’ and an asso-

ciated need to think in terms of ‘‘R-group contributions’’ to

potency rather than absolute potencies.

Results

The first of the two studies to be presented here shows how

R-group template CoMFA addresses two of the four to-

pomer CoMFA concerns and also compares the effects of a

systematic variation of template geometries on the resulting

models. The second expands the comparison of R-group

template CoMFA and topomer CoMFA model perfor-

mances to the fifteen data sets used in the original validation

of topomer CoMFA. Except as noted all studies were car-

ried out within pre-release versions of SYBYL-X 2.1.

Choice of the template structure(s) is obviously a major

decision whenever template CoMFA is performed. It is

expected that the experimentally determined structure of a

receptor-bound ligand will be strongly preferred as a template

for 3D-QSAR of a structural series, whenever available. Of

course, discovery projects often pursue several such receptor-

bound ligand structures, drawn from different structural series.

In this situation, if a single 3D-QSAR including all the series is

desired, a yet to be presented ‘‘whole template CoMFA’’

methodology would be needed. However, the current work,

description of the underlying template generation methodol-

ogy, is illustrated instead by a systematic if brief ‘‘ligand-

based’’ study, of the effects of template variation on the

resulting 3D-QSAR models. Thus for the following studies,

template structures were generated by various manipulations

of the Concord-generated conformations of one or more

ligand structures chosen from the training set series.

The first set is the ‘‘Selwood dataset’’ of antifilarial anti-

mycin analogs [10], well-known among developers of 2D-

QSAR methodologies, because the large number of accept-

able 2D QSARs that multiple regression using familiar

descriptors discovers within this set has made it a benchmark

for comparing 2D-QSAR protocols [11–13]. The 31 struc-

tures in the Selwood data set are based on a variously

substituted 2-hydroxy-benzoyl moiety, all but one deriva-

tized by amide formation between the benzoyl moiety and

either a 4-phenoxyaniline or a simple linear alkylamine. In

the other structure replacement of the amine by a phenyl

group forms a benzophenone rather than an amide. Half of

these structures appear in the left ‘‘Grid’’ panel of Fig. 4. The

overall composition of the Selwood set is also conveyed by a

‘‘structure similarity map’’, displayed in the upper right-hand

panel of Fig. 4, based on Tanimoto dissimilarities among

‘‘2D-fingerprints’’. Manually added lines connect each of

three points in the structure similarity map to the corre-

sponding structure within the ‘‘Grid’. A similarity structure

map highlights overall structural distributions, here the

dominance of the 4-diphenyloxyaniline and the singular

benzophenone. Such an impression can be particularly

helpful whenever a QSAR study is begun, especially with

training sets often now numbering in the hundreds or even
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thousands rather than dozens. The third panel in Fig. 4 is

discussed below.

A 3D-QSAR study of the Selwood dataset has already

been reported [14], applying topomer CoMFA with each

structure split at the amide (or corresponding) bond. The

statistical quality of this topomer CoMFA is satisfactory

(as repeated in the top five numerical entries in the

‘‘Topomer’’ column of Table 1). Nevertheless its overlaid

‘‘R-group stacks’’, shown in Fig. 5, raise concerns. (It may

be worth note that in the 3D representation of any topomer,

unless otherwise stated the open valence bond will by con-

vention be horizontal, blue, and positioned toward the upper

left of its representation.) Considering first the benzoyl or

R1-group stack in Fig. 5, it surely would be preferred that the

2-hydroxy moiety found in every Selwood structure occu-

pies the same lattice region in every R1-group. Yet the

topomer protocol does not produce this result, because the

‘‘D atom’’ defining the dihedral angle that positions these

hydroxyl groups is identified only as the attached atom

maximizing the count of all its more distant attached heavy

atoms. The hydroxyl group location thus ‘‘flips’’ by 180�,

depending entirely on size variations among the other

attachments to the phenyl ring.

The topomer alignments among the R2-group stack in

Fig. 5, including the phenoxyanilines, n-alkylamines, and

phenyl, reflect a somewhat different concern. Here the to-

pomer protocol directs phenoxyanilino and n-alkylamino

groups at almost right angles to one another. Such a col-

lective disarray seems most unlikely to resemble the relative

disposition of these R2-groups when bound to any actual

receptor.

R-group template CoMFA allows the analyst to impose

any appropriate spatial correspondences to such R-group

stacks. To superimpose structurally common features, such

as all the hydroxyls in the Selwood R1 groups, a single

template structure that deploys that common feature in the

preferred conformation will usually suffice. To bring

structurally diverse groups, such as the phenoxyamino,

n-alkylamino, and phenyl Selwood R2 groups, into some

desired correspondence, a separate template for each group

is necessary, each template then determining the geometries

of the corresponding fragments in the most similar training

or test set structures, as presented above. Each template

would presumably be a ligand known to have the biological

activity of interest, and probably a training set member.

Templates must currently be provided as complete struc-

tures rather than fragments, as the more convenient and

natural input form in most situations.

Furthermore, if a ligand is to become a conformational

template for other ligands, it seems reasonable for that ligand

Fig. 4 Distribution of structures within the Selwood training set, illustrating the selection of the three template structures
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to be structurally representative, strongly active, and rela-

tively large. To apply these criteria when selecting the three

specific templates to represent the R2 variety within the

Selwood set, the two right hand graphs in Fig. 4 were uti-

lized. ‘‘Sweeping’’ each of the three clusters within the

‘‘Structure Similarity Map’’ (upper right) highlighted the

points representing those structures within the ‘‘Scatter Plot’’

(lower right) of molecular weight (size) versus biological

potency. Points closest to the upper-right-hand corner of the

‘‘Scatter Plot’’ then represent the most appropriate individ-

ual structures, according to the these criteria of size and

potency. In Fig. 4 the structures of the three ligands thus

selected as templates for this exercise are connected to their

corresponding data points by lines forming three triangles.

Their 2D structures appear more clearly in Fig. 6.

Appropriate conformations must then be generated for

each of the three template structures, preferably in an

objective way. Three alignment goals, representing two

major precepts of optimality in ligand superposition,

seemed worth survey. All started from Concord models.

The first goal, maximally overlapping template conforma-

tions, was fulfilled by superimposing their 2-hydroxy-ben-

zoyl fragments, and then manually adjusting successive

dihedrals in the linear alkyl template to maximize the

overlap of alkyl carbons onto the aromatic carbons in the

phenoxyanilino template (but also maximizing 1-, 6- steric

repulsions). Figure 7 depicts its outcome, with the top

structure including the alkylamine chain after these tor-

sional adjustments. A second ‘‘hybrid goal’’ sought a bal-

ance between low ligand strain enthalpy and high overlap

among the three template structures by simultaneously

minimizing both criteria with a suitable program, here

Surflex-Sim’s best-scoring result [15]. Finally, taking low

ligand strain enthalpy of the individual templates as the only

alignment goal, the three template conformations were

generated by applying the MMFF force field to their Con-

cord-generated conformations. This triad of approaches

thus includes the two most common precepts for ligand

superposition, ranging from ‘‘best overlap, enthalpy indif-

ferent’’ (denoted by Maximum Overlap), through a tradeoff

Table 1 Comparative summary of 3D-QSAR statistical parameters

from four different alignment approaches to the Selwood data set

Template CoMFA

Topomer Maximum Surflex- Minimum

CoMFA Overlap Sim Enthaply

Statistical properties

# Components 5 4 8 9

LOO q2 0.457 0.533 0.646 0.697

LOO sdep 0.670 0.610 0.570 0.540

r2 0.921 0.896 0.979 0.991

S 0.250 0.290 0.140 0.090

r2 of model coefficients

Steric field terms

Topomer 1.000

Template: max

overlap

0.722 1.000

Template:

SURFLEX/SIM

0.380 0.163 1.000

Template: min

enthalpy

0.470 0.522 0.344 1.000

Electrostatic field terms

Topomer 1.000

Template: max

overlap

0.731 1.000

Template:

SURFLEX/SIM

0.383 0.174 1.000

Template: min

enthalpy

0.465 0.514 0.351 1.000

Model properties

intercept 7.22 5.77 5.80 5.67

R1 contributions

lowest -0.77 -1.10 -0.75 -1.38

highest 1.09 0.81 -0.24 1.05

sdev 0.51 0.40 0.48 0.53

R2 contributions

lowest -2.27 -1.17 -1.73 -1.53

highest 0.08 1.72 0.94 1.21

sdev 0.68 1.05 0.86 0.79

See text for model definitions and details

Fig. 5 ‘‘Rgroup stacks’’ of the purely topomeric conformations for

the 31 members of the Selwood training set

J Comput Aided Mol Des (2012) 26:805–819 813

123



between overlap and enthalpy (Surflex-Sim), to ‘‘overlap

indifferent, enthalpy optimal’’ (Minimum.Enthalpy).

The three sets of three template structures resulting from

these approaches appear in Fig. 8. Particularly take note

that, although these structures are overlaid, with R-group

template CoMFA the relative orientations of template

structures have no influence whatsoever on the 3D-QSAR

model. Instead, with the first steps in template preparation

being fragmentation and positioning of each resulting

R-group by open valence superposition, it is only the

conformations of these R-groups, their transformed internal

coordinates, that remain from the input template structures

to influence the conformations of the 3D-QSAR training or

test set structures.

The Selwood training set was submitted to R-group to-

pomer CoMFA using each of these three sets of template

structures, the individual structures being fragmented as

described above. The statistical and other numerical

properties of the three resulting 3D-QSAR models are

listed in Table 1, along with those of the topomer model

for comparison. Their structural implications, in the form

of the familiar contour maps superimposed on their training

set TC-topomers appear in Figs. 9 and 10, as the R1 and R2

stacks.

Here are the important results from these three R-group

template CoMFA models of the Selwood training set.

• The template constrained topomer generation algorithm

performed as intended. Specifically, within the three R1

stacks of Fig. 9 the 2-hydroxyl groups are superim-

posed, and within the three R2 stacks of Fig. 10 the

dispositions of phenoxyanilino- and alkylamino- groups

Fig. 6 The three structures selected from the Selwood training set to

become its templates

Fig. 7 Two Selwood template structures, with the torsion angles in

the upper structure adjusted to ‘‘maximally overlap’’ its alkyl carbons

with the aromatic carbons in the lower structure

Fig. 8 Template conformations of the three selected templates for

each of the three alignment approaches
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follow the conformation of their 2D-most-similar

template. (The template R1s and R2s are included

within these stacks, because all these templates were

originally taken from the training set.)

• The four 3D-QSAR equations, derived either only from

the topomer rules or from the three template sets, have

generally similar statistical quality. There is a modest

increase in statistical fit, though associated with an

increase in the number of PLS components, 4 with the

template conformation sets that increased physico-

chemical fidelity and decreased overlap.

Fig. 9 Overlay of 3D-QSAR

model contours and aligned

training set structures for the R1

groups of the Selwood training

set, for each of the three

alignment approaches

4 Large ‘‘# component’’ values may raise concerns about over-fitting,

especially when accompanied by unreasonably low ‘‘SDEP’’ values.

However, from PLS over-fitted and unstable models are much less of

a practical risk than from other common algorithms such as multiple

Footnote 4 continued

regression, because PLS operates on blocks of descriptors rather than

individual columns. The usual effects of additional components on a

PLS model are increasingly minor refinements, seldom having any

effect on overall ‘‘statistical significance’’. Therefore, in the standard

topomer CoMFA implementation as used in these studies, during

leave-one-out cross-validation, component extraction ends only when

the resulting SDEP value first increases. Of course the analyst may

then truncate the ‘‘#components’’ to a smaller value, but in these

studies, such a necessarily subjective decision seemed inappropriate.
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• Yet the four 3D-QSAR model equations themselves are

rather dissimilar. This dissimilarity is apparent either

qualitatively, by inspection of the contours in Figs. 9

and 10, or quantitatively by the modest correlation

values within the block ‘‘r2 of Model Coefficients’’ in

Table 1. (Each of the sets of model coefficients

underlying these correlation values was extracted from

a standard RGVS-intermediate .dat file using a Python

script.)

However, these dissimilarities among the four model

equations must, to some perhaps large degree, simply

Fig. 10 Overlay of 3D-QSAR

model contours and aligned

training set structures for the R2

groups of the Selwood training

set, for each of the three

alignment approaches
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reflect the alignment differences among the templates

(since each term arises from a specific lattice point and

Figs. 9 and 10 also show how the variety among template

alignments changes the identities of the most adjacent and

affected lattice points). This idea is supported by the very

similar correlation values of corresponding steric and

electrostatic field terms in Table 1. If so, the predictions

from these four apparently disparate equations may be

unexpectedly similar.

Template CoMFA was then applied to the fifteen data

sets originally used to validate topomer CoMFA, then

selected randomly from those to which a 3D-QSAR

method had already been successfully applied [8]. Frag-

mentations were the same as shown in Table 1 of that same

publication. For each of these fifteen R-group template

CoMFA studies, a single template structure was used, here

simply the most active of the training set structures. Two

protocols were then applied to each of these singleton

templates, the Concord conformation and its MMFF-min-

imized conformation. Table 2 compares these two tem-

plate-based alignment approaches (respectively labeled as

Cncd and MinH) with those of topomer CoMFA and the

original 3D-QSAR models (labeled Lit), in terms of five

statistical properties: the leave-one-out cross-validated q2,

the underlying SDEP, the number of PLS components for

which SDEP first reached a minimum; the conventional r2;

and errors of prediction for any test set provided by the

original publication. At the bottom of Table 2 is a sum-

mary line, reporting the average or total, over the appli-

cable training sets, of that statistical property for its 3D-

QSAR alignment approach.

The results in Table 2 are easily summarized. As was

originally reported, the ‘‘Lit’’ models, from the original

3D-QSAR publications, yielded statistical parameters

somewhat better than the corresponding topomer (‘‘Tpmr’’)

CoMFA models. Not a surprising result, inasmuch as in the

Lit studies the alignments of individual structures could be

adjusted as many times as desired, while the topomer rules

are completely inflexible, producing a single alignment

outcome that either works or does not. Topomer-based

alignments thus substitute objectivity and effortlessness,

especially when predicting, for moderately superior train-

ing set statistics. However, it may be surprising that with

the two template conformational protocols, the average

statistical properties of the resulting 3D-QSAR models do

not significantly differ, either from each other or from

those of the topomer-only alignments. Although there is a

hint of template alignment superiority over purely topo-

meric alignment, in a slightly smaller average ‘‘true pre-

diction’’ error, the magnitude of that difference is

statistically insignificant. Yet this lack of improvement in

statistical quality with the more realistic alignment proto-

cols is consistent with the hypothesis [9] that self-

consistency is more important for 3D-QSARalignments

than physicochemical realism,

Discussion and conclusions

The goal in creating template-constrained topomers, as a

second general alignment methodology for 3D-QSAR, was

to address the four concerns existing with the first such

method, topomer CoMFA, as listed in the introduction. The

Selwood data set study establishes that the current imple-

mentation of template CoMFA resolves the two specific

concerns and suggests that the other two concerns have

also been substantially addressed.

These results have several significant implications.

• The superior accuracies of 3D-QSAR predictions

generally, and the superior facility and objectivity of

topomer CoMFA specifically, can now be further

supported and/or validated by imposing as much

agreement with other structural information, theoretical

and experimental, as may be desired.

• An oft-stated advantage of 3D-QSAR, yet one realized

only with difficulty, has been its potential for modeling

more structurally diverse training sets. The Selwood

example, particularly its R2 results, shows how

template CoMFA can simplify many such investiga-

tions. Whole template CoMFA will greatly broaden this

capability.

• Most 3D-QSAR publications treat model alignments

and receptor-bound conformations of a training set as

effective equivalents, for example proposing successful

alignments as therefore representing receptor bound

conformations, or offering the agreement of model

contours with receptor features as validation of the

model. Yet the evidence supporting such an equiva-

lence is mixed (why then do the topomer-only align-

ments succeed?). Template CoMFA offers a convenient

means for further investigation of this assumption.

• For a given training set, there is very little dependence

of a 3D-QSAR’s statistical quality on its alignment

protocol (as long as that protocol is sufficiently self-

consistent [9]). Nevertheless, large differences in the

model term coefficients, usually obvious in contour plot

visualizations such as Figs. 9 and 10, can exist, with

perhaps significant impacts on both potency predictions

and similarity scores.

Less obviously, and following from the last bullet point,

template CoMFA may also help address a recurring and

fundamental, yet seldom acknowledged, issue—is my lat-

est QSAR prediction trustworthy enough to guide a critical

project decision? On average 3D-QSAR seems to offer the

strongest published record for accuracy in pA50 prediction
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among all CADD approaches. Yet, with unexpected SAR

discontinuities caused by some undetected ‘‘activity cliff’’

[16] always being possible, how great is the risk that a

single prediction of a critical pA50 by 3D-QSAR will be

seriously mistaken? Neither ‘‘ad hoc’’ nor topomer meth-

ods have encouraged exploration of the alignment protocol,

the most likely source of such ‘‘black swan’’ [17] disap-

pointments from 3D-QSAR, because of the impractically

high resource demands of any individual ‘‘ad hoc’’ align-

ment trial or the intentional rigidity of the topomer proto-

col. With template CoMFA, varying the template structures

and conformations should readily afford a variety of

objectively reproducible alignment protocols and 3D-

QSAR outcomes. Potency predictions that survive diverse

alignment protocols seem the most likely to successfully

guide a project to its goals and, if nevertheless unsuc-

cessful, the most unambiguously informative about the

cause of an unexpected ‘‘activity cliff’’.

It may have been noticed that all of these example

applications of R-group template CoMFA were for training

sets to which 3D-QSAR had already been successfully

applied. What then might the success rate for R-group

template CoMFA be with other training sets? In this con-

nection, perhaps it might be informally added that the

success rate for 3D-QSAR model generation, from trying

topomer CoMFA on roughly twenty training sets as ran-

domly supplied during site visits, has so far exceeded

75 %.

While the remarkable prospective predictive accuracies

so far reported for topomer CoMFA, within actual dis-

covery projects [9], would also seem encouraging, private

discussions at these sites often surface two concerns that

may understandably impede its trial:

• The topomer structures (conformation, tautomeric

state) may be uncomfortably inconsistent with other

highly trustworthy information, such as experimental

receptor-bound conformations or established confor-

mational criteria.

• Perhaps related to a historical tendency for more

automated CADD approaches to be over-promoted and

then to under-perform, topomer CoMFA’s minimal user-

adjustable input, whilst guaranteeing the objectivity and

consequent reproducibility of its results, may be

regarded as a drawback.

This new 3D structural modality, template-constrained

topomers, as alignments for 3D-QSAR, seemingly allows

resolution of these concerns, while retaining the benefits

that topomer CoMFA already provides, particularly during

the lead optimization phase.
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