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Abstract The computational prediction of protein–ligand

binding affinities is of central interest in early-stage drug-

discovery, and there is a widely recognized need for

improved methods. Low molecular weight receptors and

their ligands—i.e., host–guest systems—represent valuable

test-beds for such affinity prediction methods, because their

small size makes for fast calculations and relatively facile

numerical convergence. The SAMPL3 community exercise

included the first ever blind prediction challenge for host–

guest binding affinities, through the incorporation of 11

new host–guest complexes. Ten participating research

groups addressed this challenge with a variety of approa-

ches. Statistical assessment indicates that, although most

methods performed well at predicting some general trends

in binding affinity, overall accuracy was not high, as all the

methods suffered from either poor correlation or high RMS

errors or both. There was no clear advantage in using

explicit versus implicit solvent models, any particular force

field, or any particular approach to conformational sam-

pling. In a few cases, predictions using very similar energy

models but different sampling and/or free-energy methods

resulted in significantly different results. The protonation

states of one host and some guest molecules emerged as

key uncertainties beyond the choice of computational

approach. The present results have implications for meth-

ods development and future blind prediction exercises.

Keywords SAMPL3 � Host–guest � Binding

Blind prediction � Free energy

Introduction

The ability to accurately predict the binding affinity of a

ligand to a target protein could dramatically reduce the

burden of chemical synthesis and experimental affinity

assays to a more manageable number of compounds and,

more importantly, accelerate the discovery of needed med-

ications. While computational screening methods such as

docking and empirical scoring methods are routinely used in

lead identification and enrichment [1], there is still a need

for higher-level computational methods able to reliably rank

candidate ligands by affinity; i.e., by their binding free

energies [2, 3]. Such methods would be valuable in a sec-

ondary, higher-precision stage of virtual screening, as well

as in the computer-guided optimization of lead compounds.

One of the central challenges in developing such methods

is validation. For one thing, testing detailed computational

methods on protein–ligand systems can be quite time-con-

suming. Furthermore, because proteins are large and flexible,

it is difficult to be sure that a calculation has sampled all

thermodynamically relevant conformations; i.e., that the
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calculation has converged. One valuable alternative is to test

whether the method can accurately reproduce experimental

solvation free energies of small molecules, as discussed

elsewhere in this issue. However, solvation free energies can

be measured only for molecules that are volatile enough to be

detectible in the gas phase, and such molecules tend to be

relatively small and nonpolar. As a consequence, solvation

free energies cannot be used to test how well a solvation

model handles water in the complex microenvironment of a

binding pocket. They also do not provide strong tests of the

ability of a model to capture interactions between solutes in

the aqueous environment.

Host–guest systems are attractive, though largely

untapped, test cases for detailed models of binding.

Although host molecules are not proteins, molecular rec-

ognition events in host–guest and protein–ligand systems

are governed by the same statistical mechanical principles

and driven by the same interaction forces [4]. In particular,

since the binding pockets of hosts are well solvated, the

intricacies of hydration can play an equally important role

in determining their binding properties. Nonetheless, host

molecules are dramatically simpler than proteins, because

they typically comprise only a few hundred atoms and tend

to be more rigid than proteins. As a consequence, it is

dramatically easier to achieve adequate conformational

sampling for them compared to proteins [5, 6]. In recent

years, cucurbiturils have emerged as particularly appealing

test cases, because they exhibit a wide range of affinities

for varied guests in aqueous solution [7–9], with maximal

affinities rivaling those of the tightest-binding protein–

ligand systems [10–12]. In addition, a growing repertoire of

cucurbituril derivatives offers the possibility of further

diversity in terms of chemistries, molecular flexibility, etc.

[13–16] The growing interest in these host–guest systems

for applications in drug delivery [17, 18] and chemical

sensors [19] is also generating rapid growth in the volume

of published binding affinity data.

In addition to the selection of suitable test systems, the

format of a validation study is of critical importance. In

particular, efforts such as CASP [20], the pKa Cooperative

[21], and SAMPL [22] have proven the value of blinded

prediction challenges for objective validation of computa-

tional methods. Here we summarize the procedure and

results of the first blinded prediction challenge for host–

guest binding affinities, which was included as a new

component of this year’s SAMPL. Other papers in this

issue provide detailed reports from the participating

groups. This host–guest affinity challenge bridges the scale

and complexity of the other SAMPL prediction challenges,

including prediction of tautomers, solvation free energies,

and protein–ligand affinities. The primary goals of this

challenge are to define the state-of-the-art, learn from each

other’s experiences, identify problem areas requiring

further improvement, create improved methods of model-

ing host–guest binding, and gain knowledge that will

advance methods of predicting protein–ligand affinities.

Materials and methods

Challenge design

Information about the challenge was posted on the SAMPL

website, sent to many commercial, industry, and academic

researchers, and posted on the computational chemistry list

(CCL; http://www.ccl.net). All interested parties, not only

those to whom announcements were sent, were welcomed

to take part by registering at the website (http://sampl.

eyesopen.com). The data sets were provided for download

there in SDF or PDB format. Participants were explicitly

informed that the conformation, tautomer, and protonation

states provided were not necessarily optimal or complete.

Experimental conditions were specified, including the

temperature, salt concentration, and pH at which the

binding affinities were determined. In addition, a previous

study by Ma et al. [15] was brought to the attention of all

participants to ensure that every one was aware of relevant

published data for host H1. The host H1 system was posted

on the website on September 23rd, 2010, and the hosts H2

and H3 systems were posted on February 20th, 2010.

Unfortunately, some participants were unaware that there

were two sets of data and therefore submitted predictions

for only host H1 or only hosts H2 and H3; a few did submit

predictions for all three systems. The final submission

deadline was June 30th, 2011. As in previous SAMPL

challenges, the experimental values were not released to

the participants until after the submission deadline. The

outcome of the challenge and its implications were dis-

cussed at a workshop on August 1–2, 2011 at Stanford

University, and all participants were invited to submit

papers describing their calculations. The manuscripts,

which were all reviewed by other SAMPL participants, are

also published in this special journal issue.

Host–guest systems and structures

Crystallographic structures of hosts H1, H2 and H3 were

obtained from the literature [15] or Cambridge structure

database [23], and are shown in Fig. 1, along with the

chemical structures of the guest molecules, G1–G9. These

crystal structures of the hosts were provided to the partici-

pants along with modeled 3D coordinates of the guest

molecules. Identifying the conformations, protonation state,

and tautomer state of the hosts, guests and complexes, in

solution was considered as part of the prediction challenge,

and the modeled coordinates of the guest molecules were
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provided to the participants with the disclaimer that these

are only meant to serve as potential starting geometries. The

identifiers used here for some of the guests differ from the

potentially ambiguous names used when originally identi-

fying the compounds to the SAMPL3 participants. The

original notation was: h1.guest(1–7) for guests G1–G7,

h2.guest1/h3.guest1 for guest G8, and h2.guest2/h3.guest2

for guest G9. Note that other papers in this special issue may

use the original notation to identify the guest molecules.

Experimental details

Drs. Lyle Isaacs (host H1 [15]) and Adam Urbach (hosts

H2, H3 [24]) provided the unpublished experimental

binding affinities of 11 new host–guest complexes. The

data are summarized in Table 1. Binding affinities of the

H1 systems were measured at 298 K in 20 mM sodium

phosphate buffer at pH 7.4, in one or more of the following

ways: (1) 1H NMR spectroscopy—titration of a fixed

concentration of the guest with an increasing concentra-

tion of the host; (2) UV/Vis competition assay—titration

of a fixed concentration of the host and a dye with

an increasing concentration of guest; (3) 1H NMR

competition assay. The binding affinity reported for G1 is

that of a racemic mixture. A detailed description of the

experimental protocols applied to similar host–guest sys-

tems can be found in Ref. [7]. Binding affinities of G8 and

G9 with hosts H2 and H3 were determined using iso-

thermal titration calorimetry (ITC) at 300 K in 10 mM

sodium phosphate buffer at pH 7.0. Synthesis and char-

acterization of compounds G8 and G9 will be reported

elsewhere. Titration experiments were carried out on a VP-

ITC calorimeter (Microcal, Inc.). The concentration of the

host in the sample cell was between 0.062 and 0.174 mM,

and the guest concentration was between 0.5 and 2.81 mM.

The titration consisted of 27 consecutive injections of 10

lL with at least 200 s interval between injections. Heats of

dilution, measured by titrating beyond saturation, were

subtracted from each data set. All solutions were degassed

prior to titration. The data were analyzed using the one-set-

of-sites model in the Origin software; this is a simple

binary equilibrium model that assumes no interaction

between complexes. A high affinity of these guests (G8

and G9) with hosts H2 and H3 suggests inclusion com-

plexation [25]. In all cases (hosts H1, H2, and H3), a 1:1

stoichiometry of binding was observed.

Fig. 1 Crystal structures of

hosts H1, H2, and H3, and

chemical structures of guests

G1–G9. Host H1 and its

respective guests (G1–G7) are

shaded in blue; hosts H2 and H3
with their respective common

guests (G8 and G9) are shaded

in orange
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Computational methods

Participants employed a range of different methods, as

detailed in other articles in this issue. Table 2 lists the

methods by name, and categorizes them as follows:

• Overall method

• Pathway methods [2] compute binding free energies

in terms of the free energy changes associated with

a series of small steps along a path, such as a path

linking the free and bound states. The pathway

approaches used here include thermodynamic inte-

gration (TI) [26, 27], Bennett acceptance ratio

(BAR) [28], Wang-Landau [29], binding energy

distribution analysis method (BEDAM) [30], and

orthogonal space random walk (OSRW) [31].

• End-point methods compute binding free energies

through analysis of only the free and bound states of

the system, rather than connecting them by a path.

The end-point methods used here include MM/

PBSA [32], MM/GBSA [32], solvated interac-

tion energy (SIE) [33], and Mining Minima (M2)

[34, 35].

• Potential energy as a function of conformation

• Most of the methods used a generalized force

field, OPLS [36, 37], GAFF [38], MMFF94 [39],

CHARMm [40], or CGenFF [41], as an efficient

method of estimating the potential energy of a mol-

ecule or complex as a function of conformation.

Partial atomic charges, which are a critical force

field component, were in turn generated by several

different approaches [42–44], but most commonly

AM1-BCC [45, 46].

• One participant avoided the need to generate force

field parameters, with their potentially non-optimal

parameters and simplified functional form, by using

an electronic structure method, density functional

theory [47, 48] with the B3LYP functional [49, 50].

• Solvation free energy as a function of conformation

• All end-point methods used an implicit solvent

model based on continuum electrostatics, such as

PBSA [51], GBSA [52], PCM [53], and FiSH [54].

In addition, the BEDAM pathway method used the

similar but more intricate AGBNP2 model [55, 56].

Note, however, that different implementations of

nominally similar continuum electrostatic models

might yield significantly different results if they use

different atomic radii, and the use of different

numerical solvers may also be relevant; in partic-

ular, the SIE method uses a boundary element

solver instead of the more commonly used finite

difference solver.

• All pathway methods other than BEDAM used the

TIP3P [57] explicit water model in the context of

molecular dynamics (MD) simulations.

• Conformational sampling method

• All pathway methods used MD as the conforma-

tional sampling method.

• Several end-point methods, generated and pro-

cessed conformations by using a docking program

to fit the guests into the crystal structures of their

respective hosts.

• The MM/GBSA and MM/PBSA methods sampled

multiple conformations from the Boltzmann distri-

bution with MD using explicit solvent.

• The M2 method used Tork [58], an aggressive

conformational search algorithm, along with an

implicit solvent model, to identify many local

energy minima for the free and bound structures.

Table 1 Experimentally measured binding affinities of various host–guest complexes

Host Guest Ka (M-1) DG (kcal/mol) DH (kcal/mol) DS (cal/mol.K)

H1 G1 1.8 ± 0.1 9 104 -5.84 – –

G2 1.5 ± 0.1 9 105 -7.10 – –

G3 9.0 ± 0.6 9 104 -6.80 – –

G4 1.1 ± 0.1 9 103 -4.17 – –

G5 2.6 ± 0.1 9 104 -6.06 – –

G6 6.5 ± 0.7 9 107 -10.72 – –

G7 5.3 ± 0.4 9 105 -7.85 – –

H2 G8 2.9 ± 0.5 9 104 -6.12 -8.5 (±0.5) -7.9 (±1.9)

G9 2.6 ± 0.5 9 105 -7.43 -3.8 (±0.2) 12.0 (±1.0)

H3 G8 1.0 ± 0.1 9 107 -9.60 -7.2 (±0.3) 8.1 (±0.9)

G9 3.6 ± 0.4 9 106 -8.99 -4.2 (±0.1) 16.0 (±1.0)

Measurements are reported as mean ± S.D
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• Configurational entropy; i.e., the entropy associated

with the host and guest, but not the solvent

• The SIE method did not use any specific method to

account for changes in configurational entropy on

binding, although the\1 scaling parameter applied

to the overall binding energy might be considered

to account crudely for an entropic penalty propor-

tional to energy.

• The pathway methods include entropy implicitly

but, in principle, fully, through their free energy

approaches.

• A number of end-point methods used the rigid-

rotor/harmonic oscillator (RRHO) approximation.

• The M2 method applied the harmonic approxima-

tion with mode scanning (HA/MS) to each energy

well, and also accounted for the entropy associated

with the existence of multiple energy wells. The

HA/MS method is similar to RRHO, but it accounts

for some anharmonicity in each energy well

by scanning energies along eigenvectors of the

Hessian associated with low eigenvalues (force

constants).

Results

Overview of host–guest predictions

A total of 19 submissions were provided by 10 different

research groups. Scatter plots of calculated versus experi-

mental binding free energies are shown in Fig. 2, and

statistical measures of accuracy are provided in the last

two columns of Table 2. Because not all groups made

predictions for all systems, and because the host H1 sys-

tems are quite different physically from the host H2 and

host H3 cases, we present the error statistics separately for

these systems in Table 2, under the headings Host1 and

Host2/Host3. For those methods which were applied to all

three hosts, error statistics across all three hosts are also

provided at the bottom of Table 2.

Overall, the predicted binding affinities suffer from high

root-mean-square errors (RMSE), low correlations, or

both. The RMSEs vary from 1.4 to 45.2 kcal/mol, and the

correlation coefficients (R2) vary from 0.01 to 0.94. The

correlation coefficients tend to be higher for the host H2

and host H3 cases than for host H1, but the significance ofT
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Fig. 2 Individual predictions submitted for the SAMPL3 host–guest

blind prediction challenge. The numbers indicated in the top left

corner of each plot corresponds to the submission ID given in

Table 2. Host1 systems are indicated by black open circles, whereas

hosts 2 and 3 are indicated by red open squares. The blue dotted lines
indicate an error range of ±2 kcal/mol

c

480 J Comput Aided Mol Des (2012) 26:475–487

123



J Comput Aided Mol Des (2012) 26:475–487 481

123



this pattern is not strong, because the number of data points

for H2 and H3 systems is only four, compared to seven

data points for H1 system. Moreover, since only a subset of

methods was applied to the hosts H2 and H3, it is not clear

whether the higher correlations are indicative of the effi-

cacy of these particular methods or of the relatively trac-

tability of the systems. More generally, it is difficult to

determine the basis for the differences among the various

results with any confidence. One reason is that the sub-

missions varied non-systematically in their choice of force-

field parameters and atomic partial charges, solvation

models, and conformational sampling methods.

The solvated interaction energy (SIE) model has the

lowest RMSE, with better correlation (R2 = 0.77) for the

hosts H2 and H3 than for the host H1 (R2 = 0.44). Inter-

estingly, this method yielded similar affinities when host

H1 was treated as uncharged (submission 5). Interestingly,

other methods that used the same GAFF/AM1-BCC force

field parameters as the SIE calculations (submissions 6, 7,

13 and 14) were not as accurate. More generally, we could

not identify a clear advantage for any particular charge set,

force-field, solvation model, or free-energy calculation

method. Indeed, seemingly similar methods like TI, BAR,

and FEP, combined with similar parameters, produced

quite different results, suggesting unexpectedly that the

details of the free-energy method might have contributed to

the differences among these predictions. For example,

submissions 13 and 14 used identical energy models, but

their respective RMSEs were 4.0 and 11.3 kcal/mol and

their correlation coefficients were 0.34 and 0.81. In prin-

ciple, the differences in computed free energies are

attributable to some combination of differences in energy

model and differences in conformations sampled. How-

ever, in the absence of information about the predominant

conformations found by the various methods, or of a

detailed breakdown of the binding free energies into terms

like the changes in internal energy, solvation energy, and

entropy on binding, it seems impossible to delineate the

chief sources of variation among the different predictions.

It is also unclear whether or how the correction for standard

concentration [59], which normally yields a constant offset,

was accounted for in some submissions.

Host1 predictions

The protonation states of the host H1 systems under the

experimental conditions are uncertain and might change on

binding. In particular, the mutual proximity of the four car-

boxyl groups on the host may reduce their acidity, allowing

some of them to be protonated; and several of the guests

contain anilino groups of uncertain pKa. Most of the calcu-

lations are based on the standard pKas of the chemical groups

involved and assume no change in protonation on binding.

Setting aside the calculations for a moment, one may

observe that the experimental affinity trends of the host H1

cases are intuitively reasonable. Thus, the host, whose

charge may be as great as -4, binds the neutral guest G4

with lowest binding affinity (-4.17 kcal/mol), the ?1

guests (G1, G2, G3, G5, and G7) with intermediate affinity

(-6 to -8 kcal/mol), and the ?2 charge guest G6 (at pH

7.0 based on standard pKa’s) with highest binding affinity

(-10.7 kcal/mol). The sizes of the guests correlate with

their charges, so the weakest affinity also corresponds to

the smallest guest and the greatest affinity to the largest

guest. A majority of the submissions capture this general

trend, but they also tend to invert the affinity rankings

within the group of ?1 guests (G1, G2, G3, G5, and G7),

resulting in poor overall correlation coefficients. Two

submissions (7 and 14), captured the relative affinities of

?1 charged guests somewhat better, resulting in an overall

correlation coefficient of 0.8. However, these methods had

RSMEs greater than 10 kcal/mol. The large mean error of

submission 14 results primarily from a large error for guest

G6 (?2); the authors retrospectively attribute this to a

setup error (W. Yang, personal communication). It is not

clear why these methods ranked the ?1 guests relatively

well, while others using similar force-field parameters

showed anti-correlation for the ?1 guests. The fact that

host H1 is flexible enough to undergo significant confor-

mational changes might play a role, as different methods

might have sampled different conformers.

Host2/host3 predictions

The protonation states of hosts H2 and H3 and their guests

are relatively unambiguous, and the molecules are also

rather rigid. Both hosts were studied with the same set of

guests. The key trend observed in the experimental data is

that the guests bind more tightly to the larger host (host

H3) than to the smaller one (host H2), and a majority of the

submissions captured this trend. Additionally, guest G8

binds host H2 more tightly than guest G9 does, while the

converse is true in the case of host H3. Only 4 of the 12

submissions captured this pattern, but the differences in

measured binding free energies were less than 1.5 kcal/

mol, which is likely well within the range of uncertainty of

the energies of current force fields.

More broadly, the RMSEs of the computed binding

affinities submitted range from 1.4 and 45.2 kcal/mol, with

correlation coefficients between 0.14 and 0.94. Encourag-

ingly, 9 of the 14 submissions show correlations greater

than 0.7, despite large RMSEs. Although the SIE model

has the lowest RMSE, a method based on a quantum

mechanical (QM) energy model has the highest correlation

coefficient, 0.94, and clearly captures the key trends in the

data. Interestingly, when changes in entropy are dropped
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from this method, the correlation coefficient drops to 0.64.

Also, calculations using the same basic approach as the

quantum method, but now using MMFF with AM1-BCC

charges (submissions 15 and 16), show similarly high

correlation coefficients, greater than 0.9. Much as observed

in the host H1 submissions, some binding affinities com-

puted with the same force field and similar continuum

solvent models as those of the relatively successful SIE

approach incurred significantly larger RMSEs and lower

correlation coefficients, and indeed anti-correlated with the

measured affinities.

Discussion

This paper summarizes the results of the first blind pre-

diction challenge for host–guest binding affinities. The

availability today of host–guest systems with binding

affinities similar to those of protein–ligand systems pro-

vides an important opportunity to test and ultimately

improve physics-based models of binding, in a setting

where computational demands are less limiting than they

are in the case of proteins. In particular, the challenge of

conformational sampling is dramatically reduced for rela-

tively rigid, low molecular weight hosts. New host–guest

affinities were measured to enable the present study, and a

number of research groups had the courage to submit blind

predictions. The participants used a wide variety of

approaches ranging from simple docking to extensive

molecular dynamics based free-energy calculations.

Sources of accuracy and error

Given the relative simplicity of the host–guest molecular

systems, it is somewhat surprising that none of the pre-

dictions agree particularly well with the experimental data.

In addition, the various methods provide a rather wide

spread of results. One fundamental question is whether or

not the various methods sampled essentially the same set of

conformations. If they did—and one may hope this is the

case, given the small sizes of these systems—then the

differences among the methods should be attributable pri-

marily to differences in the energy models they used. On

the other hand, models with similar energy functions were

observed to yield significantly different results (e.g.,

methods 13 and 14), suggesting significant differences in

conformational sampling. It is also striking that the SIE

approach [33] provided some of the most accurate results,

despite the fact that conformational sampling in this

method is limited to extensive sampling of the ligand,

while the receptor is kept rigid except for a final energy-

minimization step. There was no clear advantage to using

more elaborate sampling methods, such as molecular

dynamics simulations or the Tork conformational search

method [58]. One possible explanation of this broad

observation is that conformational sampling might amplify

the effects of errors in the energy models by putting too

much statistical weight on unrealistic conformations. It is

also worth noting that only the SIE method applies

empirical weighting coefficients to its computed energy

terms. It is intriguing that these coefficients appear to work

reasonably well, despite having been fitted based on pro-

tein-small molecule data [33].

During the workshop discussion, the protonation states

of the host H1 systems emerged as a key source of

uncertainty in the calculations. Although the participants

were aware of this issue, almost all predictions were based

on the simplifying assumption that the protonation states

are identical in the bound and unbound conformations, and

the charge states were set based on the standard pKa of the

different chemical groups in solution. In a few cases where

the binding free energy computed for the anilino guests

was greater than zero, the participants considered alternate

protonation states. There are actually two issues here. In

addition to uncertainty in the baseline pKas of the various

ionizable groups, especially the four host carboxyls, it is

also possible that protonation states change significantly on

binding. Indeed, there is substantial experimental evidence

for pKa shifts induced by cucurbituril binding [17]. In

general, it is observed that cucurbiturils favor binding of

the protonated form of the guest, and therefore induce

increases in pKa (pKa
bound - pKa

unbound) ranging up to ?4.5

units; negative shifts as great as -1.5 units have also been

observed [17]. The positive pKa shifts of bound guest

molecules are for standard, electrically neutral cucurbitur-

ils and, presumably will only be increased for host H1,

with its four carboxyls. Of particular relevance here is the

pKa shift of the aniline group of 2-aminoanthracene from

4.0 to 7.1 upon binding to cucurbit[7]uril [60]. Also, guests

G2 (procaine) and G7 (tetracaine) exhibit 1.22 and 1.91

units of pKa shift, respectively, upon binding to cucur-

bit[7]uril [61]. Three out of seven guests for the host H1

system contained an aniline group, and therefore the choice

of protonation state based on standard pKa could have

significantly affected the predicted binding affinities. It is

important to note that, to the extent that uncertainties in

protonation states are sources of error in the present cal-

culations, the present comparisons are not informative

regarding the quality of the force fields used and the ade-

quacy of conformational sampling. Thus, for future rounds

of host–guest blind predictions, it may be helpful to steer

clear of systems posing this issue, or to be sure of including

some without it. Since protonation state issues were not

prominent for the host H2 and H3 cases, it is unfortunate

that a number of groups in this initial round were unaware

of these systems until it was too late to process them before
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the workshop. Although the predicted binding affinities for

hosts H2 and H3 still deviated significantly from the

experimental values, the correlation between experiment

and computation was, arguably, better for these systems.

The possibility that protonation states and shifts con-

tributed to the computational errors observed here is not

necessarily surprising, but it is somewhat sobering, given

that similar issues frequently arise in protein–ligand bind-

ing because of the high density of charged amino acids in

the catalytic sites of enzymes and other protein binding

sites [62, 63]. Enzyme active sites in particular frequently

contain catalytic histidine residues whose pKas are poised

near physiological pH, making their charge states both

uncertain and changeable [63]. Although the theoretical

framework for coupled protonation and binding equilibria

has long been known [64, 65], it is not clear whether

current computational methods for modeling protonation

equilibria are sufficiently reliable to enable accurate

affinity predictions. Prediction of pKas based on physical

models has a long history and we recommend several

excellent reviews on this topic [66–68]. The pKa Cooper-

ative [21], a blind challenge for structure-based computa-

tional methods for predicting pKa values and electrostatic

energies in proteins, is notable in this context.

The heart of these binding affinity calculations lies in the

energy model itself, i.e., the force field parameters and the

solvation model. All participants in the present study used

generalized force-field parameters, such as GAFF [38] with

AM1/BCC charges [45, 46], except for one group which

used a quantum mechanical Hamiltonian. Interestingly, the

quantum mechanical results correlated relatively well with

experiment, despite overestimating the affinities consider-

ably. Currently, a large amount of benchmarking data is

being made available by computational chemists using high-

level quantum mechanical models [69–74], and these are

likely to be helpful in improving the current generalized

force-fields. For instance, Goodman et al. [75] have recently

compared several classical generalized force-fields against

some of the above mentioned quantum–mechanical bench-

marking data and shown that the mean errors in interaction

energies are 2 kcal/mol or more, even for seemingly simple,

fragment-like molecules. Current protein force-fields (OPLS

[37] and AMBER [76]) perform significantly better against

similar benchmarks, with mean errors in interaction energies

less than 1 kcal/mol [72]. It would appear that, although

force-fields for proteins are already well optimized, there

may be significant room for improvement of the generalized

force fields used for the broader chemistries of drug-like

ligands and host–guest systems. Indeed, it may well be that

force field errors underlie many of the problems observed in

the present exercise.

Changes in solvation free energy also contribute sig-

nificantly to the computed host–guest binding affinities

[6, 10]. Interestingly, although explicit solvent models may

be regarded as the gold standard, predictions here using an

explicit solvent model did not outperform those that relied

on faster continuum methods. In fact, the best-scoring SIE

model used the Poisson-Boltzmann surface area (PBSA)

implicit solvent model [51]. The existence of other dif-

ferences among the models makes it impossible to draw

definite conclusions about the relative merits of the dif-

ferent solvent models. These broad observations suggest

that implicit solvation models will continue to play an

important role in models for binding.

Finally, it is of interest to consider whether different

computational definitions of the bound state of the various

complexes could lead to significant differences among the

various calculations and potentially to deviations from

experiment. The appropriate definition of the bound state

will be unambiguous in systems with a single, deep well in

the host–guest potential of mean force [3, 59, 77]. How-

ever, the situation can in principle become more compli-

cated, such as if the energy well is shallow or if there are

multiple energy wells of similar depths, especially if some

of these have the guest positioned outside the cavity of the

host.

Implications for protein–ligand modeling

It is interesting to consider how the results of this com-

munity exercise bear on the calculation of protein-small

molecule binding affinities, particularly in connection with

computer-aided drug design. The underlying statistical

mechanical principles of binding are expected to be the

same for host–guest and protein–ligand systems, and the

same physical forces including electrostatic and van der

Waals interactions, hydrogen bonding, and solvation, are at

play in both settings. However, as noted above, calcula-

tions for proteins, rather than hosts, benefit from the

availability of more refined force field parameters. On the

other hand, it is still necessary to assign force field

parameters to small, drug-like molecules, and this could be

an important source of error in protein–ligand modeling.

Models of both protein–ligand and host–guest systems also

encounter the challenge of dealing with protonation states,

and issues of solvation models appear similar in both set-

tings. Perhaps the chief difference, then, is that proteins

have far more degrees of freedom, so achieving adequate

conformational sampling is expected to be far more chal-

lenging. It is perhaps relevant that one message of the

present study is that more conformational sampling does

not necessarily lead to more accuracy. Nonetheless, it is

unlikely on physical grounds that calculations without

significant conformational sampling can ever be highly

accurate. Overall, given the similarities between protein–

ligand and host–guest binding, it is hard to imagine that
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reliable results can be achieved for proteins without also

achieving them for host–guest model systems. Because

host–guest systems have the added merit of simplicity, they

represent informative and tractable test systems for future

methods development.

Directions

As evidenced by the special papers in this issue, the results

of this blind prediction challenge are leading to re-evalu-

ations of the various methods that will hopefully lead to

better results in the future rounds of SAMPL, not only for

the host–guest systems but also for protein–ligand binding.

The SAMPL3 host–guest binding affinity challenge was

the first step in a collaborative process of confronting

experiment with computation, and the blind prediction

setting is an excellent way to mimic the challenges faced

by today’s pharmaceutical industry.

The main goal of this blind prediction challenge was to

identify the key problem areas that need further attention.

The range of computational methods used here by the

participants was informative in assessing the strengths and

weaknesses of each of the methods. However, due to the

varied modeling choices made by the participants, it was

impossible to draw definite conclusions regarding the

contribution of the different energy components, solvation,

force fields, protonation, and conformational sampling, to

the errors in predictions.

Future rounds of host–guest blind predictions would be more

informative if participants supplied not only their free energy

predictions, but also the coordinates of conformations that were

sampled, and, where possible, the energy components under-

lying their computed free energies. A more detailed analysis of

these additional data could shed light on the right direction for

future improvements. In addition, one of the major sources of

confusion was the choice of ionization states, as the different

choices made by some participants masked the effects of other

methodological differences, such as the force field and sam-

pling method. It might help to understand this problem in more

detail if more participants submitted predictions based on dif-

ferent ionization states. Finally, it was unexpected that seem-

ingly similar approaches using identical energy models resulted

in very different predictions. In the future rounds of SAMPL

blind prediction challenge, it may be useful for participants to

make multiple submissions with controlled variations in the

choices, as this would also help understand how different

methods performed in the hands of different participants.

Overall, progress on any single front, such as force field

parameters or conformational sampling, will likely be

insufficient for a marked improvement in the accuracy of

predictions. Rather, a concerted effort towards all the

challenges discussed here will be required. It will also be

important to take advantage of other community prediction

exercises, such as the community structure–activity

resource (CSAR) [78, 79]. This effort focuses on protein

ligand systems, and in addition to affinity scoring, the

CSAR challenges the participants to accurately predict

binding poses, which are compared against high-quality

crystallographic structures. Another blind challenge that

deserves mention here is the pKa Cooperative [21], which

is focused towards advancing the development of structure-

based computational methods for computing pKa values

and electrostatic energies in proteins. The continued

involvement of researchers across the country and possibly

the globe in such prospective prediction challenges will

speed progress in molecular modeling and lead to

improved tools for computer-aided drug design.
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