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Abstract The success of molecular fragment-based

design depends critically on the ability to make predictions

of binding poses and of affinity ranking for compounds

assembled by linking fragments. The SAMPL3 Challenge

provides a unique opportunity to evaluate the performance

of a state-of-the-art fragment-based design methodology

with respect to these requirements. In this article, we

present results derived from linking fragments to predict

affinity and pose in the SAMPL3 Challenge. The goal is to

demonstrate how incorporating different aspects of mod-

eling protein–ligand interactions impact the accuracy of the

predictions, including protein dielectric models, charged

versus neutral ligands, DDGs solvation energies, and

induced conformational stress. The core method is based on

annealing of chemical potential in a Grand Canonical

Monte Carlo (GC/MC) simulation. By imposing an initially

very high chemical potential and then automatically run-

ning a sequence of simulations at successively decreasing

chemical potentials, the GC/MC simulation efficiently dis-

covers statistical distributions of bound fragment locations

and orientations not found reliably without the annealing.

This method accounts for configurational entropy, the role

of bound water molecules, and results in a prediction of all

the locations on the protein that have any affinity for the

fragment. Disregarding any of these factors in affinity-rank

prediction leads to significantly worse correlation with

experimentally-determined free energies of binding. We

relate three important conclusions from this challenge as

applied to GC/MC: (1) modeling neutral ligands—regard-

less of the charged state in the active site—produced better

affinity ranking than using charged ligands, although, in

both cases, the poses were almost exactly overlaid; (2)

simulating explicit water molecules in the GC/MC gave

better affinity and pose predictions; and (3) applying a

DDGs solvation correction further improved the ranking of

the neutral ligands. Using the GC/MC method under a

variety of parameters in the blinded SAMPL3 Challenge

provided important insights to the relevant parameters and

boundaries in predicting binding affinities using simulated

annealing of chemical potential calculations.
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Introduction

The third Statistical Assessment of the Modeling of Pro-

teins and Ligands (SAMPL3) Challenge [1] was, in part, a

blinded test of how well various computational technolo-

gies predict binding affinities and binding poses of 34

ligands to a protein. Forecasting such properties for

charged compounds, ligands with rotatable bonds, as well

as dealing with protein flexibility and solvation were all

part of the challenge. To approach SAMPL3, we used our

fragment-based molecular design platform [2, 3] to (1) rank

the component fragments of SAMPL3 ligands by binding

affinities on the test protein, which reveals the lowest free

energy poses, (2) re-construct the SAMPL3 ligands from
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these fragments, and (3) evaluate the assembled ligand

poses and binding affinities. Within the dataset, differ-

ent models were tested in the blinded challenge: charged

fragments, neutral fragments, and DDGs solvation cor-

rected neutral fragments. Further studies examined two

protein dielectric models, neutral ligands simulated against

a protein with a neutral Asp189 in the binding site, and

explicit versus implicit water models. These tests allowed

us to probe the effectiveness of our method and examine

the role of water, electrostatics, and dielectric parameters.

The key to predictive rank ordering by affinity is ade-

quately modeling the binding free energy of fragments or

ligands to proteins (or other macromolecules), which crit-

ically depends upon two factors: complete sampling of the

relevant degrees of freedom and accurate potential func-

tions. The degree of difficulty of this problem may be

appreciated by realizing that even the relatively simple

problem of predicting the free energy difference between

D and L alanine binding to small synthetic host molecules of

*300 atoms and 2–5 torsional degrees of freedom [4] has

proven to be an enormous challenge. Accomplishing this

required creating a new simulation technique that simul-

taneously samples configuration space with Monte Carlo

and stochastic dynamics [5, 6] within a free energy per-

turbation formalism. Numerical convergence of the free

energy to within 0.3 kcal/mol required generating tens of

millions of configurations. Thus, this work was character-

ized as going to ‘‘extraordinary lengths’’ [4] to obtain the

free energy of interchanging a proton with a methyl group

in the context of a simplistic synthetic ‘‘receptor’’. Because

such free energy simulations are impractical for realistic

systems such as ligands binding to proteins, ‘‘their main

utility has been to obtain additional insights concerning the

origin of free energy differences, in synergy with experi-

ment’’ [7]. Simonson and Karplus give a good perspective

on the increasing use of empirical methods such as free

energy component analysis and Poisson-Boltzmann free

energy simulations [8]. For example, linear interaction

energy component analysis was used to create two novel

potent benzimidazole analogs from the binding analysis of

20 benzimidazole derivatives to HIV reverse transcriptase

[9], while a similar analysis on nine ligands binding to

avidin was performed with a Poisson-Boltzmann Surface

Area (PBSA) method [10]. Interestingly, Kuhn and

coworkers obtained a correlation coefficient of 0.92 with

PBSA and only 0.55 with LIE. Yet when Pearlman [11]

performed a PBSA analysis on a set of ligands that bind to

p38 he concluded that PBSA, ‘‘yielded results much infe-

rior to Dock Energy Score, … but at appreciably larger

computational costs.’’ Such divergent results from different

investigators using the same methods may be because these

empirical methods require significant knowledge of the

protein, the structure–activity relationships of the active

molecule training set and special expertise in the compu-

tational methods, and thus the relative outcomes may have

hinged on the skill of the practitioners. Other computa-

tional methods such as docking and scoring functions are

fast models for (1) sampling ligand binding mode, which is

fairly straightforward; and (2) predicting affinity, but do

not account for entropy, and thus are not adequately pre-

dictive of affinity ranking in practice [12, 13].

Our computational fragment-based approach, which is

based on annealing of the chemical potential, in GC/MC

simulations (ACPS) [2, 3], only requires input of the pro-

tein structure and a set of organic fragments and thus the

results are objective and not dependent on user expertise.

The method starts with a protein bathed in a solvent of a

particular fragment at high chemical potential. Tens of

millions of trial insertions and deletions of the fragment

into protein simulation cell are rapidly carried out at a

given chemical potential until the protein–ligand system

comes to equilibrium. Although this might appear com-

putationally expensive, currently available multi-core

computer platforms enable this to be practical. This process

is repeated with stepwise lowering of the chemical poten-

tial, until the system goes through an abrupt phase transi-

tion, resulting in evacuation of almost all fragments from

the protein simulation cell with a small group of fragments

left tightly bound to collection of sites distributed over the

surface of the protein. The result is a ‘‘fragment map’’ that

depicts the distribution of location, orientation and binding

affinity of each of the fragments on the surface of the target

protein. A site on a protein where a chemically diverse

group of fragments clusters but where water molecules do

not bind has been shown to be a ‘‘hot spot’’, likely the

location of ligand binding or protein–protein interaction

[3]. Unlike other computational fragment-based schemes,

this method rigorously accounts for the configurational free

energy, makes reliable predictions, samples more effi-

ciently and comprehensively, has fewer limiting assump-

tions, and produces statistically-principled distributions of

fragment locations and orientations—all critical for mole-

cule design. With design software that can effectively mine

and search large sets of data, the fragments can be visu-

alized and linked together into larger ligands in literally

millions of ways. The relative binding affinities of these

putative ligands are predicted by combining the free energy

metric (excess chemical potential) of its component frag-

ments. We used this fragment map to construct ligands and

then evaluated the full ligands by resubmitting them into

the simulation.

One of the most important and key unsolved problems in

fragment-based drug discovery is the linker problem [14,

15]. When is it found that two distinct fragments bind with

high affinity in adjacent pockets of the protein, either by

NMR, X-ray, or computation, the key question is whether
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or not they can be linked to create a high affinity com-

pound. Linking two proximal fragments covalently is

fraught with challenges, because bond length or bond angle

strain may be introduced, a high energy conformation may

be created, desolvation penalties may change, or the act of

forming a chemical bond could change the electronic

properties such that the linked fragments do not bind in the

same way or to the same degree as the sum of the two

individual fragments [16]. The simulated annealing of

chemical potential algorithm applied to rigid fragments

does not address these issues, so we have augmented it with

a new algorithm called constrained-fragment annealing

(CFA). This algorithm, as described in more detail below,

co-anneals two or more fragments in the GC/MC simula-

tion with an importance sampling technique that biases the

search such that appropriate bond angles and bond lengths

between the two distinct fragments are preferentially

sampled.

In the blinded part of the study we tested three variations

on our method (charged ligands, neutral ligands, and

applied a solvation correction to the neutral ligands). In the

post-submission phase, we used the conformation of six

ligands from X-ray co-crystal structures (6 had alternate

occupancies in the file so a total of seven compounds were

simulated), and the corresponding protein structure, to test

two different electrostatic states: (1) charged ligands and

charged Asp189 residue and (2) neutralized ligands and

neutralized Asp189. Asp189 is located at the bottom of the

binding pocket, and we calculated its pKa to be 6.29

[17–20]. In addition to electrostatics, two other factors that

influence calculations of ligand binding are waters (i.e.,

discrete and continuum models) and the protein dielectric

constant. Accordingly, we tested the role of these two

aspects of the model by splitting the electrostatic categories

into four additional sub-categories: (a) dielectric constant

of 1, (b) dielectric constant of 1 with calculated water

molecules, (c) dielectric constant of 4, and (d) dielectric

constant of 4 with water molecules. This gave 12 different

tests of our method on the seven ligand co-crystal struc-

tures for a total of 84 additional simulations. Finally, we

reran all the active ligands in the challenge data set with the

optimal parameters determined above.

Methods

Protein structure preparation

To begin our analysis we selected the first protein structure

provided in the SAMPL3 Challenge data (tryp1). To

account for missing residues or atoms, we checked the

tryp1 structure with the Profix program in the JACKAL

molecular modeling package [21] and found no corrections

needed to be made. Next, we added hydrogen atoms to the

tryp1 structure using the Reduce program [22], which also

flipped the imidazole ring of His57 into the correct con-

formation. Applying the PROPKA method [17–20], we

found that the pKa[Asp189] = 6.29. For the blinded part of

the study, we kept the residue charged. After the SAMPL3

Challenge was unblinded, we learned that the assays were

run at pH 7.2 and the compounds were crystalized at pH

6.4 [23]. This led us to try a neutral form of Asp189 in a

post-submission study. Since the calcium ion in the struc-

ture appeared sufficiently remote from the binding site, we

did not use density functional theory to calculate the

electron distribution around the calcium and the partial

charges of residue atoms in close proximity to it, a process

that we normally perform for ions near binding sites. After

the protein structure was prepared, we applied ACPS to

compute fragment distributions.

Annealing of chemical potential simulations (ACPS)

The algorithm requires the input of a fragment structure, a

protein structure, and atomic force field parameters

(Amber). The process consists of a sequence of grand

canonical ensemble Monte Carlo (GC/MC) simulations

where a chemical potential is imposed between an ideal gas

reservoir of fragments and a simulation cell of sufficient

size to enclose three ‘‘solvent’’ layers of fragments around

the target protein. The simulations start with a very high

excess chemical potential where the probability of inserting

a fragment (conceptually, moving from the reservoir to the

system) is dramatically higher than the probability of

deleting the fragment from the system. The system will

adapt to this chemical potential until an equilibrium is

attained where the average number of fragments becomes

stable [24, 25]. In addition to initially causing the simula-

tion cell to be filled and packed with fragments, the high

chemical potential allows difficult to find fragment con-

figurations to be efficiently discovered that require passing

through energetically unfavorable configurations before

reaching optimal positions. The imposed chemical poten-

tial is lowered, or ‘‘annealed’’, in discrete steps from high

positive values to low negative values [2]. For each change

in chemical potential, GC/MC is run until equilibrium is

reached. This process is repeated automatically until the

system goes through an abrupt transition, whereby all of

the bulk solvent fragment molecules leave the protein cell,

because the probabilities of deletion are greater than the

probabilities of fragment insertion (a state designated as a

phase transition). In the post-phase-transition regime of the

simulation, a small number of fragment probes remain

tightly bound to diverse pockets spread all over the protein

and the fragments have higher affinity for the protein than

they do for each other. We continually lower the imposed
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chemical potential until no fragments remain in the protein

cell.

The Monte Carlo method used to compute the fragment

distributions employed in this study follows the GC/MC

scheme formulated by Adams [26]. In this method, small

rigid molecules (fragments) are inserted, deleted, rotated,

and translated. In each Monte Carlo step, a type of move is

chosen at random, and energy associated with the new

configuration is calculated. The step is accepted or rejected

based on a criterion designed to cause the Markov chain of

Monte Carlo steps to converge to a fragment population

characterized by a Boltzmann probability distribution,

e �E=kBTð Þ=Q; where Q is the partition function that nor-

malizes the probabilities. The insertion acceptance proba-

bility is

Pinsert ¼ min 1;
V

k3
deBroglie N þ 1ð Þ

e
� DE�l

kBT

 !
:

The deletion acceptance probability is

Pdelete ¼ min 1;
k3

deBroglieN

V
e
� DEþl

kBT

 !
:

The acceptance for moves (translations or rotations) is

Pmove ¼ min 1;
V

k3
deBroglie N þ 1ð Þ

e
� DE

kBT

 !
;

where l is the chemical potential, V is the volume of the

system, N is the number of fragments in the system, DE is

the change in non-bonded protein-fragment interaction

energies (Coulomb plus Lennard-Jones).

Following Adams [26], it is more convenient to express

the acceptance probabilities involving chemical potential in

terms of a parameter B defined as

B ¼ l
kBT
� ln

k3
deBroglie

V
;

Pinsert ¼ min 1;
1

N þ 1
e
� DE

kBTþB

� �
;

Pdelete ¼ min 1;Ne
� DE

kBT�B
� �

:

Hot-spot identification

Taking the Challenge protein structure, tryp1, as an

unknown, we simulated a series of fragments, including

water, to determine the protein hot spot (location of high

affinity for a diversity of fragments but lower affinity for

water). Acetate, ammonia, aniline, benzene, ethanol, ethyl-

amine, furan, methanol, pyrrole, thiazole, and water were all

simulated on a dehydrated form of the protein. After fol-

lowing a hot-spot identification method described elsewhere

[3], the method produced a single site (Fig. 1). Thus, the

binding site does not need to be known a priori, although it

was in this case. For inclusion of water in the next simula-

tions, we scanned increasingly negative values of free

energy from the water simulation until the binding pocket

was void of water molecules, and kept all other calculated

water molecules for a total of 108 water molecules. All

figures were rendered with the PyMOL program [37].

Building SAMPL3 Challenge ligands

Each Challenge ligand contained multiple functional groups

and multiple rotatable bonds, so we deconstructed the

ligands into fragments that have no rotatable bonds (Table

S5). These rigid fragments were simulated and then joined to

reconstruct the Challenge ligands. For these linked frag-

ments, new atom types were determined using Antechamber

[27, 28] and partial charges were calculated with AM1-BCC

[29]. The binding energies of the assembled ligands are then

evaluated using additional annealing techniques (see below).

The systematic assembly process begins by selecting the

pose of an ‘‘anchor’’ fragment, typically the amine or acid,

which binds with the highest affinity. In some cases, there

are multiple such poses, and all need to be evaluated.

Fragments that had overlapped bonding locations with the

anchor fragment, such as 11, where the ethylamine anchor

overlapped the correct bonding position of the 2,3-dihy-

drobenzofuran, were directly bonded. In situations where

the secondary fragments did not overlap, for instance 6, we

aligned the second fragment to the highest affinity anchor

fragment at the bottom of the pocket, amine or alcohol. For

the acidic moieties, we determined, from the excess

chemical potential, that the acidic ligands would still bind

in the pocket with the acid facing up, so the acidic fragment

was aligned and bonded to the aromatic fragment in the

binding pocket whose pose was determined from the

fragment map. For ligands with isolated ring systems, such

Fig. 1 Single site identified on challenge structure (tryp1) using hot-

spot identification method based on diverse fragment clustering,

affinity ranking, and water exclusion
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as 29 (Fig. 5), we bonded the first two fragments as men-

tioned above, and then aligned and bonded the third frag-

ment at both a 45� angle and planar to the other aromatic

fragment (up to six positions for ligands with two hetero-

cycles, for instance 7). The conformation that showed the

lowest energy determined from energy minimization of

the ligand with a rigid protein was selected for evaluation.

The constructed ligands were energy minimized with local

protein flexibility using 100 steepest descent steps to

minimize any bond strain. At this point, the constructed

ligands were resubmitted to the GC/MC simulator to cal-

culate the final pose and energy, which included the new

minimized structure for the protein.

Solvation correction

The full solvation free energy of each neutral ligand was

initially determined using the SM8 model [30] within

GAMESS [31] followed by a correction that accounted for

the solvent accessible surface area of the ligand as modified

by the protein. While incorrect treatment of the disulfide

bridge at the periphery of the binding pocket led to sol-

vation corrections of limited accuracy in the blinded part of

the study, we found in the unblinded studies that the sol-

vation correction depends strongly on the orientation of the

ligands. For instance, for five ligand orientations of equal

excess chemical potential that deviate by less than 0.1 Å,

solvation values vary by ±0.5 kcal/mol. The solvation

model is a linear empirical correlation model following that

of Junmei Wang et al. [32] that implements

DDGsolv ¼ DGs PjLð Þ þ DGs LjPð Þ

where DGs PjLð Þ is the desolvation of the protein occluded

by the ligand and DGs LjPð Þ is the desolvation of the ligand

occluded by the protein. Each term is computed by using

the solvent-accessible surface of each atom (SASA), as

restricted by other atoms,

DGsolv ¼
Xm

i¼0

Xn

j¼0

cvdw
i SASAj þ cq

j SASAjQj

where SASA is the atom solvent accessible surface, Q is

the partial charge of the atom, and cvdw and cq are Van der

Waals and electrostatic coefficients, respectively, trained

on an experimental data set of solvation energies from ca.

600 molecules [33].

Constrained-fragment annealing (CFA)

CFA evaluates the binding of assembled ligands by

applying ACPS to the component fragments of the ligand,

subject to bond constraints between the fragments. The

energy potential includes bonded energy terms, and

non-bonded energy terms, for both intra-molecular inter-

actions between fragments and fragment-protein interac-

tions. CFA starts with two fragments in near-bonding

configurations. These can be positions calculated directly

in the GC/MC simulation, or they can be produced using

an align-fragment function where the aligned fragment

does not correspond exactly to a fragment position calcu-

lated in the GC/MC. Bond constraints are applied as har-

monic energy penalties to the fragments, which limit the

distance and angle between fragments. Such a constraint is

usually a direct bond. However, for ligands such as 30

(methylene group between the benzene and morpholino

groups), a CH2 constraint would be added, or we would

utilize fragments with methyl groups off the bonding

positions and directly add a bond constraint to the methyl

group. CFA evaluates the binding of linked fragments that

are mutually constrained by the geometry of bonds

implementing the links. Rather than simply summing the

free energies of unconstrained component fragments, CFA

is designed to derive component fragment free energies

that account for entropy reductions due to the restricted

range of motion of a bonded fragment. Further, it allows

the overall binding pose of the ligand assembled from the

linked fragments to be adjusted as the component frag-

ments are subject to a multiplicity of non-bonded protein

interactions, non-bonded fragment–fragment interactions,

and bonded fragment–fragment forces. CFA proceeds by

designating one of the component fragments at a time to be

subject to chemical potential annealing (delete/insert steps)

in a GC/MC simulation, while all the fragments are

allowed to rotate and translate in Monte Carlo steps. In

addition to rotation steps that rotate around a fragment’s

center of mass, rotations around the constrained bonds are

implemented. The energy computed for the acceptance

probabilities in the GC/MC now has extra terms that

implement the bonded energies (length stretching, bond

angle bending),

Etotal ¼ Efrag�protein non�bonded þ Efrag�frag non�bonded

þ Efrag�frag bonded

Efrag�frag bonded ¼
X
bonds

Ebond�stretch þ Ebond�angle;

where the non-bonded terms include both Coulomb and

van der Waals (Lennard-Jones model) interactions. This

allows interplay between various the bonded and non-bond

energies to achieve an energetically-favorable configura-

tion of ligand pose and conformation. The final free energy

scoring is the sum of the constrained free energies of the

component fragments. This methodology allows for bond

rotations at the joints, accounts for the change in entropy

due to the bond constraint limiting motion, and includes

intra-molecular non-bonded interactions.
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Results and discussion

Hot-spot identification

Hot spots, or local regions of high interaction energy, are

important for protein recognition and ligand binding, and

identifying these sites is a critical step to finding catalytic

active sites or allosteric binding sites. Here, stepwise

lowering of the imposed chemical potential isolates frag-

ment-associated sites on the protein surface, such that each

site is ranked by the free energy per molecule. Using

diverse fragment clustering, affinity ranking, and water

exclusion, we identified a single hot-spot site on the

Challenge protein structure tryp1 (Fig. 1). To validate this

site, the Protein Data Bank was searched for co-crystal

structures that had high protein sequence homology to

tryp1 and that contained a small Challenge-like ligand.

Structure 2bza contains bound benzylamine bound to a

bovine pancreas b-trypsin. When this structure is compared

to the structure of tryp1, the benzylamine ligand bound in

the site determined by our hot-spot identification method.

Water

Accounting for the effects of water on ligand binding is

necessary to predict the relative binding affinity for a series

of ligands. Tightly-bound water molecules may block

access to sites, link fragments to sites, or shield critical

residues electrostatically. Chemical potential annealing of

water identifies high affinity water sites, ranks water mol-

ecules present in crystal structures by affinity, and reveals

multi-body water configurations resulting from hydrogen-

bond networks, which are difficult or impossible to find

with other methods. Since the tryp1 Challenge protein

structure does not contain any water molecules, we used

ACPS to calculate the position of water molecules prior to

running the fragments. For our fragment simulations, we

kept 108 water molecules—these were the predicted tightly

bound water molecules as identified by post phase transi-

tion occupancy of a protein site. Four of the water mole-

cules were proximal to the binding pocket (Fig. 2). Three

were buried behind Asp189. One water molecule, near the

carbonyl group of Gly219 and with its hydrogen pointing

into the pocket, could influence ligand binding.

Keeping these water molecules, we simulated fragments

corresponding to motifs in the ligands (Table S5). To ensure

that the water molecules did not cause problems with

binding—such as steric clashes with fragment binding—the

tryp1 structure, with calculated ethylamine and benzene

fragments at their lowest binding energy, was aligned to

2bza (Fig. 3). The fragment data overlaid well with the

benzylamine in the X-ray crystal structure. The fragments

displayed the same pose in a simulation run with no water

molecules, but the energies were different. This suggests

that the water molecules do not change the pose of the amine

containing compounds, but only their relative rankings.

Building SAMPL3 ligands from fragments

The Challenge ligands could be constructed from 2 to 3

fragments either from the fragment map or from bonding

positions (ligand 3 was the only single fragment ligand).

Examining the fragment-map data exposed several trends

including (1) all amines—aniline, ammonia, ammonium,

methylamine, ethylamine, dimethylamine, and methyle-

thaneamine—were bound at the bottom of the pocket near

Fig. 2 Calculated water molecules kept during simulations to create

fragment map and for full ligand evaluations in the blinded study. All

waters were imbedded below the protein surface. Asp189 occupies

the bottom of the binding pocket and shown in stick view

Fig. 3 Calculated fragments benzene and ethylamine (green carbons)

overlaid with benzylamine from 2bza structure. Structures were

aligned with PyMOL [37], first with a sequence alignment and then an

alignment that minimized the root mean square deviation
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Asp189; and that (2) all aromatics and heterocycles—

benzene, benzofuran, benzofuran-2,3-dihydro, benzothio-

phene, morpholine, piperazine, piperidine, pyrazole,

pyridine, pyridine-1,2a-imidazole, pyrrole, pyrrolidine,

thiadiazole, thiazole, and thiophene—were bound just

above the amines, in the main body of the binding pocket.

While our fragment map often displayed overlapping

binding modes, in certain cases, as with isolated ring sys-

tems, one ring would not be found in a binding position.

Ligand 26 can be constructed from a benzene, ethylamine,

and pyrrole fragments, but the benzene and pyrrole have

overlapping positions in the fragment map because the

location of highest affinity for each fragment is within the

binding cavity. Locating binding positions for the second

ring by admitting fragments of lesser affinity produces

other binding modes around the periphery of the binding

pocket but not in bonding positions to the other, more

negative affinity ring fragment. These second rings are in

non-optimal positions for ligand affinity. To overcome this

hurdle, we added the second ring in the correct bonding

position and energy minimized. Because local energy

minima might bias certain rotamers of the second frag-

ment, multiple orientations were built and minimized. The

lowest energy conformation was selected and reevaluated

using the GC/MC simulation. This process is summarized

in Scheme 1 and Fig. 4. Ideally, the protein would dictate

the highest affinity fragments and linking would occur only

with those fragments found in the fragment map.

Analysis of pose prediction

Single-fragment annealing (SFA)

When analyzing a complex fragment that can be decom-

posed into two or three simpler fragments, it is often

observed that each simpler fragment is pulled somewhat

away from its optimal binding position on the protein. The

overall molecule binds in a compromised position, so that all

groups can bind into their respective sub-pockets simulta-

neously. SFA performs annealing of the chemical potential

with an additional biased sampling protocol. This overs-

amples the larger complex fragment in the binding site in

order to discover the optimal total complex fragment bind-

ing mode. Thus, the degree of deviation from the individual

simpler fragment optimal binding modes may be analyzed.

Of course, the more the complex fragment binding mode

mirrors the collection of individual simple fragment binding

modes, the more likely the complex linked fragment is a

better binding candidate. We used SFA to determine the

binding poses and affinities of the Challenge ligands.

The co-crystal structures of six (of seventeen) active

compounds (6, 7, 11, 12, 26, 29) were determined. Ligand 6

had two occupancies in the X-ray crystal structure and these

alternative structures (6A and 6B) differed by the placement

of the amine in the bottom of the pocket. Our calculated

pose for the ethylamine fragment, whether charged or

neutral, overlaid well with the amine group of 6A (Fig. 5,

left panel for 6). In both the 6A and 6B co-crystal structures,

the benzothiophene was in the same position, but in our

Scheme 1 The flow diagram presents the process for building the

SAMPL3 Challenge ligands

Fig. 4 Single-fragment annealing (SFA) uses a rigid compound in

the ACPS. To assemble the compound, we would select an anchor

fragment, ethylamine in this example, and align the second fragment

to the anchor fragment. Multiple different starting conformations

were generated. Next, the fragments were linked and energy

minimized. The lowest energy conformation(s) was evaluated with

SFA. All parts of this procedure are completed within the context of

the protein
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fragment map, neither the benzothiophene nor 3-methyl-

benzothiophene fragments were in ideal bonding positions.

After aligning the 3-methyl-benzothiophene to the ethyla-

mine, energy minimizing, and resubmitting to the GC/MC

simulations, the calculated ligand almost perfectly overlaid

6A (Fig. 5, middle panel for 6).

For 7, the calculated ethylamine overlaid well with the

primary amine of the ligand in the crystal structure (Fig. 5,

left panel for 7). The predicted thiazole fragments (2,4-

dimethylthiazole, 2-methylthiazole, 4-methylthiazole) all

had the nitrogen and sulfur in the relatively correct positions

in the binding pocket. After linking these fragments, the

bond angle between the primary amine and thiazole differed

by about 75� compared to the ligand in the crystal structure,

which caused the predicted ligand to orient toward Trp215

whereas the crystal ligand bound to the other side of the

pocket near Gln192/Cys191. We predicted the thiophene to

be planar to the thiazole, but there was a slight twist in the

crystal structure. However, the sulfur of the thiophene was

oriented correctly with respect to the thiazole.

The fragment map for 11 had the ethylamine perfectly

overlaid with the crystal structure amine. The benzofuran

fragment was in the correct relative position in the pocket

with the same orientation of the oxygen. The constructed

fragment had the primary amine in the correct position but

the benzofuran ring was twisted by about 40� with respect

to the crystal structure. The fragment map for 12 had

fragments that perfectly overlaid bonding positions. The

predicted ligand and the X-ray crystal structure overlaid

perfectly on the sulfur atom and only deviated a small

amount in the position of the bromine. The ethylamine in

our prediction pointed toward Asp189/Cys220 whereas the

crystal ligand pointed toward Asp189/Tyr228. For 26 and

29, the ethylamine and benzene fragments showed good

agreement with the X-ray structures. The pyrrole of 26 was

displaced by about 1Å, whereas the piperazine of 29

exhibited accurate overlay with the crystal.

The pose predictability of the ligands from fragment

data tended to depend on the number of rotatable bonds and

thus the number of fragments used to construct the ligands.

For instance, 6, 11, and 12 have one rotatable bond and

were assembled from two fragments. In this case our pose

prediction was in good agreement with experimental data.

7, 26, and 29 have two rotatable bonds and were built from

three fragments. Here our predictability decreased slightly

but we still identified the correct binding pocket and rela-

tive position of the ligands within the binding pocket.

Constrained-fragment annealing (CFA)

CFA addresses one of the core problems of fragment-based

design—binding evaluation of linked fragments. Binding

poses of fragments provide a strong hypothesis for where

and with what affinities ligands built by linking fragment

will bind. However, when fragments are linked, charges in

the resulting ligand are often redistributed, and the binding

Fig. 5 Predicted poses (green line representation) overlaid with the

six experimental X-ray crystal structures (magenta stick representa-
tion); Numbers in the top left of each row correspond to the ligand

Challenge numbers. Ligand 6 has two occupancies in the crystal

structure; they mainly differ by the placement of the amine group (6A
has the amine coming out of the plane and matches our fragment data).

Each column presents a different result from our simulation; left is raw

fragment map with fragments corresponding to ligand functionalities;

middle is our constructed ligands used in the affinity study; right is our

constrained-fragment annealing done after the release of the results
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pose can shift to accommodate a trade-off in the binding of

each component. Further, the entropy of the fragments is

changed by the restriction on motion imposed by the bonds.

The CFA algorithm calculates the free energy, including

configurational entropy, of linked fragments with rotatable

bonds (Fig. 6). There are several variations of this tech-

nique, but in essence it co-anneals two or more distinct

fragments using simulated annealing of chemical potential

with restraints on the bond angles and bond lengths; unlike

SFA which using a rigid ligand assembled from fragments.

In CFA, one or more fragments are constrained to move

subject to bonded forces to other fragments or ligand. One

fragment is annealed while the other fragments, if any, are

allowed to move and rotate as well. This provides a char-

acterization of the free energy that includes changes in

configurational entropy due to the limited range of motion

under the bonded constraint. Further, the interconnected

fragments can now explore somewhat different poses. The

simulation monitors the chemical potential required for the

two fragments to populate optimal linkage geometry. It is

often the case that observing such a population requires the

algorithm to go to high chemical potentials (poor free

energies), which indicates that those two fragments are not

good candidates for linkage. When two fragments can be

co-annealed with the CFA method and they show popula-

tions of proper geometry without substantial degradation of

the interaction free energy as measured by the chemical

potential, then these are predicted to be good candidates to

link.

By using CFA, we were able to correct some of the

erroneous angles in our constructed ligands (right-hand

column of Fig. 5). CFA constrains the bond angles and

distances of fragments, yet samples sufficiently to analyze

all possible bond angles between the fragments—thus

yielding the angles corresponding to the lowest energies.

After running CFA, the relative positions of the heavy

atoms did not change suggesting that, in this case, assem-

bling fragments, applying energy minimization, and run-

ning SFAs gave the same result as our more rigorous CFA

analysis. The calculated CFA poses for the fragments did

overlay the experimental structures with less bond and

spatial difference (lower RMSD values, Table 1), yet

compound 7 still lay to the wrong side of the pocket.

Examining this structure in greater detail, the experimental

structure had a water molecule (number 136 in pdb file)

that fit between the thiazole and thiophene of 7 and would

push the ligand into a more upright position. We decided to

run a simulation keeping all water molecules that we cal-

culated within 4 Å of the protein surface and did not ste-

rically interfere with the ligand. This starting point did not

have a calculated water molecule near the crystallographic

water #136. After GC/MC, where the water molecules have

freedom to move during sampling, we calculated water

molecules that did match with the crystallographic water

molecules and kept the orientation of 7 similar to the X-ray

structure (Figure S5). This water molecule forms a bridging

interaction between the ligand and the protein and interacts

with another water molecule. Our GC/MC simulations

allowed for the discovery of this complex interaction

(Figure S5), which is difficult to detect using other meth-

ods. The co-annealing of water and ligand 7 (renamed

ligand 7water) significantly improved the RMSD value

(Table 1). This led to the conclusion that keeping buried or

Fig. 6 Constrained-fragment annealing (CFA) co-anneals fragments

with restraints in the context of the protein, which evaluates the

binding of linked fragments with rotatable bonds. In CFA, the

fragments are allowed to minimize their free energy only in a specific,

bonded position relative to other fragments

Table 1 RMSD values for predicted SFA and CFA calculations

Ligand # SFA CFA

6A 0.55 0.52

6B 0.65 0.63

7 1.34 1.16

7water 0.23

11 0.62 0.57

12 0.81 0.62

26 0.81 0.40

29 0.58 0.45

Ligand 7water refers to the SFA simulation where the ligand and water

are co-annealed and water has the freedom to move in the simulation.

This resulted in a correctly positioned water molecule that had a

bridging interaction with the ligand and protein and matched the

position of a crystallographic water molecule (Figure S5)
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structural water molecules was not sufficient to correctly

calculate the pose of 7.

Analysis of affinity prediction

In the blinded part of this study, we tested three datasets on

the SAMPL3 Challenge ligands. We chose to look at

charged ligands, neutral ligands, and neutral ligands with a

solvation correction. Without properly accounting for

desolvation and electrostatics, limited by the inaccuracy of

the forcefield models for charge–charge interactions,

comparison of predicted ligand affinities across functional

groups showed little correlation due to poor characteriza-

tion of charge–charge interactions (but see subsequent

results below when these are neutralized). For our results,

we broke the dataset into three categories: amines, alco-

hols, and acids.

Amines

As mentioned above in the pose prediction, our best results

derived from ligands with a minimal number of rotatable

bonds and minimal number of constructed fragments.

Ligands with only one rotatable bond and two constructed

fragments were 6, 11, 12, and 20. Our prediction for the

active compounds showed a linear trend with the experi-

mental data for neutral ligand simulations (Figure S1). The

least-squares fitting value became slightly better with a

solvation correction, although with only three active

compounds and only three data points, it was hard to say if

this was significant. For charged ligands, the data did not

correlate to any trend. 20 and 6 are isomers, where the

ethylamine is located at the 5 and 3 position, respectively,

on the benzothiophene. 20 was inactive. Comparing iso-

mers 20 and 6, we predicted 6 to have higher affinity in all

three cases: charged, neutral, and a solvation corrected

neutral ligand.

The secondary amines (19 and 23) were inactive, and

our predicted energies were two of the three most positive

energies out of the predicted set (both neutral and solva-

tion-corrected predictions), so we correctly ranked the

secondary amines. The ligands containing aniline func-

tionalities (3, 27, 34) were predicted to have the following

ranking: 34 [ 27 [ 3 (both neutral and solvation corrected

data); 34, with a p-substituted thiadiazole, was predicted to

have significantly higher affinity than the other two ligands.

The experimental data had 27, with a m-substituted pyrrole,

active and the other two ligands inactive. We are still

investigating the overestimation of 34. For the rest of the

amine dataset, amines with isolated ring systems, we could

not find any interesting correlations from our predictions to

the experimental data. As mentioned above in the pose

prediction, this could be due to the inadequacy of only

keeping structural, buried, and tightly bound water mole-

cules or incorrect poses.

Alcohols

From our calculations, we found the pose of the alcohols to

be in the binding pocket with the hydroxyl functionalities

pointing down in the pocket and interacting with Asp189.

The energy for the alcohol pointing up in the pocket was

slightly less favorable and could be an alternate orientation.

We determined this from our fragment data and simulating

constructed ligands oriented with the alcohol up or down in

the binding pocket.

Out of the 34 challenge ligands, seven contained

hydroxyl functionalities and only one of the alcohols was

active (compound 16). Within the error bars of ca.

±0.5 kcal/mol, we ranked 16 tied for third with compound

5 and compounds 14 and 16 to be of higher affinity. The

two ligands with over-predicted energies both contained a

methylene group between the two rings, adding additional

degrees of freedom. Using a conformational memories

algorithm [34–36], which predicts the conformational

energy penalty of ligands going from their unbound to

bound confirmation and includes solvation, we found the

energies for the over-predicted ligands to have between 3

and 5 times higher energy penalty going from an unbound

confirmation to the predicted bound confirmation. Cor-

recting for the unbound to bound stress energy cost of these

molecules allowed us to correctly predict the active alcohol

ligand.

Carboxylic acids

The pose of the carboxylic acids was the most difficult to

determine. Initially, the data suggested that the acids could

be interacting with Lys60, which resides close to the cat-

alytic triad. This interaction was prioritized lower because

the fragment data for the acids bound to the amine of Lys60

were not optimally oriented toward the triad, and the

fragments representing the ring systems of the ligands were

not high affinity in the area between Lys60 and the cata-

lytic triad. Our calculated pose for the carboxylic acid

ligands oriented the aromatic ring systems into the shaft of

the binding pocket with acid group out of the pocket

toward the catalytic triad and Gln192. For all of the other

pose predictions (alcohols and amines), we did not see

significant conformational changes within the protein, but

the acid ligands did cause a conformational change in the

protein. The acid pose predication had Gln192 swing in

toward the pocket so the hydrogens on the amide nitrogen

interact with the acid.

Three of the 34 ligands had acid functionalities (1, 15,

and 25). 15 was the only active ligand of the acid group,
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and we correctly predicted it to be the highest affinity in the

charged and neutral states. The solvation correction nor-

mally dampened the calculated free energy, but for 25 the

energy became more negative, which was possibly due to

the handling of the disulfide bridge as mentioned in the

materials and methods.

X-ray crystal ligands

After submission of the results, the Challenge organizers

unblinded six X-ray crystal structures for ligands 6, 7, 11,

12, 26, and 29, and we used these compounds to further test

our method using different parameters that focused on the

role of electrostatics, water, and dielectric. 6 offered an

interesting test case since the X-ray crystal showed two

occupancies at 0.4 (orientation A pointing toward Asp189/

Cys220) and 0.5 (orientation B pointing toward Asp189/

Tyr228, down into the other side of the pocket). Previously

we tested our method using neutral ligands, but we did note

that the calculated pKa of Asp189 was 6.29, so in this

round of testing we simulated neutral ligands to a neutral

form of Asp189 (designated Ash189). In addition to neutral

simulations, we also performed charged ligand–charged

protein simulations (charged Asp189). The neutral and

charged simulations were run using a dielectric of 1 and 4,

and at each of these values, we simulated explicit and

implicit water for a total of eight categories and seven

ligands for an overall count of 56 additional simulations.

For the neutral simulations, 28 out of the 56 simulations, a

solvation correction was applied.

Looking at the affinity changes due to the two different

confirmations of 6 reveals a large difference in the energy

based on the conformational changes (Tables S2, S3, and

S4), which stems from the amine pointing in two different

directions separated by about 160� rotation compared to the

benzothiophene ring. Confirmation B continually ranked

better within all of the datasets. Simulating neutral ligands

and Ash189 gave significant improvement over charged

ligands and Asp189 (Fig. 7, Figures S2 and S3). In the

presence of explicit water molecules, a dielectric of 1

resulted in a higher correlation with experimental values. In

the absence of explicit water molecules, dielectric 4

improved the correlation (Figures S3 and S4). Finally, the

solvation correction further increased the predictions

(Figs. 5 and S4).

Conclusions

Anthony Nicholls designed the SAMPL challenges to

create a forum for objectively testing and reporting what

techniques work, what does not work, and paths to

improvement so that all techniques have the opportunity to

learn and evolve in an objective manner. In the case of

simulated annealing of chemical potential, a method

designed to effectively and completely sample the entire

ensemble of fragment-protein interactions with no human

bias, we clearly learned important lessons on the impact of

neutralizing ligands and neutralizing binding residues,

solvation, and the role of water.

In the blinded study, 34 challenge ligands were run under

three different conditions—charged ligands, neutral ligands,

and neutral ligands with a solvation correction. We found

that the predictability of this method delivered the highest

correlation to experimental data when the ligands were cat-

egorized into main function group—alcohol, carboxylic acid,

and amine—and thus treated as a congeneric series. The

rank-order affinity predictions for the neutral fragments were

accurate in most cases, but there was little correlation

between the predicted and actual affinity for the charged

fragments. The pose prediction gave very good agreement

with experimental data when we used the fragment map,

bonded the fragments, energy minimized the constructed

ligands, and resubmitted them to the GC/MC simulation.

Angle and spatial deviations of the predicted poses improved

when we applied our constrained-fragment annealing.

After the experimental data was made publicly avail-

able, the so-called unblinded part of the study, we reran the

simulations under separate conditions, (1) protein dielectric

Fig. 7 Summary of results for testing different applications of our

GC/MC method reveals that simulating charged ligands against a

charged Asp189 gives lowest correlation (blue), simulating neutral

ligands against a neutral form of Asp189 (ASH189) yields significant

improvement in correlation (red), correcting for solvation (green)

results in an higher R2, and using explicit waters gave the maximum

correlation. These results were produced at a dielectric of 4, for full

results see Figures S2, S3, and S4 and corresponding Tables S2, S3,

and S4
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1 and 4, (2) explicit and implicit water molecules, (3)

charged amines with a charged Asp189 in the binding site,

(4) deprotonated the amines thus neutralizing them and

protonated the aspartate in the protein binding site so it was

also neutralized, and (5) we included the water solvation

energy penalty of the neutral ligands. The dielectric of 4

damped the electrostatic part of the binding energies and

gave better correlation to experimental data in the absence

of water, while dielectric 1 delivered better correlation with

explicit waters. Explicit waters improved the predictability

of our method. While binding poses were accurately pre-

dicted in all cases, we could not predict the rank ordering

of charged ligands. Rerunning the amine fragments in the

neutralized form with the aspartate in the binding site of

the protein also neutralized resulted in quite accurate rank-

order binding predictions and including the ligand solva-

tion correction increased the accuracy of the predictions

even further. Challenged with predicting pose and affinity

prediction, we found both the boundaries of what works

well and the cause of outliers, which should help improve

our technique for the next challenge.
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