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Abstract We carried out a prospective evaluation of the

utility of the SIE (solvation interaction energy) scoring

function for virtual screening and binding affinity predic-

tion. Since experimental structures of the complexes were

not provided, this was an exercise in virtual docking as

well. We used our exhaustive docking program, Wilma, to

provide high-quality poses that were rescored using SIE to

provide binding affinity predictions. We also tested the

combination of SIE with our latest solvation model, first

shell of hydration (FiSH), which captures some of the

discrete properties of water within a continuum model. We

achieved good enrichment in virtual screening of fragments

against trypsin, with an area under the curve of about 0.7

for the receiver operating characteristic curve. Moreover,

the early enrichment performance was quite good with

50% of true actives recovered with a 15% false positive

rate in a prospective calculation and with a 3% false

positive rate in a retrospective application of SIE with

FiSH. Binding affinity predictions for both trypsin and

host–guest complexes were generally within 2 kcal/mol of

the experimental values. However, the rank ordering of

affinities differing by 2 kcal/mol or less was not well

predicted. On the other hand, it was encouraging that the

incorporation of a more sophisticated solvation model into

SIE resulted in better discrimination of true binders from

binders. This suggests that the inclusion of proper Physics

in our models is a fruitful strategy for improving the

reliability of our binding affinity predictions.

Keywords Virtual screening � Docking � SIE � Solvated

interaction energy � Binding affinity prediction � FiSH

Introduction

The ability to accurately predict intermolecular associations

is important for the understanding of the thermodynamic and

structural aspects governing molecular recognition in bio-

logical systems. It is also critical to the success of important

practical applications like the structure-based drug design.

Hence, in the past two decades, the development of theo-

retical methods for predicting binding affinities has been

fuelled by a perceived benefit to drug discovery. Binding

affinity prediction methods span several levels of theory,

with a corresponding trade-off between prediction accuracy

and computational demand. On the one hand are the rela-

tively slow but thermodynamically rigorous pathway

approaches such as free energy perturbation (FEP) and

thermodynamic integration (TI) [1, 2]. On the other hand is a

large and ever-increasing number of faster approaches

relying on binding affinity scoring functions that can be

classified into three main categories: force-field-based,

knowledge-based, and empirical [3–9].

An emergent group of end-point force-field based scoring

functions that represent a reasonable compromise between

time, computational resources, and accuracy combine

molecular mechanics (MM) force-fields with a continuum

treatment of solvation. A representative method in this group

is MM-PB(GB)/SA [10–14], which combines MM-based

terms with electrostatic solvation terms from generalized

Born (GB) or Poisson–Boltzmann (PB) continuum models,
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and surface area (SA)-based nonpolar solvation contribu-

tion. Solvated interaction energy (SIE) [15–17] is a similar

end-point force-field-based scoring function that approxi-

mates the protein–ligand binding affinity by an interaction

energy contribution and a desolvation free energy contri-

bution, each of them further made up of electrostatic and

nonpolar components. Electrostatic solvation effects are

calculated with the boundary element solution to the Poisson

equation, while non-polar solvation is based on molecular

SA. Calibration of several physical parameters, including

the dielectric constant, Born radii, surface tension coeffi-

cient, and enthalpy-entropy compensation scaling factor,

was based on a diverse dataset of 99 protein–ligand com-

plexes [15]. The SIE scoring function parametrized in this

manner achieves a reasonable transferability across a wide

variety of protein–ligand systems, consistently returning

absolute binding affinities within the experimental range, as

demonstrated by test cases published in the literature

[18–31]. External testing of the standard SIE parametriza-

tion in the CSAR-2010 scoring challenge consisting in a

curated dataset of 343 protein–ligand complexes diverse

with respect to ligands and targets [32, 33], afforded binding

affinity predictions with a mean-unsigned-error (MUE) of

about 2 kcal/mol [34].

In this paper, we continue prospective testing of the SIE

function. The first blind test was carried out in the first

edition of SAMPL (Statistical Assessment of the Modeling

of Proteins and Ligands) organized by OpenEye Scientific

Software and showed a reasonable performance of SIE in

binding affinity predictions for the SAMPL-1 set of kinase

inhibitors for which available cognate crystal structures

were provided [35]. However, the SAMPL-3 blind data sets

propose significantly different challenges that test the

limits of the applicability domain of the SIE function. First,

the trypsin-binding fragments data set includes low-

molecular-weight ligands that are typically of weak bind-

ing affinity (high-lM to mM) [36], a noisy range for most

scoring functions. Secondly, the host–guest dataset chal-

lenges with systems in which the target is also of low-

molecular-weight, but surprisingly, these systems have

been considered notorious exceptions in the binding

affinity landscape by having affinities unexpectedly high

for their size [37, 38]. However, perhaps the most impor-

tant test for the SIE function is the challenge in SAMPL-3

to work with non-experimental ligand poses for predicting

binding affinities in both trypsin-fragment and host–guest

systems. Clearly, the added challenge of scoring compu-

tationally derived binding modes is highly relevant for

most of the real-life applications of SIE.

Therefore, a docking procedure was required in order to

test SIE performance in SAMPL-3. We have recently

developed Wilma (manuscript in preparation), an exhaus-

tive docking program that has the required speed for large-

scale in silico docking-scoring (aka virtual screening) [39]

of small-molecule libraries. Owing to its exhaustive nature

as well as to its fast empirical pose-ranking function cali-

brated on crystal structures of protein–ligand complexes,

the top-ranked pose produced by Wilma has been proven to

be consistently close to the experimental pose for drug-like

ligands. In SAMPL-3, the top-ranked Wilma pose(s) was

(were) selected for post-scoring with SIE. In effect, here

we test the performance of the Wilma-SIE docking-scoring

platform for both virtual screening and binding affinity

predictions.

Unquestionably, the success (or failure) of virtual

screening (VS) relies mostly on the quality of the under-

lying docking and scoring function(s). The challenge in

virtual screening is exacerbated by the fact that in order to

be relevant in a drug discovery pipeline accurate docking-

scoring has to be achieved under the constraint of fast

computing. Because intermolecular binding is typically

accompanied by the dehydration of the interacting surfaces

and reorganization of the solvent water around the ensuing

complex, a fast yet accurate solvation model is of para-

mount importance. This is afforded by the next-generation

of solvation models that will retain the efficiency of the

current continuum approximation but will be able to cap-

ture aspects of the physics of hydration that are dependent

on the discrete properties of water. Such continuum models

are the semi-explicit assembly (SEA) [40, 41], and first

shell of hydration (FiSH) [42, 43]. Hence, we also used the

SAMPL-3 data sets to test both prospectively and retro-

spectively the FiSH model, which we incorporated into the

SIE function.

Methods

Wilma docking

Docking was carried out using an exhaustive docking

software called Wilma (manuscript in preparation). Wilma

uses a brute-force searching approach where the interaction

with the rigid protein of all the discrete rotational and

translational states of every ligand conformation generated

by OMEGA [44] (OpenEye Scientific Software, Santa Fe,

NM) is examined. Using an efficient filtering method, the

program exhaustively enumerates, scores and ranks all the

ligand poses that do not overlap with the protein. The

weighted 5-term scoring function used for docking was

trained to recover the most native states using 343 protein–

ligand complexes from the curated CSAR dataset [32]. The

scoring function includes a van der Walls 6–12 Lennard–

Jones potential, a Coulomb interaction term, an explicit

H-bond term, which considers donor and acceptor orien-

tations, and two surface and polar-surface complementarity
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terms. Docking is done within a predefined rectangular

volume with a translation step size of 0.5 Å. The discrete

rotation of the ligand is adjusted to insure that the maxi-

mum movement of any atom between adjacent orientations

is less than 1 Å. The ligand conformations generated by

OMEGA are controlled by an internal energy cutoff of

20 kcal/mol and a minimal RMSD value that keeps the

total number of conformations below 3,000 for the trypsin

compounds or 10,000 for the larger host–guest ligands.

Solvated interaction energy (SIE) calculations

Scoring of binding affinities was carried out using the

solvated interaction energy (SIE) end-point force-field

based method [15–17, 34]. In SIE, the binding free energy

in aqueous solution is approximated from the electrostatic

and non-polar components of the interaction energy and the

desolvation free energy (Eq. 1). The free state of the sys-

tem is obtained from rigid separation of the interacting

molecules from the bound state.

SIEðq;Din; a; c;CÞ ¼ a ECoul
inter ðDinÞ þ DGR

desolvðq;DinÞ
�

þEvdW
inter þ cðq;DinÞ � DMSAðqÞ

�
þ C

ð1Þ

Intermolecular Coulomb and van der Waals interaction

energies in the bound state, ECoul
inter and EvdW

inter , were

calculated with the biomacromolecular force field

AMBER [45, 46], and its extension to small molecules,

GAFF [47]. Partial atomic charges for protein atoms were

taken from the AMBER force field, which are calculated

with the two-stage RESP fitting method to the electrostatic

potential at ab initio level [48, 49], whereas ligands were

assigned AM1-BCC partial charges [50, 51]. For

electrostatic desolvation, the change in the reaction field

energy between the bound and free states, DGR
desolv, was

calculated with a continuum model based on a boundary

element solution to the Poisson equation using the BRI

BEM program [52, 53]. The molecular surface required for

boundary element electrostatic calculations was generated

with a marching tetrahedra tessellation algorithm [54, 55],

and a variable-radius solvent probe that adjusts with

respect to the polarity of each atom being surfaced [56].

The generated molecular surface is also used to calculate

the change in molecular surface area upon binding, MSA,

leading to a nonpolar desolvation contribution upon

multiplication with a surface tension coefficient, c, which

is based on a linear relationship between experimental

hydration free energies of alkanes and their MSAs. q is a

factor applied to derive atomic Born radii by linear scaling

of AMBER van der Waals radii (R*). Din is the solute

interior dielectric constant. a is a global scaling factor of

the total raw solvated interaction energy relating to the

scaling of the binding free energy due to configurational

entropy effects [57, 58].

Our main interest in SAMPL-3 was to test prospectively

the default values of q = 1.1, Din = 2.25, c = 12.894 cal/

(mol Å), a = 0.104758, and C = -2.89 kcal/mol, which

represent the standard SIE parameters originally obtained

by calibration against a protein–ligand training dataset of

99 complexes refined by restrained energy minimization

[15]. We also explored prospectively rescaled SIE func-

tions where the a and C parameters were retrained on

published data for SAMPL-3 systems. For trypsin affinity

prediction, we rescaled the SIE function using a subset of

16 trypsin-ligand complexes from the original SIE training

data set [15]. This resulted in values of a = 0.1609 and

C = 2.16 kcal/mol, specifically tuned for trypsin. For

host–guest affinity predictions, SIE rescaling was based on

free energy data available for 26 guests binding to host 1

and 7 guests binding to host 2 [59]. We note that SIE

rescaling affects absolute predictions (e.g., MUEs) but not

the level of correlation between experimental and SIE-

predicted binding affinities. We shall refer to the rescaled

SIE function as rSIE.

Single-conformation-based SIE calculations were per-

formed on complexes refined by constrained energy mini-

mization [15]. In the case of trypsin-ligand complexes, we

applied our current refinement protocol for protein–ligand

complexes [34, 35], which includes energy minimization of

the ligand and only the protein residues within 4 Å from

the ligand, and applying harmonic restraints with force

constants of 3 kcal/(mol Å2) and 20 kcal/(mol Å2) for the

ligand and protein, respectively, heavy atoms in this region.

For the host–guest systems, the harmonic restraints were

applied on all heavy atoms in the system, 3 kcal/(mol Å2)

for the guest and 20 kcal/(mol Å2) for the host. Energy

minimization was carried out down to a gradient of

0.01 kcal/(mol Å), with AMBER/GAFF force-field

parameters and two-stage-RESP/AM1-BCC partial charges

(as employed in SIE calculations), and a distance-depen-

dent dielectric constant (4r) to crudely mimic solvent

screening.

FiSH solvation model

The FiSH solvation model was designed to capture some of

the discrete nature of hydration within a completely con-

tinuum framework [42]. By using Born radii that depend on

the induced surface charge density it reproduces the charge

asymmetry of hydration observed in discrete water simu-

lations [60, 61]. Unlike the default solvation model within

SIE, which uses a solute dielectric of 2.25, the FiSH model

uses a solute dielectric of 1.0. Furthermore, the non-elec-

trostatic component of solvation is split into a cavity term

and a solute–solvent van der Waals term. The non-bulk
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nature of the first hydration shell is represented by a two-

region continuum van der Waals model. Water in the first

hydration shell is modeled as a uniform distribution along

the solvent-accessible surface (SAS) constructed using

atom-dependent probe radii. The van der Waals interaction

of the solute with the first hydration shell is calculated by

integrating the Lennard–Jones potential along the SAS [42]

using AMBER [45, 46] or GAFF [47] parameters for the

solute and TIP3P [62] parameters for water. The van der

Waals contribution of the second solvation shell outwards

is obtained by integrating the contribution of a uniform

bulk solvent from the SAS ? 2.8 Å out to infinity using

standard continuum van der Waals methods [42, 63].

Structural preparation

Trypsin data set

Three high-resolution crystal structures of bovine trypsin

were prepared for virtual screening, PDB entries 1HJ9,

1S0R and 3MI4 refined at resolutions of 0.95, 1.02, and

0.8 Å, respectively. A superposition of these structures

reveals only minor structural deviations around the active

site; however, the Gln192 side chain located at the opening

of the S1 pocket adopts different rotameric states. Structural

preparation was done in SYBYL 8.1.1 (Tripos, Inc., St.

Louis, MO). Bound ligands and buffer ions were removed.

Hydrogen atoms were added, with the ionizable groups

protonated at neutral pH. Tautomeric and protonation states

of His residues were manually assigned after visual

inspection in order to maximize the H-bonding network.

A Ca2? ion distant from the catalytic site was retained. With

respect to the treatment of crystallographic water molecules,

we prepared two versions for each structure. In one version,

all explicit solvent molecules were removed. In another

version we retained 22 water molecules conserved among

the three crystal structures used, 14 of which are buried in the

protein core, 3 are proximal to Ca2?, 4 are buried in the back

of the Asp189 side chain at the bottom of the S1 pocket, and

1 bridges the main-chain atoms of residues Ser217, Gln221,

and Lys224 in the wall of the S1 pocket. Polar hydrogen

atoms were manually oriented to maximize H-bonding. All

prepared trypsin structures were then subjected to energy

minimization with the AMBER force-field, in which all

hydrogen atoms were allowed to move with heavy atoms

fixed at their crystallographic positions.

In order to prepare the fragments database for virtual

screening, we first assigned the protonation states of the 544

ligands in the database at neutral pH using FILTER (Open-

Eye Inc., Santa Fe, NM). Manual changes were made in the

protonation states produced by FILTER for 11 ligands. These

included migration of the proton from the more buried amine

to the more exposed amine in the piperazine moieties of

ligands ID 113, 114, 215, 216, 217, 245, 304, 330, 356, as

well as protonation at the exposed N atom of the hydrazine

moiety in ligand ID 178, and protonation of the tertiary ali-

phatic amine in the ligand ID 488. Partial charges were cal-

culated with the AM1-BCC method [50, 51], as implemented

in MOLCHARGE (OpenEye, Inc.), using as input the low-

est-energy conformation generated by OMEGA (OpenEye,

Inc.). The same preparation procedure of the target and

ligands was used for trypsin binding affinity prediction.

Host–guest data set

Host-1, an acyclic cucurbit[n]uril (CB[n]) congener con-

taining 4 carboxylate side chains, was prepared in two

conformations starting from the high and low occupancy

states observed crystallographically in the bound state with

a linear aliphatic tetramine guest [59]. For the prospective

study, two protonation states were considered for host-1,

with the carboxylate groups ionized and neutral. Each host

1 structural variant was energy minimized with the GAFF

force field [47], AM1-BCC partial charges, a 4r distance-

dependent dielectric and harmonic force restraints on the

heavy atoms of 20 kcal/(mol Å). Provided structures for

host-2 and host-3, the neutral cyclic CB (7) and CB (8)

hosts respectively, were energy minimized with the same

settings as host-1, except that no restraints were imposed.

The structures of the 7 guests binding to host-1, and the 2

guests binding to each of host-2 and host-3, were proton-

ated at neutral pH and partial charges calculated as

described earlier for trypsin ligands. A training set of

guests with measured binding affinities, comprising 26

guests binding to host-1 and 7 guests binding to host-2

[59], was also prepared in the same manner.

Results

Trypsin virtual screening

We submitted two prospective predictions for trypsin vir-

tual screening. The two submissions differed in the way the

predicted pose was selected for scoring. In one set, the pose

with the best Wilma docking score for each ligand was

used and subjected to restrained energy minimization (see

‘‘Methods’’ section) and rescored using the SIE energy

function with default parameters. We will refer to that pose

as the Top-Wilma pose. In the second approach, the poses

with the top 100 Wilma docking scores for each ligand

were clustered and representatives of each cluster were

subjected to restrained energy minimization followed by

SIE rescoring. The best SIE score among them was

selected as the virtual screening score for the ligand. We

will refer to the associated pose as the Top-SIE pose.
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We used three crystal structures of trypsin (pdb codes

1HJ9, 1S0R and 3MI4) as targets for docking. The sub-

mitted predictions were based on tryspin structures with the

crystallographic water molecules removed. We also carried

out the calculations with selected conserved water mole-

cules retained. However, the results were highly correlated

with those for the dry trypsin structures and we opted to

base all our submissions on the dry trypsin targets. For each

of these targets, a rectangular box (23.7 Å 9 18.0 Å 9

29.0 Å) enclosing the substrate-binding groove of trypsin

(Fig. 1) was defined as the relevant region for exhaustive

virtual docking using Wilma. In general, the top-scoring

poses were docked at the S1 specificity pocket of trypsin.

Each ligand was assigned the best score obtained across the

three trypsin structures.

The SAMPL-3 virtual screening set consisted of 544

compounds of which 20 were true binders. Figure 2 shows

the receiver operating characteristic (ROC) curve for these

two sets of predictions. The performance of the two

methods is very similar with the Top-SIE poses giving a

somewhat better area under the curve (AUC). The boot-

strapped AUCs are 0.70 and 0.68 for the Top-SIE and Top-

Wilma poses, respectively. (The perfect AUC would have a

value of 1, indicating all true binders are ranked at the top

of the list; a random ranking would give an AUC of 0.5.)

AUCs are sensitive to false negatives that are detected only

late in the screening process. We have three true binders

that are ranked near the bottom of the list. These three false

negatives alone result in about a 10% reduction in the

AUC. It should be noted that the early enrichment per-

formance is quite good, with 50% of the true binders

obtained with a 15.6% false positive rate for the Top-SIE

set.

Trypsin affinity prediction

We submitted several prospective models of trypsin affinity

predictions. These are summarized in Table 1 along with

the statistical measures of their performance. Aside from

testing the effect of which docked pose (Top Wilma or Top

SIE) to score for affinity we also tested three scoring

functions. These were (a) the SIE function with default

parameters, (b) the rSIE (rescaled SIE) function with

parameters a = 0.1609 and C = 2.16 in Eq. 1 that were

optimized for trypsin and (c) SIE ? FiSH, an SIE function

with the solvation model replaced by the FiSH solvation

model. The calculations carried out for affinity prediction

were exactly the same as those used for the virtual screening

exercise except for the additional scoring functions tested.

As in the virtual screening case, there was not much dif-

ference between using Top-Wilma poses versus Top-SIE

poses, although the latter performed slightly better. For the

discussion that follows, we will focus on the results using

the Top-SIE poses. Figure 3 shows scatter plots comparing

the predicted and experimental binding affinities for each of

the three scoring functions using the Top-SIE poses. The

34-compound set was composed of 17 binders and 17 non-

binders. For the purpose of analyzing the results, the non-

binders have been arbitrarily given an ‘‘experimental’’

value of -4.09 kcal/mol. Compared to the default SIE the

use of rSIE improved the agreement of the predicted and

experimental affinities but does not in any way alter the

relative ranking of affinities. With rSIE, most of the pre-

dicted affinities for true binders are within 2 kcal/mol of the

experimental values. The mean unsigned error (MUE) and

median unsigned error (MdUE) are 0.64 and 0.30 kcal/mol,

respectively. However, the correlation coefficients are

rather poor, r2 = 0.00 and Kendall s = 0.12. For the pur-

pose of the statistical analysis, binding affinities of non-

binders that are predicted to be more positive than

-4.09 kcal/mol have been capped at that value to equal the

‘‘experimental’’ value assigned to non-binders. Restricted to

the true binders, the MUE and MdUE are 1.10 and

0.76 kcal/mol, respectively.

The FiSH solvation model [42, 43] is more sophisticated

than the default solvation model of SIE. Instead of a single

surface-area-based term for the non-electrostatic compo-

nent of solvation, it includes additional terms for a con-

tinuum van der Waals representation of solute–solvent

interactions. The modified SIE ? FiSH scoring function

then has the form

SIE + FiSH¼ a � Ecoul þERFþEvdWþEcvdW þEcavð Þ þC

ð2Þ

where a = 0.1232 and C = 1.46. The a and C parameters

were obtained by training against the same 99 protein–

ligand data set used for the original SIE function [15].

Fig. 1 Box defining the region used for virtual docking. Trypsin is

represented as a molecular surface. The box includes the S1 pocket as

well as a large part of the binding groove around it
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As with the rSIE case, most of the predicted affinities for

true binders are within 2 kcal/mol of the experimental

values. The MUE and MdUE are 0.81 and 0.25 kcal/mol,

respectively. However, the correlation coefficients are

rather poor, r2 = 0.00 and Kendall s = 0.14. Restricted to

the true binders, the MUE and MdUE are 1.57 and

0.77 kcal/mol, respectively.

The overall performance of SIE ? FiSH seems to be

similar to that of re-scaled SIE. However, compared to

rescaled SIE, SIE ? FiSH appears to discriminate true

binders from non-binders (Fig. 3a, c) better. We see that

for rescaled SIE, the range and spread of values for the

non-binders is similar to that of the true binders. With

SIE ? FiSH, the true binders tend to be more negative than

the non-binders. Given this observation, we applied the

SIE ? FiSH scoring function retrospectively to the VS

data set. The result is a dramatic improvement in the early

enrichment performance (Fig. 4). For SIE, 50% of the true

positives were obtained with a 15% false positive rate

(Fig. 2). With SIE ? FiSH, 50% of true positives were

obtained with a 3% false positive rate. However, the AUC

is only slightly increased due to the large penalty for the

three false negatives that are ranked close to the bottom.

Host–guest affinity prediction

We submitted several prospective models of host–guest

affinity predictions. These are listed in Table 2 along with
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BFig. 2 ROC curves for virtual

screening on trypsin. a Using

Top-SIE pose. b Using Top-

Wilma pose

Table 1 Statistical performance of trypsin fragment affinity prediction models

Model MSE MUE MdUE RMSE Ks r2 Slope Intercept

Official ID# Pose Scoring

86 Top-SIE SIE ? FiSH -0.72 0.82 0.25 1.71 0.14 0.03 -0.02 -4.41

0.26 0.26 0.14 0.50 0.17 0.05 0.14 0.55

87 Top-SIE SIE 2.11 2.14 2.27 2.32 0.30 0.12 0.20 -3.19

0.17 0.16 0.24 0.14 0.11 0.07 0.08 0.52

88 Top-SIE rSIE -0.32 0.64 0.30 1.14 0.12 0.00 0.03 -4.41

0.19 0.16 0.13 0.28 0.15 0.04 0.14 0.59

89 Top-Wilma SIE 2.09 2.11 2.23 2.32 0.22 0.08 0.15 -3.48

0.17 0.17 0.25 0.15 0.12 0.06 0.08 0.49

90 Top-Wilma SIE ? FiSH -0.92 1.02 0.36 1.85 -0.02 0.01 -0.02 -4.59

0.28 0.27 0.22 0.46 0.18 0.05 0.07 0.23

91 Top-Wilma rSIE -0.38 0.74 0.31 1.21 0.08 0.02 0.04 -4.49

0.20 0.17 0.17 0.27 0.14 0.03 0.09 0.38

Nulla NA 0.45 0.42 0.59 NA NA NA NA

Median and standard error (italicized) values from bootstrapping using 5,000 replicates with replacement

MSE mean signed error, MUE mean unsigned error, MdUE median unsigned error, RMSE root-mean-square error, Ks Kendall tau, r2 Pearson

correlation coefficient
a Null hypothesis, i.e., predicted affinities set to the experimental mean
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their statistical performance on the combined data set of 11

host–guest complexes (7 guests for host-1, and 2 guests for

each of host-2 and host-3). The affinities predicted for these

complexes with the models listed in Table 2 are provided

in Table S1. Host-1 is an acyclic cucurbituril (CB) analog

that is ionizable due to its four carboxylate side chains,

whereas host-2 and host-3 are cyclic CB (7) and CB (8)

analogs which are neutral. All these hosts have a circular

geometry with a central hole where certain guests are

recognized with surprisingly high affinity given the rela-

tively small size of these systems [59]. We used our

exhaustive docking program Wilma to arrive at bound

conformations for host–guest complexes. The search space

was defined large enough to allow docking of the guest at

any contact position around the host. In general, the top-

scored pose for all guests was found to bind fully or par-

tially through the central hole region of the hosts (Fig. 5),

irrespective of the structural setup (neutral/ionized, high/

low occupancy conformation) or pose-scoring function

(Wilma, SIE, SIE ? FiSH). We also docked a set of 26

guests to host-1 and 7 guests to host-2 with published

binding affinities [59], with the intention of rescaling the

SIE function specifically for host–guest systems. The

training set of guests also docked in the central region of

the hosts, and the top-scored pose was found to be similar

to the binding modes previously determined experimen-

tally for two of these guests (Figure S1) [59].

All models submitted to SAMPL-3 host–guest affinity

prediction challenge are based on the high-occupancy

conformation of host-1, because prospectively very similar

results where obtained when the low-occupancy confor-

mation was used (r2 [ 0.98, mean-unsigned-devia-

tion \ 0.2 kcal/mol). An exception is guest-3, which in

some models was predicted to bind more weakly to the

low-occupancy conformation than to the high-occupancy

one. Guest-3 is a branched and relatively larger guest in

this series and Wilma mainly employs a rigid docking

algorithm. Also, on a previously published data of 26

guests binding to host-1 [59], we obtained better correla-

tions with experiment using the high-occupancy confor-

mation (data not shown). All these prompted us to discard

data generated on the low-occupancy conformation of host-

1.

The prediction model #94 is based on the Top-SIE

poses. Predictions for host-1 were generated with this host

in the fully ionized form (net charge of -4e). This model

returned a reasonable correlation with experiment (Ks of

0.49; r2 of 0.51) and also a good prediction of absolute

binding affinities as shown by the MUE of 1.21 kcal/mol

and RMSE of 1.54 kcal/mol, which are better than the null

model for this data set (MUE = 1.44 kcal/mol and

RMSE = 1.79 kcal/mol). We note, however, the relatively

A B C

Fig. 3 Scatter plot of predicted versus experimental binding affinities

of trypsin ligands. a Rescaled SIE parameters. b Default SIE

parameters. c SIE ? FiSH. The ‘‘experimental’’ value for non-

binders (red diamonds) has been arbitrarily set to -4.09 kcal/mol.

The dashed line represents perfect correlation. Points between the

dotted lines have predicted affinities within ±2 kcal/mol from the

experimental value

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Tr
u

e 
p

o
si

ti
ve

 r
at

e 

False positive rate 

Fig. 4 ROC curve for virtual screening on trypsin using SIE ? FiSH
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small correlation slope (0.441) and significant correlation

intercept (-3.22), which underscore the narrower range of

predicted absolute binding affinities than the experimental

range, also apparent in the scatter plot in Fig. 6. For most

complexes, the standard SIE function slightly underesti-

mated absolute binding affinities, leading to a positive

MSE value of 0.88 kcal/mol.

The prediction model #96 is similar to model #94, with

the only difference being that it uses the Top-Wilma poses.

Note that final scoring in both models is based on the

standard SIE function. Significant prediction differences

were observed for only 2 complexes of host-1, a 1.5 kcal/

mol more positive SIE value (weakened predicted binding)

for guest-3, and a 0.5 kcal/mol weakening in the case of

guest-7. The difference in the selected poses for these two

complexes by the two methods is shown in Fig. 7. In both

cases, the SIE values based on Wilma pose selection

(model #96) are farther from experimental values than

predictions based on SIE pose selection (model #94),

which is reflected in the slightly larger MUE and RMSE

values. However, correlation parameters (Ks, r2, slope,

intercept) for model #96 improve marginally relative to

model #94 (Table 2).

We also tested prospectively the protocol from model

#94 against a protonated (neutral) version of host-1 (pro-

spective prediction #101, Table 2). Somewhat to our sur-

prise, this model was our best submission in terms of

absolute predictions, with the MUE as low as 1.16 kcal/

mol and RMSE of 1.49 kcal/mol. Correlation indices

deteriorate slightly relative to model #94, but still provide a

similar r2 of 0.50. For most guests, SIE values are slightly

more negative (stronger predicted binding) for the neutral

host-1 (model #101) than for the ionized host-1 (model

#94), by as much as 1.25 kcal/mol in the case of guest-7,

with the only exception being guest-6 having weak-

ened predicted binding by 0.45 kcal/mol. To provide a

Table 2 Statistical performance of host–guest binding affinity prediction models

Model MSE MUE MdUE RMSE Ks R2 Slope Intercept

Official ID# Pose Scoring Host-1 state

94 Top SIE SIEc Ionized 0.88 1.21 1.02 1.51 0.49 0.50 0.42 -3.40

0.38 0.29 0.50 0.29 0.24 0.22 0.15 1.15

96 Top W SIE Ionized 1.16 1.36 1.25 1.67 0.51 0.52 0.45 -2.85

0.37 0.31 0.51 0.29 0.26 0.23 0.15 1.11

101 Top SIE SIE Neutral 0.58 1.17 0.99 1.46 0.41 0.50 0.29 -4.69

0.42 0.28 0.33 0.34 0.21 0.22 0.10 0.84

99 Top W rSIEd Neutral -2.11 2.11 1.81 2.48 0.45 0.49 0.70 -4.37

0.43 0.43 0.46 0.47 0.22 0.23 0.25 2.05

Retroa Top SIE rSIEe Ionized 0.19 1.27 1.12 1.56 0.49 0.49 0.83 -1.09

0.48 0.29 0.45 0.29 0.25 0.22 0.30 2.35

98 Top SIE SIE ? FiSHf Ionized 5.58 5.58 5.42 5.93 0.34 0.30 0.62 2.77

0.64 0.64 1.05 0.67 0.27 0.21 0.40 3.10

100 Top SIE rSIE ? FiSHg Ionized -0.99 1.59 1.65 1.82 0.34 0.31 0.33 -5.92

0.47 0.28 0.42 0.26 0.27 0.22 0.21 1.63

Nullb NA 1.44 1.28 1.79 NA NA NA NA

Data shown for the combined set of 11 host–guest complexes (7 guests for host 1 and 2 guests for each of host 2 and host 3). Median and standard

error (italicized) values from bootstrapping using 5,000 replicates with replacement

MSE mean-signed-error, MUE mean-unsigned-error, MdUE median-unsigned-error, Ks Kendall’s tau rank-order correlation coefficient, r2

Pearson squared correlation coefficient, Top SIE selection of top-ranked pose based on standard SIE scoring function, Top W selection of top-

ranked pose based on Wilma scoring function, SIE standard SIE function, rSIE rescaled SIE function based on an external training data set,

SIE ? FiSH standard SIE ? FiSH function, rSIE ? FiSH rescaled SIE ? FiSH function based on an external training data set
a Retrospective model. SIE rescaled on the same external training data set as used prospectively for the model #99 and with host 1 in ionized

state
b Null model given by the arithmetic average of experimental data
c a = 0.1048; C = -2.89 (see Eq. 1)
d a = 0.2568; C = 0 (see Eq. 1)
e a = 0.2097; C = 0 (see Eq. 1)
f a = 0.1232; C = 1.46 (see Eq. 2)
g a = 0.06497; C = -6.64 (see Eq. 2)
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qualitative view of differences in the interactions, in Fig. 8

we display the top-ranked poses of several guests with

host-1 in the ionized and neutral states. We note that the

correlation slope for this model has decreased to a low

value of 0.290. As seen in the scatter plot in Fig. 6, the

predicted binding affinities span 2.5 kcal/mol whereas the

experimental values range over 6.5 kcal/mol.

One way to modulate the correlation slope is to rescale

the SIE function in terms of the enthalpy-entropy com-

pensation factor a in Eq. 1 specifically for the system being

investigated. This is justified since is has been previously

shown that the CB (7) host, for example, requires a higher

energy efficiency factor, that is, the degree to which

attractive forces are effective in generating binding free

energy, rather than being cancelled by entropy losses, than

the b-cyclodextrin (bCD) host [37, 38, 58]. This points

towards a larger value for the a scaling factor in the SIE

formulation. Hence, we explored this possibility prospec-

tively by deriving a rescaled SIE function based on a

previously published data for guests binding to host-1 (26

complexes) and host-2 (7 complexes) [59]. Amongst the

many system and method variants tested in the prospective

analysis (neutral/ionized host, Wilma/SIE pose selection,

high/low occupancy conformations) the best fit was

obtained for the Wilma-based selection of the pose and the

neutral host-1. This training model achieved an MUE of

1.56 kcal/mol over all 26 guests for host-1 and 7 guests of

host-2, and led to an a scaling factor of 0.2568 (the con-

stant C was forced to zero), hence larger scaling than that

for the standard SIE function (0.1048), in agreement with

previous observations [37, 38]. Application of the rescaled

SIE function to the SAMPL-3 host–guest data set led to the

submitted prediction model #99, with an increased corre-

lation slope (0.705) and similar correlation with experiment

relative to the other prospective models based on standard

SIE function. Two aspects in terms of absolute affinity

prediction are noteworthy: rescaling led to overshooting of

predictions from underestimating to overestimating actual

affinities (negative MSE, see also Fig. 6), and increase of

MUE to above 2 kcal/mol (Table 2).

Therefore, we retrospectively reanalyzed our un-sub-

mitted prospective models of rescaled SIE function on the

training set of 33 complexes of host-1 and host-2 [59]. A

particularly interesting model turns out to be the one

employing Top-SIE pose selection and ionized host-1. This

model was not submitted prospectively because it per-

formed poorer than model #99 in the training stage, with a

training MUE of 2.13 kcal/mol (versus 1.56 kcal/mol for

model #99). Its a scaling factor of 0.2097 is larger than that

in the standard SIE function used in model #94 that

underestimated the actual data, but smaller than in the SIE

function rescaled on the training dataset with neutral host-1

used in model #99 that overestimated actual affinities. As

seen in Table 2 and Fig. 6, this retrospective model

(rescaled SIE, ionized host-1) has a much improved cor-

relation slope (0.880) relative to model #94 (standard SIE,

ionized host-1) and an improved MUE (1.27 kcal/mol)

relative to model #99 (rescaled SIE, neutral host-1). The

correlation coefficient is similar to the other models, but

the correlation intercept and the MSE are much improved

being close to zero.

We also tested SIE ? FiSH. The SAMPL-3 prospective

prediction model #98, which is based on SIE ? FiSH final

scoring and ionized host-1, did not perform well, showing

much deteriorated correlation and absolute affinity pre-

diction relative to the standard SIE function (Table 2;

Fig. 6). The severe underestimation of binding affinities by

this model (MSE = MUE of 5.59 kcal/mol) is corrected in

the prospective model #100, which uses a rescaled SIE/

Fig. 5 Global views of Wilma docking poses for the host–guest

systems. The examples shown are from the SIE-based selection of the

top-ranked pose and the ionized host-1. All guests are shown in a

given host with different colors of the C atoms. Two orthogonal views

are provided
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FiSH model derived on the training set of 33 complexes of

host-1 and host-2 [59], which cannot however improve the

correlation with experiment. Obviously, more work is

needed for a consistent incorporation the FiSH solvation

model into the SIE function, at least for the host–guest

systems examined here.

Discussion

Outliers of trypsin virtual screening and affinity

prediction

Figure 9 shows chemical structures of three serious outliers

in our affinity prediction results. These same outliers also

adversely affected the AUC in the virtual screening results.

Figure 10 also shows the predicted binding mode of one of

the outliers, frag.aff.15. In this pose, the imidazo nitrogen

on the ligand points away from Asp189 and towards the

backbone NH of Ser214. However, at a distance of 3.4 Å

from the amide hydrogen, it is too far to form a good

hydrogen bond. This pose suggests that if the imidazo

nitrogen were protonated the ligand could flip and form a

stabilizing ion pair with Asp189 of trypsin. By analogy

with other imidazo compounds, it is plausible that the

imidazo nitrogen in frag.aff.15 is protonated near neutral

pH. Figure 10 (right panel) shows the predicted pose for

the protonated version of frag.aff.15. After protonation, the

predicted binding affinity using the rSIE scoring function

goes from -4.45 to -6.44 kcal/mol with VS ranking going

from 522 to 178. For the SIE ? FiSH scoring function, the

predicted binding affinity goes from 2.63 to -2.78 kcal/

mol with VS ranking going from 534 to 124. The second

outlier, frag.aff.16, also has an imidazole nitrogen that was

not protonated. For rSIE, protonation changes the predicted

binding affinity from -2.64 to -3.77 kcal/mol and raises

the VS rank from 262 to 147. For SIE ? FiSH, protonation

changes the predicted binding affinity from -1.44 to

-3.37 kcal/mol and raises the VS rank from 203 to 90. The

docked conformation of the third outlier, frag.aff.27

(Fig. 9), had the aniline and pyrrole rings nearly perpen-

dicular to each other. By docking a conformation in which

the two rings are nearly planar, the predicted binding

affinity and rank improved only marginally. The rSIE

affinity went from -5.02 to –5.96 kcal/mol with rank ris-

ing from 302 to 285. For SIE ? FiSH, the predicted

affinity went from -0.69 to -0.79 kcal/mol with rank

rising from 343 to 330. The corrected outliers improved the

AUC for SIE ? FiSH from 0.73 to 0.78 (Fig. 11).

Fig. 6 Scatter plots of

calculated versus actual binding

affinities for the host–guest

systems and various prediction

models. Please refer to Table 2

for a description of the models.

Host-1 data are shown with blue
circles, host-2 data with red
triangles and host-3 data with

yellow squares. The diagonal
line indicates a perfect

correlation. Select outliers

discussed in the text are labeled

Fig. 7 Differences in the Top-Wilma and Top-SIE pose selection.

The shown complexes are the only ones that have significantly

different predicted binding affinities and different selected poses by

the two scoring functions; see Table S1 and the text for the difference

in predicted binding affinities. The C atoms of the guests (ball-and-

stick models) are colored in green and cyan for the SIE-selected and

Wilma-selected poses, respectively. H-bonds are indicated as black
dashed line. Only polar H atoms are shown for clarity
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However, the correlation coefficients for affinity prediction

are not much improved. For rSIE, r2 goes from 0.00 to 0.04

after correcting for the outliers. For SIE ? FiSH, the r2 go

from 0.00 to 0.02. The MUE is 0.60 and 0.51 kcal/mol for

rSIE and SIE ? FiSH, respectively, after correcting for

outliers.

Outliers of host–guest affinity prediction

Given the good predictions obtained, there are no major

outliers for most of the host–guest affinity models. Some of

the outliers seen in the scatter plots in Fig. 6 depend on

prediction model as well as on whether the outlier analysis

refers to absolute or only correlating binding affinities. For

example, in the case of host-1, the standard SIE model #94

indicates two outliers, guest-6 and guest-7, with absolute

binding affinities underestimated by more than 2 kcal/mol.

However, the rescaled SIE model (retrospective), which

changes the correlation slope and the spread of prediction

data but not the degree of correlation, shows that guest-6 is

well-predicted. Although guest-7 pose docked into the ion-

ized host-1 interacts well by traversing the entire central hole

Fig. 8 Differences in the top-pose interactions with the ionized vs

neutral states of host-1. See Table S1 and the text for the difference in

predicted binding affinities for each shown example. Top-pose

selection is based on the SIE function on both cases. The C atoms

of the guests (ball-and-stick models) are colored in grey and cyan for

the poses bound to the ionized and neutral host-1 states, respectively.

H-bonds are indicated as black dashed line. Only polar H atoms are

shown for clarity. Note that the ionized and neutral host structures

overlay almost perfectly

Fig. 9 Outliers in fragment affinity prediction. In clockwise direction

from the top left, the fragments are frag.aff.15, frag.aff.16 and

frag.aff.27 of the SAMPL-3 set Fig. 10 Predicted binding mode of an outlier, frag.aff.15. Left panel
Unprotonated imidazo nitrogen. Right panel Protonated imidazo

nitrogen. Trypsin is depicted as thin sticks with the Ser 214 NH and

Asp 189 side chain as ball and sticks. Protonation of the imidazo

group allows an ion–pair interaction to be formed with the Asp 189

side chain
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Fig. 11 ROC for trypsin virtual screening after correcting for

outliers. The SIE ? FiSH scoring function was used
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and engages both the amine and amide protons in H-bonds

with the host (Fig. 8), its binding affinity is still underesti-

mated. Interestingly, guest-7 was one of the few ligands

affected by the protonation state of the host-1, the case of

neutral host-1 leading to an improved prediction (model

#101, Fig. 6; Table S1) despite the fact that the docked pose

does not form any direct H-bonds nor does it fully cross from

one face to the other of the neutral host-1 (Fig. 8). This

serves to remind us about the delicate balance between

interaction and desolvation, and the extent to which scoring

functions can accurately account for that balance.

The outlier analysis also points out that system-specific

rescaling of scoring functions for predicting absolute

binding affinities has to be done carefully and not fully rely

on the mathematical global optimum set of parameters but

also consider the physical relevance of the system. In this

study, the global optimum during training was found to

correspond to the neutral host-1, with the resulting rescaled

scoring function overshooting the predicted absolute

binding affinities of the blind set towards overestimation,

with guest-1 and guest-3 as significant outliers (model #99,

Fig. 6). The more physically sound ionized state of the

host-1 (for the experimental pH of 7.4) produced a rescaled

SIE function slightly suboptimal in the training phase, but

better performing in the test set (retrospective model in

Fig. 6).

Prediction for host-2 and host-3 were reasonable (see the

red triangles and yellow squares, respectively, in the scatter

plots in Fig. 6). Specifically, the more branched h23-guest-

1 due to the n-propyl substituent at the N atom of the

imidazolyl ring was predicted to fit only partially into the

smaller host-2 and hence it has a weaker binding affinity to

host-2 (both predicted and experimental) than the more

linear h23-guest-2 (the n-propyl substituent at the C atom

of the imidazolyl ring) which traverses the host-2 central

hole (middle panels in Fig. 5). However, same h23-guest-1

and h23-guest-2 were fitted well in the larger host-3 (lower

panels in Fig. 5) to which they bind with similar affinities.

Although absolute binding affinities to host-3 are slightly

underestimated by the standard SIE function (e.g., model

#94) by 1–2 kcal/mol, they are well predicted by the

rescaled SIE function (retrospective model in Fig. 6).

As mentioned earlier, the use of the SIE ? FiSH scoring

function provided underestimated absolute binding affini-

ties for all host–guest complexes, with guest-7 of host-1 as

major outlier underestimated by 10 kcal/mol (model #98).

Rescaling of the SIE ? FiSH function did not change the

modest low correlation with experimental data, but reduced

significantly absolute errors in most outliers and provided

more balanced absolute predictions (model #100, Fig. 6).

The largest outlier with the rescaled SIE function is guest-1

for host-1, which was predicted as a racemic mixture from

the binding poses of the enantiomers (Fig. 12).

Assessment of general performance of SIE

It is informative to position the current prospective SIE

predictions of binding affinity at SAMPL-3 in the context

of the general performance of the SIE function during

training and various tests available thus far.

Training

Standard SIE parametrization (see ‘‘Methods’’ section) was

previously derived on a protein–ligand dataset consisting of

99 complexes from 11 diverse protein targets, each com-

prising a short congeneric series of ligands with known

binding affinities curated from the literature and co-crystal

structures solved at high-resolution [15]. A training per-

formance characterized by an MUE of 1.34 kcal/mol and an

r2 of 0.65 (Fig. 13a) was obtained while maintaining the

physical meaning and interpretability of the optimal

parameters. In particular, the fitted optimal solute dielectric

falls within the range of 2–4 in agreement with refractive

index measurements of protein powders, and there is a

scaling down of the potential energy plus solvation by about

90% likely reflecting the compensation exerted by the

configurational entropy loss arising form narrowing of the

energy wells in the complex versus the free state [57, 58].

CSAR

The most extensive testing of the SIE function was done

recently in the Community Structure-Activity Resource

(CSAR) scoring challenge consisting of high-resolution co-

crystal structures for 343 protein–ligand complexes with

high-quality binding affinity data and high diversity with

respect to protein targets [32–34]. While the dataset

Fig. 12 Binding of the two enantiomers of guest-1 to host-1. The

example shown is based on the SIE-selected top-ranked pose and an

ionized state of host-1. The C atoms of the guest (ball-and-stick
models) are colored in green and cyan for the R and S enantiomers,

respectively. H-bonds are indicated as black dashed line. Only polar

H atoms are shown for clarity
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resembles the SIE calibration dataset of 99 protein–ligand

complexes in terms of target diversity and curation quality,

there is no single entry in the CSAR-2010 dataset that was

present in the SIE calibration dataset, albeit some protein

targets were represented in both data sets. The previously

calibrated standard SIE parametrization predicted absolute

binding affinities for the highly curated CSAR-NRC-HiQ

data set version well in the range of the experimental

values, with an MUE of 1.98 kcal/mol and an r2 of 0.38

(Fig. 13b). SIE predictions were found to be sensitive to

the assignment of protonation and tautomeric states in the

complex, and the treatment of metal ions near the protein–

ligand interface. These structural preparation steps were

critical for accurate testing of the SIE performance.

Retraining and testing of SIE parameters on two predefined

halves of CSAR-NRC-HiQ led to only marginal further

improvements to an MUE of 1.83 kcal/mol and an r2 of

0.43, with modest change in the optimal values of SIE

parameters.

Published studies

The SIE function has also been applied retrospectively as

well as prospectively in several other independent labora-

tories that have reported SIE predictions versus actual

binding affinities [18–31]. Collectively, these data indicate
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Fig. 13 Past performance of the SIE function on various datasets.

a Calibration dataset consisting of 99 protein–ligand complexes [15].

HIV protease (filled circle); trypsin (open circle); lysozyme (filled
square); thrombin (open square); neuraminidase (filled diamond);

elastase (open diamond); triosephosphate isomerase (filled triangle);

L-arabinose binding protein (open triangle); protein tyrosine phos-

phatase 1B (grey-shaded circle); glutathione transferase (grey-shaded
square); streptavidin (grey-shaded diamond). b Testing on the CSAR-

NRC-HiQ data set (N = 343) of the CSAR-2010 scoring exercise

[34]. c Published applications to date including both SIE predictions

and actual binding affinities. References: [18] N = 7 (filled circle);

[23] N = 12 with 5 limiting values (open circle); [20] N = 2 (filled

square); [24] N = 8 with 4 limiting values and IC50 data used (open
square); [21] N = 2 (filled diamond); [26] N = 4 (open diamond);

[22] N = 4 (filled triangle); [19] N = 7 (open triangle); [25] N = 11

(plus sign); [27] N = 3 (grey-shaded circle); [28] N = 6 (grey-

shaded square) with IC50 data used; [29] N = 5 (multiplication sign);

[30] N = 1 (grey-shaded triangle); [31] N = 1 (grey-shaded dia-
mond) with IC50 data used (multiplication sign). d Blind testing on

the SAMPL-1 affinity prediction JNK3 dataset of 59 complexes [35].

Closed symbols (filled circle) correspond to active inhibitors with co-

crystal structures, and open symbols (open circle) correspond to weak

binders computationally docked into the kinase active site
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an MUE of 1.30 kcal/mol and an r2 of 0.47 between the

predicted and actual absolute binding affinities (Fig. 13c).

As in the case of the CSAR-NRC-HiQ data set, these

applications reiterate that the SIE approach returns pre-

dicted protein–ligand binding affinities well within the

range of experimental measurements. The degree of scatter

is comparable to that observed in the original calibration

and in the CSAR testing, suggesting that the SIE parame-

ters were not over-fitted to the training set.

SAMPL-1

Since the most objective way to evaluate computational

methods is via blind tests, SIE was a participating method

in the SAMPL-1 experiment organized by OpenEye, Inc. in

early 2008 [35]. In SAMPL-1, we tested prospectively the

standard SIE parametrization for protein–ligand binding

affinity prediction on the Jun kinase 3 (JNK3) data set, a

target class not used for SIE calibration. This data set

consisted of 49 diverse JNK3 inhibitors from 12 classes,

each with its own co-crystal structure with the kinase, plus

10 models of known ‘‘inactive’’ ligands (in fact weakly

active ligands) docked in duplicated enzyme structures.

The SIE function achieved reasonable prospective predic-

tions for the JNK3 dataset of 49 actives, with an MUE of

0.92 kcal/mol and an r2 of 0.36. Again, it became apparent

that SIE can estimate absolute binding affinities, with

predicted values spanning the same range as the actual ones

(Fig. 13d). The 10 measured inactives were separated

reasonably well from the actives, leading to an increase in

r2 to 0.54 over all 59 ligands.

SAMPL-3

As described in this paper, the SIE function returned

encouraging prospective predictions when tested on the

trypsin-fragment and host–guest blind data sets from the

SAMPL-3 experiment. (Figure 6 on host–guest and Fig. 3

on trypsin-fragment data sets.) SAMPL-3 was a useful

experiment because it tested the applicability domain of the

method with challenging systems like fragment-sized

weak-affinity ligands binding to an enzyme, and small

host–guest systems exhibiting appreciable binding affini-

ties. Additionally, these predictions had to be made not on

solid, experimentally determined, binding modes as in

CSAR and SAMPL-1, but on computationally docked

binding modes. We also tested more extensively SIE

rescaled specifically for the system under investigation, as

well as we tested for the first time SIE ? FiSH, a scoring

function that incorporates our latest solvation model, FiSH

[42], into SIE. We found that for the trypsin-fragment data

set, rescaling of the SIE parameters was necessary to

improve prediction of absolute binding affinities (MUE of

0.81 kcal/mol), which were systematically overestimated

by the standard SIE parametrization (MUE of 2.24 kcal/

mol). We note that even in the original SIE training set, the

trypsin-ligand subset was also overestimated (Fig. 13). For

the host–guest system, the MUE of about 1.16 kcal/mol

and r2 of 0.52 kcal/mol were hardly affected by SIE

rescaling, but the correlation slope became closer to 1 after

rescaling due to a larger entropy-related factor, in agree-

ment with other studies [37, 38]. This suggests that in

certain cases, possibly for fragment-sized ligands and other

small molecular systems, the SIE function may need to be

retrained for the system under investigation if data are

available. A recent study also reports improved predictions

with rescaled SIE parameters for protein–ligand systems,

although the system-specific sets of SIE parameters were

not validated on external sets [64]. Encouragingly in the

case the trypsin-fragment data set, the SIE ? FiSH scoring

function outperformed the standard SIE scoring function in

terms of absolute predictions (MUE of 2.24 kcal/mol for

standard SIE versus 0.98 kcal/mol for standard SIE ?

FiSH). However, testing of the SIE ? FiSH scoring func-

tion on more systems is required in order to confirm its

general advantage.

Virtual screening

The compromise between speed and accuracy makes SIE a

suitable scoring function for ranking compound libraries in

virtual screening (VS) applications. Previously, SIE was

tested for VS enrichment against estrogen receptor (ER)

and thymidine kinase (TK) showing the ability of SIE to

recover true hits in a collection of decoys [15]. While the

ER set is considered an easier test, the TK set is more

challenging partly due to weaker binding affinities for the

true binders. The SIE function was able to recover all true

positives within the top 10% of the ranked dataset, and half

of them within top 1%. The SIE was clearly superior to

simpler functions, e.g., buried surface area that describes

only non-polar effects and ranked all TK true binders near

the bottom of the list. In the blinded VS experiment of

SAMPL-3, SIE showed a strong performance on the tryp-

sin-fragment dataset of over 500 ligands, significantly

enriching in the 20 true-active fragments with an AUC

value of 0.70. A promising retrospective result is that the

SIE ? FiSH function improves the enrichment (AUC of

0.73) in this VS data set.

Docking

Although SAMPL-3 did not explicitly test docking meth-

ods it is clear that success or failure in virtual screening or

affinity prediction is highly dependent on the quality of the

predicted poses that are scored. For this purpose we opted
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to go with an exhaustive docker, Wilma, that thoroughly

samples bound conformations rather than a stochastic

docker with uncertain convergence properties. The rather

fine search grid used (0.5 Å) combined with thorough

sampling of ligand rotamers using OMEGA gives us some

confidence that the native pose was visited during the

search procedure. The scoring function used for docking is

Physics-based and mimics the major components of a

typical force-field calculation, albeit with empirically

modified weights for the various terms. The net effect is

that the top poses selected by Wilma will most likely be

low-energy poses as well when rescored with our SIE

function. In fact, this is what we observed by noting that

the affinity predictions using the Top-Wilma pose were

comparable to those using the Top-SIE pose. This is no

mean feat given that the Wilma docking function is several

orders of magnitude faster to compute than the SIE

function.

Given the speed of Wilma scoring, it is tempting to use

Wilma scoring alone for virtual screening applications.

However, in our experience virtual screening ranking based

on Wilma scores alone are not as reliable as that obtained

after rescoring with the SIE function (data not shown). This

is probably because in docking a given molecule many

terms cancel out when comparing the energetics of one

pose versus another. There is much less cancellation when

comparing the affinity of one molecule versus another with

a different molecular structure. Hence, a function opti-

mized for docking may not properly capture key compo-

nents necessary for accurate affinity prediction across

different molecules. We find that the use of Wilma for

docking and SIE for scoring achieves a cost-effective

balance between speed and accuracy for both virtual

screening and affinity prediction.

Conclusions

The performance of the SIE scoring function in this blind

test is consistent with past experience in its application to a

number of targets. The combination of SIE with an

exhaustive docker such as Wilma affords a rapid cost-

effective virtual screening platform that can provide not

just a ranking of compounds but estimates of binding

affinity as well. The sampling thoroughness afforded by

Wilma may in fact be instrumental for the relatively good

results obtained in virtual screening and affinity prediction.

Nevertheless, the goal of consistently achieving sub-2

kcal/mol accuracy in relative binding free energies remains

a challenge, as seen in poor correlations when the dynamic

ranges of the actual binding affinities are narrow. However,

it is encouraging that the inclusion of more Physics in the

model, e.g., SIE ? FiSH, can improve the quality of the

predictions.
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