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Abstract SAMPL3 fragment based virtual screening

challenge provides a valuable opportunity for researchers

to test their programs, methods and screening protocols in a

blind testing environment. We participated in SAMPL3

challenge and evaluated our virtual fragment screening

protocol, which involves RosettaLigand as the core com-

ponent by screening a 500 fragments Maybridge library

against bovine pancreatic trypsin. Our study reaffirmed that

the real test for any virtual screening approach would be in

a blind testing environment. The analyses presented in this

paper also showed that virtual screening performance can

be improved, if a set of known active compounds is

available and parameters and methods that yield better

enrichment are selected. Our study also highlighted that to

achieve accurate orientation and conformation of ligands

within a binding site, selecting an appropriate method to

calculate partial charges is important. Another finding is

that using multiple receptor ensembles in docking does not

always yield better enrichment than individual receptors.

On the basis of our results and retrospective analyses from

SAMPL3 fragment screening challenge we anticipate that

chances of success in a fragment screening process could

be increased significantly with careful selection of receptor

structures, protein flexibility, sufficient conformational

sampling within binding pocket and accurate assignment of

ligand and protein partial charges.
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Introduction

The fragment based drug design (FBDD) approach repre-

sents a rapid, resource efficient and productive route to the

identification of novel ligand hits in the early phase of drug

discovery process. This method was proposed by Fesik

et al. in 1996 and has gained prominence in recent years

and is now recognized as a successful method of lead

identification in a drug discovery program [1]. FBDD

approach focuses on the identification of low molecular-

weight compounds that target sub-pockets within the

overall active site. These fragment hits are expected to be

more suitable starting points for hit to lead optimization

due to their reduced complexity, which leaves more free-

dom for multidimensional property optimization of the

fragment hits usually by adding new functional groups or

by linking of two fragment hits binding in adjacent pock-

ets. Furthermore, with fragments it is possible to improve

physicochemical and pharmacokinetic properties while

maintaining ligand efficiency [2].

Recently, FBDD has led to the discovery of new scaf-

folds that were later optimized into high affinity inhibitors

[3–10]. However, the small size of fragments and low

binding affinity makes it particularly difficult to detect in

standard biochemical assays. Instead, biophysical methods

such as NMR [11], X-ray crystallography [12], and Surface

Plasmon Resonance (SPR) [13] were used to identify these

low molecular weight compounds. Although biophysical

methods have several advantages but despite their utility

only up to several hundreds or thousands compounds can

be tested. Also, biophysical screening involves significant

time, labor and materials costs. The limitations associated

with experimental biophysical screening and broad appli-

cation of FBDD presents the need for alternative screening

methodologies.
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Molecular docking based virtual screening of drug-like

libraries has already been proved to be an efficient tech-

nology in hit discovery. Furthermore, docking based virtual

screening was integrated with experimental screening pro-

viding drug-like hits for large variety of targets [14].

Molecular docking has also been used in FBDD for variety

of targets. There are studies reported in literature that

identified fragment molecules for further optimization uti-

lizing structure based docking for screening fragment-like

libraries [15–18]. However, docking fragment libraries is

still considered not very reliable with present methods and

protocols [17] because of promiscuous binding modes and

inability of scoring function to discriminate near native

from irrelevant binding poses [19]. Most of these docking

methods and scoring functions were developed for drug-like

ligands with molecular weight and properties significantly

different from fragments. This may be one of the reasons for

the poor performance of the docking algorithm and scoring

functions in predicting the binding mode and affinity of

small molecule fragments. The adaptability of these dock-

ing methods and scoring functions against fragment based

virtual screening deserves further exploration.

A key concept in predicting the binding mode and

affinity of fragments is the incorporation of receptor flex-

ibility along with ligand flexibility. Accounting for receptor

flexibility is very important in fragment based discovery

and it could prevent the finding of correct pose if receptor

flexibility is not considered in docking [20]. Recently,

several approaches have been proposed to address the

problem of receptor flexibility. These approaches simulta-

neously sample both receptor and ligand flexibility during

docking [21–23]. One of the most commonly used

approach is the use of protein sidechain rotamer libraries

and it has been shown that use of sidechain rotamers sig-

nificantly improve docking program’s ability to find

accurate binding poses [23, 24]. Another most common

approach is the use of multiple receptor conformations

which is a straightforward way to mimic receptor flexibility

[25]. These multiple receptor conformations are carefully

selected either from molecular dynamics trajectories or

from multiple X-ray crystal structures. Moreover, a small

number of docking algorithm can handle full ligand and

receptor flexibility. RosettaLigand [22, 26, 27] is one of

such programs that uses Monte-Carlo sampling and Rosetta

full-atom energy function to explicitly model full side-

chain, backbone, and ligand flexibility with ligand and

receptor degrees of freedom explored simultaneously.

RosettaLigand extensively samples receptor sidechain

conformations near the binding pocket and it has been

shown that incorporation of receptor flexibility increases

the probability of finding near-native poses with low

energies [22, 26]. RosettaLigand was evaluated against

benchmark protein ligand docking datasets and performed

well in retrieving the native poses in both self and cross

docking experiments [22, 26, 27]. Furthermore, RosettaL-

igand generated binding energies correlate well with the

biological activities of 229 inhibitors against diverse tar-

gets with a correlation coefficient around 0.6 for most of

the targets [22, 26, 27].

RosettaLigand performs fairly well in docking ligands

with drug-like properties, however, docking of fragments

or fragment like molecules using RosettaLigand is still

unexplored. The most common approach for evaluating a

program for fragment docking is to test against benchmark

datasets containing crystal structures with bound fragment

like molecules. The accuracy of Glide has been recently

evaluated for docking fragments using these datasets [28,

29]. However, the performance of a docking program on

benchmark datasets in a retrospective study tends to be

higher than the virtual screening performances in real life

cases. The real test for any docking based screening

approach would be in a blind testing environment; only in

this prospective study the true predictive ability can be

accessed. Blind assessment would avoid the bias associated

with ligand pose sampling and scoring functions and pro-

vides more strict assessment of the strength and weakness

of a docking program.

SAMPL3 fragment based virtual screening challenge is

a blind assessment platform provided by OpenEye [30, 31]

where researchers working in FBDD can test their meth-

ods, protocols and programs, share their experiences and

learn from their experiences for the development of novel

and accurate methods for screening of fragment like mol-

ecules. The test data for SAMPL3 fragment based virtual

screening challenge was provided by Newman et al. [32,

33]. It was a blind fragment screening study where 500

fragments from the Maybridge fragment library were

soaked into crystals of bovine pancreatic trypsin and their

structures determined by X-ray crystallography. Binding

affinity data were obtained from SPR.

In order to assess our ability to use RosettaLigand for

fragment based virtual screening, we participated in

SAMPL3 fragment based virtual screening challenge. Here

we first describe our fragment-based virtual screen protocol

using RosettaLigand in a non-blind environment where a

test database consisting of trypsin fragment like inhibitors

and decoys were screened. We next report the results of our

fragment screening protocol in SAMPL3 blind testing

environment and provide a retrospective analysis of factors

that affected the performance our protocol. Our study

indicates that with careful selection of receptor structures,

proper handling of receptor flexibility, enough conforma-

tional sampling within binding pocket and accurate ligand

and protein partial charges, it is possible to identify low

molecular weight inhibitors for protein targets utilizing

docking based fragment screening approach.
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Computational methods

Our protocol of virtual screening of a fragment library

consists of a number of steps: First, multiple receptor

structures for docking are selected from a set of trypsin

crystal structures from Protein Data Bank (PDB). Ligand

conformations were then generated for each of the frag-

ment in SAMPL3 challenge fragment library in order to

take care of ligand flexibility. After assigning the partial

charges for fragments and protein, all the fragments were

docked using multiple receptor docking approach to each

of the representative receptor conformation using Roset-

taLigand followed by selection of top binding poses for

each receptor and each fragment. Finally, consistency in

the binding mode is evaluated to prepare final rankings.

Selection and preparation of receptor structures

for docking

The crystal structures of trypsin were retrieved from PDB

[34] and were analyzed in order to select suitable receptors

for virtual screening. In a preliminary analysis of PDB

structures, more than 100 crystal structures for trypsin in

complex with ligands determined by X-ray crystallography

at different resolutions were found. As the goal of our study

was to screen fragment library only those crystal structures

containing bound ligands with fragment like properties

were selected. Fragment likeness for crystal structure

ligands was defined by the rule of three [35], i.e., molecular

weight B300 dalton, number of H bond acceptors (HBA),

H bond donors (HBD) B3, ClogP B3 and number of

rotatable bonds B3. The crystal structure with the highest

resolution was selected in case many structures with the

same ligand were found. Finally our selection resulted in

14 trypsin complexes bound with unique fragment like

trypsin inhibitors. These ligands and their corresponding

complex PDB codes are depicted in Fig. 1. Analysis and

filtering was carried out using MOE2010.10 [36]. To pre-

pare receptor structures for molecular docking, hydrogens

were added, bond orders were assigned and all the water

molecules and atoms of the inhibitor were removed. Pro-

tonation states of charged residues were determined and

implemented using Protonate3D [37] in MOE2010.10.

Molecular docking and scoring

All molecular dockings were performed using RosettaLi-

gand [22, 26, 27], which is a fully flexible receptor and

ligand docking program. RosettaLigand employs a sto-

chastic conformational search inside a user defined cube

centered on the binding site to identify low-energy protein

ligand complexes. At the start of docking procedure, each

conformation from an ensemble was placed into receptor

binding site for docking calculations. RosettaLigand then

simultaneously places probable side-chain amino acid ro-

tamers around the ligand and optimizes the randomly

sampled flexible ligand pose using a Metropolis Monte

Carlo simulated annealing algorithm. The docked poses

were ranked using an energy function dominated by van

der Waals attractive and repulsive forces, electrostatic
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interactions between pairs of amino acids, and solvation

assessing the effects of both side-chain side-chain inter-

actions and side-chain ligand interactions, statistical energy

derived from the probability of observing a side-chain

conformation in the PDB and an orientation dependent

hydrogen bonding potential. For each fragment and each

receptor in consideration, approximately 5,000 docked

poses were generated, and the top 5% of best scoring

structures were re-ranked by ligand–protein interface

scores (InterfaceDelta term in RosettaLigand scores),

which is the difference between the energies of protein in

ligand bound and unbound states. The pose with the lowest

ligand protein interface score was then chosen as the best

docked pose.

Preparation of ligands and fragment library for docking

As RosettaLigand handles the flexibility of a ligand by using

a set of diverse ligand conformations, therefore, a confor-

mational ensemble for each fragment in SAMPL3 test

fragment library was generated using LowModeMD search

algorithm [38] in MOE2010.10 that uses implicit vibrational

analysis to focus a MD trajectory along the low-mode

vibrations. For each fragment, a maximum of 200 confor-

mations were requested and the resulting geometries were

minimized in MOE2010.10 using MMFF94s forcefield [39].

All other parameters were set to their default values.

Receptor interaction fingerprint scoring

Docked poses generated by RosettaLigand were used to

generate receptor interaction fingerprints. Receptor inter-

action fingerprints were generated using FingerPrintLib

program [40] which uses OEChem C?? library from

OpenEye, Inc. [31]. On the basis of a list of atom flags

inferred from OEChem [31], positions of a bit vector are

switched either on or off depending on whether or not

predefined intermolecular interactions agree with user-

defined rules. In the present work, only the first seven bits

(hydrophobic interactions, aromatic face to face, aromatic

face to edge, hydrogen bond acceptor, hydrogen bond

donor, positively charged and negatively charged) which

correspond to the most frequent protein–ligand interactions

are calculated. The distance between two interaction fin-

gerprints was calculated using a Tanimoto similarity

coefficient (Tc) [41].

Hardware

The present work was carried out using Dell Precision

T5400 workstation with 2.0 GHz Intel Xeon CPU and

97.4TFLOPS Intel Xeon 5570 based Massively Parallel PC

Cluster of RIKEN Integrated cluster of clusters (RICC).

Results and discussion

Performance of RosettaLigand-based virtual screening

protocol

Molecular docking of SAMPL3 challenge fragment library

with RosettaLigand was the core part of our virtual

screening protocol; therefore the reliability of RosettaLi-

gand in docking fragment like compounds was assessed by

three procedures. First, a self-docking analysis was carried

out in which each ligand was docked back into its native

crystal structure. After that, cross-docking was carried out

where each crystal structure ligand was docked into all the

14 crystal structures of trypsin. Finally, RosettaLigand

docking performance for fragment like compounds was

evaluated using an external test set compiled from PDB-

bind database [42, 43].

Self docking

A principle aim in docking fragments is to find energet-

ically favorable binding modes of these fragments. To

access the ability of RosettaLigand to accurately dock

fragments, docking of fragments to their corresponding

crystal structures was performed. The goal of this

experiment is to evaluate how well RosettaLigand reca-

pitulates experimentally determined binding modes. All

ligands were extracted from the selected 14 trypsin X-ray

crystal structures. They were then re-docked into their

corresponding proteins. The docking results were evalu-

ated through a comparison of the top ranked docked pose

of the ligand with the one in the crystal structure. The

pose with lowest ligand protein interface scores (Interface

Delta in RosettaLigand energy function) was regarded as

the top ranked pose. Interface Delta is the difference

between the energies of protein in ligand bound and

unbound state. For the purpose of comparison of top

ranked pose with crystal structure, the root-mean-square

deviation (RMSD) between the positions of the heavy

atoms of the ligand in the calculated and experimental

structures was calculated. The plot of RMSD value

between the top ranked docking solution and native ligand

binding pose in all the 14 crystal structures is given in

Fig. 2. In most of the 14 trypsin complexes, RosettaLi-

gand was able to reproduce the native binding mode of

fragment with a RMSD value of \2 Å. RosettaLigand

failed to obtain native binding pose of the corresponding

crystal structure ligand in only two cases with RMSD of

4.44 and 3.63 Å respectively. As seen from self docking

results, RosettaLigand demonstrated acceptable accuracy

in docking fragments to their crystal structures without

any special fragment specific optimization in the sampling

and scoring function.
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Cross docking

Cross docking studies were then performed where each

trypsin fragment like inhibitor was docked into a trypsin

protein structure bound with a different ligand. As in self

docking, the performance of cross docking was assessed by

comparing the RMSD between top ranked docking pose in

non-native receptor with that of native trypsin ligand

complex. The average RMSD between the best docked pose

and native pose is plotted in Fig. 2. Comparative analysis of

cross docking with self docking revealed that the success

rate in reproducing native binding modes was reduced for

cross docking. However, RosettaLigand was still able to

find the native binding pose in majority of the cases with an

average RMSD of\2 Å. The cross docking performance of

RosettaLigand was further evaluated by checking the con-

sistency in the docking scores produced for each ligand

docked to all 14 target receptors. Figure 3 shows the dis-

tribution of RosettaLigand Interface delta scores produced

by RosettaLigand for each ligand docked to 14 trypsin co-

crystal structures. As seen from the Fig. 3, docking scores

produced by RosettaLigand which reflect the binding free

energy are quite consistent for each co-crystal ligand with

respect to each target used for docking. This also shows the

docking poses produced by RosettaLigand are reliable.

Docking of PDBbind set

To further evaluate the efficiency of RosettaLigand to dock

fragment like ligands, a fragment test set was compiled

from the PDBbind database [42, 43]. All the PDB entries in

PDBbind dataset, which are not in complex with fragment

like ligands were removed. Rule of three [35] for fragment

likeness was used to define crystal structure ligands as

fragment like. All the trypsin crystal structures were also

removed from the dataset. Finally, a dataset of 148 PDB

cocrystal structures bound with fragment like ligands were

used to test RosettaLigand. The test set used here consists

of diverse protein targets and provides broader coverage of

different types of proteins bound with fragment like

ligands. The distribution of RMSD values between the top

ranked docking solutions and native ligand binding poses

produced by RosettaLigand is given in Fig. 4. RosettaLi-

gand demonstrated acceptable accuracy in docking frag-

ments compiled from PDBbind database with 56.75% of

fragment like ligands docked to their respective proteins

with a RMSD\2 Å. Another 15% of fragment like ligands

show RMSD between 2 and 3 Å.

Docking based virtual screening performance

In virtual screening, rank ordering of compound libraries is

a major goal for any computational method. The perfor-

mance of our virtual screening protocol was evaluated by
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screening a dataset comprising of both native and non-

native ligands. Fourteen trypsin fragment inhibitors were

mixed with 148 fragment like ligands compiled from

PDBbind dataset [42, 43] as described previously. The

virtual screening performance was quantified by the area

under curve (AUC) of its receiver operating characteristic

(ROC) plot. The AUC is a measure of how high a randomly

selected active compound is ranked compared to a ran-

domly chosen decoy. The AUC will be around 0.5 if the

fragments are ranked randomly, while a perfect ranking of

the fragments will result in an AUC of 1. The ROC plot is

constructed by using ranked list of dataset compounds

(both native and non-native) arranged in order of increas-

ing RosettaLigand Interface Delta. The ROC plot is a plot

of sensitivity (how many true positives are retrieved) ver-

sus specificity (how many false positives are retrieved)

calculated at each position by assuming that all compounds

ranked higher as active. The AUC and ROC plots were

calculated using pROC package [44] of R program [45].

For evaluating the screening performance of our fragment

screening protocol standard screening run were carried out

independently on each of the 14 crystallographically

derived receptor conformations of trypsin. Initially, we

focused on single receptor runs for the assessment of vir-

tual screening performance by plotting the relative rank of

trypsin fragment like inhibitors against set of decoys.

Table 1 presents the AUC values for 14 trypsin crystal

structures. The maximum AUC value of 0.722 is found for

3MI4, which is also one of the highest resolution structure

of trypsin. As seen from this table, the AUC value ranges

from 0.438 to 0.722 for 14 crystal structures. In some of the

receptor conformation RosettaLigand outperforms random

selection, however, some performed worse than the random

selection like PDB 1TNH and 1TNJ.

To evaluate the performance of our fragment screening

protocol in multiple receptors docking, the docking of test

dataset containing the native ligands and decoys was per-

formed on all 14 trypsin crystal structures. The aim of using

multiple crystal structures in docking is to use additional

protein plasticity represented by several ligand bound

receptor conformations. First, a ranked list for multiple

receptors docking was created by averaging the top ranking

docking score for ligand docked to each of the 14 trypsin

receptor. Another ranked list was created where the ligands

are ranked according to their lowest energy score from 14

multiple receptor docking runs. The outcome of this study

was the comparison of single receptor docking runs with the

multiple receptor docking runs. The plot between sensitivity

and specificity values obtained after ranking the test dataset

by docking scores is shown in Fig. 5. The single receptor

docking here outperformed multiple receptors docking in

both cases. The single receptor docking displayed best AUC

value of 0.722 as compared to AUC value of 0.620 when

average docking scores are used and AUC value of 0.559

when lowest energy scores from all 14 receptors are used

to prepare ranked list. Although single receptor docking

performed fairly well as compared to multiple receptors

Table 1 Area under receiver operating characteristic curve (AUC)

values for trypsin crystal structures used for single receptor docking

of test library consisting of fragment like trypsin inhibitors and decoy

molecules

PDB AUC CI. AUC (95%)

1HJ9 0.653 0.758–0.549

1TNG 0.504 0.366–0.642

1TNH 0.449 0.317–0.581

1TNJ 0.438 0.306–0.571

1TNK 0.603 0.731–0.476

1TNL 0.579 0.708–0.449

1UTN 0.677 0.786–0.568

2FX6 0.592 0.722–0.462

2OTV 0.708 0.822–0.593

3A8A 0.613 0.746–0.481

3GY4 0.706 0.815–0.597

3MI4 0.722 0.832–0.611

3NK8 0.578 0.701–0.456

3NKK 0.612 0.737–0.488

CI.AUC values represent the AUC values at 95% confidence interval
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tradeoff between sensitivity and specificity for three different scoring
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average docking scores from all receptors are used to prepare

rankings) and multiple receptor best (when best docking scores

among all receptors are used to prepare rankings) for test library

consisting of fragment like trypsin inhibitors and decoy molecules
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docking here, it is contrary to previous results where mul-

tiple receptors docking is shown to improve the virtual

screening performance [46–49]. Single receptor docking is

a good measure to evaluate a docking program’s perfor-

mance when information about the native ligand is avail-

able and enrichment of native ligand could be used to

identify best receptor for virtual screening. However, in real

virtual screening runs where information about native and

decoys is not available, the selection of best performing

conformation is really problematic as it is hard to establish

which conformer is going to perform best.

Re-ranking with receptor interaction fingerprint

weighted scores

Receptor interaction fingerprints are used to incorporate

knowledge from protein ligand interaction in a docking

based scoring scheme and are known to improve the

enrichment of active compounds against a set of decoys in

a virtual screening campaign [40]. Here, we have tried to

evaluate whether receptor interaction fingerprints based

weighting on docking scores generated by RosettaLigand

improve the virtual screening performance. The results

show that receptor based weighting improves the virtual

screening performance as reflected by AUC of 0.843 for

single receptor docking and AUC value of 0.797 for mul-

tiple receptor docking. This improvement in the virtual

screening performance might be because of the fact that

receptor interaction fingerprints tend to favor ligands with

similar chemotypes.

Molecular docking of SAMPL3 challenge fragment

library

The SAMPL3 challenge fragment library obtained from

OpenEye was prepared as described previously in the

manuscript. The docking protocol as used in the evaluation

of RosettaLigand was used with no fragment specific set-

tings. To generate near native poses, RosettaLigand

requires sufficient conformational sampling of the frag-

ment within trypsin binding site. Therefore, 5,000 fragment

poses for each fragment of SAMPL3 challenge fragment

library were generated and docked onto each receptor. For

each receptor structure, the pose with the best RosettaLi-

gand protein–ligand interface score for each fragment of

the SAMPL3 test fragment library was retained and a

ranked list was created in order of increasing RosettaLi-

gand protein–ligand interface scores for each of the 14

trypsin structures. The fragment poses were then evaluated

for consistency in the binding mode and the interaction

formed with active site residues of 14 trypsin structures.

This evaluation was based on the assumption that a real

inhibitor would bind to multiple conformations of the same

protein target in the same manner highlighting similar

interactions with active site residues. To elucidate consis-

tency in the binding mode automatically, average root

mean square deviation (aRMSD) was calculated by com-

paring all the fragment poses for each receptor with the

most representative pose in the cluster center. The most

representative pose in the cluster center was selected as the

one with the smallest aRMSD to the geometric center. The

geometric centre was calculated by averaging the Cartesian

coordinates of 14 poses for each fragment. aRMSD devi-

ation and average RosettaLigand protein–ligand interface

scores were then used to rank the fragments in SAMPL3

test fragment library. Finally, the ranking of the fragment

library was manually curated by visually inspecting all

poses for critical interactions displayed by trypsin crystal

structure ligands. The final ranked list of fragments was

then submitted to SAMPL3 for evaluation.

Retrospective analysis of SAMPL3 challenge results

Computationally predicted rank lists were evaluated

against experimental results where fragments with

KD \ 1,000 lM against bovine pancreatic trypsin as

measured by SPR are considered as actives [32]. Our

ranked list submitted for evaluations resulted in ROC curve

AUC value of 0.505 with AUC at 95% confidence interval

ranges in between 0.39 and 0.62. This prediction was far

worse than what we would have expected and our predic-

tion was like random selection of fragments from the

library. Table 2 presents the AUC values for SAMPL3

fragment library docked to 14 trypsin crystal structures.

Table 2 Area under receiver operating characteristic curve (AUC)

values for trypsin crystal structures used for single receptor docking

of SAMPL3 challenge fragment library

PDB AUC CI. AUC (95%)

1HJ9 0.616 0.727–0.505

1TNG 0.493 0.588–0.398

1TNH 0.479 0.582–0.375

1TNJ 0.543 0.441–0.645

1TNK 0.495 0.388–0.602

1TNL 0.557 0.468–0.645

1UTN 0.601 0.707–0.495

2FX6 0.559 0.448–0.670

2OTV 0.632 0.739–0.524

3A8A 0.518 0.628–0.409

3GY4 0.651 0.753–0.550

3MI4 0.619 0.725–0.513

3NK8 0.574 0.458–0.690

3NKK 0.516 0.618–0.414

CI.AUC values represent the AUC values at 95% confidence interval
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The AUC values obtained after ranking fragment library

with RosettaLigand Interface Delta scores obtained after

docking to each of the 14 trypsin crystal structures ranges

from 0.479 to 0.651. The best performing receptors were

3GY4, 2OTV and 3MI4 with AUC value of 0.651, 0.632

and 0.619 respectively. The worst performing receptors

were 1TNH, 1TNG and 1TNK with AUC value of 0.479,

0.493 and 0.495 respectively which is worse than random

picking.

Generally, the top three receptors according to AUC

value in Table 2 have significantly higher AUC value than

the bottom three of the receptors. We checked the structure

of these best and worst performing receptor PDBs and

observed that there is no big difference in the position and

orientation of the backbone and sidechain atoms. The dif-

ference in the AUC values may be related with the absence

of a sulphate ion in the inhibitor binding site of worst

performing receptors. The sulphate ion sits at a prime

position in the inhibitor binding site and could affect the

placement of fragment within the binding pocket. Overall,

ranking using single receptor could outperform random

picking if receptor used for docking studies were selected

carefully; however even with the best performing receptor

it was unable to guarantee the enrichment of true binders

among the top few hits. The performance of multiple

receptors docking in prioritizing the fragments in the

library was then analyzed. The performance of using

multiple receptors in ranking the SAMPL3 fragment

library was even worse than using single receptors. The use

of average of all docking scores obtained after docking to

14 receptor PDBs resulted in an AUC of 0.468, whereas,

AUC value of 0.472 was obtained when lowest energy

scores from all 14 receptors are used to prepare ranked list.

The virtual screening performance of multiple receptors

docking versus single receptor docking is shown in Fig. 6.

The ROC plot shows virtual screening enrichment

achieved using best performing single receptor 3GY4

outperformed enrichments when multiple receptors are

used in docking. Here, ranking is prepared using all the 14

receptor PDBs without any careful selection of receptors.

This finding pointed out the fact that careful selection of

receptors is prerequisite for multiple receptors docking.

The performance of some of the trypsin PDBs like 1TNH,

1TNG and 1TNK was below random selection in single

receptor docking run and use of these PDBs brought the

AUC down.

It has already been reported previously that use of mul-

tiple receptor conformation improves the virtual screening

performance if receptor ensemble is chosen carefully among

the available crystal structures or molecular dynamics

generated conformers [50, 51]. We observed that if top five

receptors that performed best in single receptor docking are

chosen, the AUC value goes up. Figure 7 presents the ROC

plot when the five best performing receptors were used in

preparing the ranking. The use of average docking scores

obtained while docking to 3GY4, 2OTV, 3MI4, 1UTN and

1HJ9 in ranking the fragment library resulted in AUC value

of 0.6317, whereas, AUC value of 0.624 was obtained when

lowest energy scores were used. Our results suggest that the

choice of most appropriate receptor conformations is a key

for successful virtual screening. However, incorporation of

too many receptor conformations can lead to reduced

performance.

It has been shown earlier in the manuscript that receptor

interaction fingerprint based weighting improves virtual

screening performance of RosettaLigand. Therefore, to test

whether using receptor interaction fingerprint based

weighting improves the virtual screening performance of

single and multiple receptors docking using RosettaLigand

to screen the SAMPL3 fragment library. The receptor

interaction fingerprints of top scoring docked poses gen-

erated by RosettaLigand were calculated for all the

receptor using the protocol described in the method section.

The receptor interaction fingerprints of SAMPL3 fragment

library were then compared with that of reference ligands

using Tanimoto correlation coefficient [41]. This Tanimoto

correlation coefficient was then used as a weighting factor

for RosettaLigand Interface Delta scores which were then
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Fig. 6 The receiver operating characteristic (ROC) curve describing

tradeoff between sensitivity and specificity for three different scoring

procedures; single receptor docking, multiple receptor average (when

average docking scores from all receptors are used to prepare

rankings) and multiple receptor best (when best docking scores

among all receptors are used to prepare rankings) for SAMPL3

challenge fragment library
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used to rank the fragment library. The AUC values were

calculated after ranking the fragment library with the

receptor interaction fingerprint weighted docking scores.

The use of receptor interaction fingerprint weighted scores

did not improve the virtual screening performance. Instead

it deteriorated the virtual screening performance and

brought down the AUC value from 0.652 to 0.565 for

single receptor docking. The AUC value for multiple

receptors docking remained almost the same and there was

no improvement in the virtual screening performance. This

result was expected as the reference ligands used for

comparison of receptor interaction fingerprints do not

belong to diverse chemical classes. The interaction fin-

gerprint generated from these very similar reference

ligands tends to favour fragments belonging to the same

structural class and this may be the reason for low AUC

values from ranking based on receptor interaction

fingerprints.

Factors that affect the virtual screening performance

We have observed that careful selection of multiple

receptors improves the virtual screening performance.

However, this is only marginal improvement and the vir-

tual screening performance is far from ideal. We then tried

to explore the reasons for the meagre performance of our

protocol in docking SAMPL3 fragment library. The crystal

structures of seven of the active fragments in the SAMPL3

challenge fragment library (frag. vs. 115, frag. vs. 129,

frag. vs. 188, frag. vs. 198, frag. vs. 236, frag. vs. 339 and

frag. vs. 366) were obtained from Peat and Newman [32]

and the top ranking poses generated by RosettaLigand were

compared with that of crystal structures. Here the results

from the best performing receptor 3GY4 are shown. As

seen from Fig. 8, in five out of seven cases, the top scoring

pose generated by RosettaLigand was different from the

native fragment pose with RMSD of 3.90, 5.04, 4.21, 4.90

and 5.04 Å
´

for frag. versus 115, frag. versus 129, frag.

versus 198, frag. versus 236 and frag. versus 339 fragment
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Fig. 7 The comparison of receiver operating characteristic (ROC)

plots obtained after preparing the ranked list using top performing five

receptors PDBs with all the receptor PDBs

Fig. 8 The comparison of

RosettaLigand generated

docked poses with crystal

structure conformation for

active fragments in SAMPL3

challenge fragment library.

Docked poses are shown in

green while the crystal structure

conformations are in magenta.

The direction of arrows point to

the improvement in the pose

prediction after using Gasteiger

ligand partial charges instead of

MMFF94s forcefield based

charges
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respectively. In only two cases lower RMSD of 1.89 and

1.30 Å
´

was found for frag. versus 188 and frag. versus 366.

In most cases, the top scoring pose was flipped by 180�.

We then checked whether the near native pose was present

in the top 10 scoring poses generated by RosettaLigand. To

our surprise, in four cases, near native poses were not

present in the top 10 scoring poses generated by Roset-

taLigand. Overall, more than 50% of the time native poses

were not present among the top scoring 10 poses. As no

correct poses could be picked up in the first place, therefore

RosettaLigand’s scoring function cannot predict the bind-

ing affinity accurately. We inferred that there was some

problem in our docking protocol and we need to rethink

where we might have made a mistake. In our virtual

screening protocol, there were four putative sources of

prediction errors: (1) ligand starting conformations, (2)

sampling of the docking poses, (3) protein and ligand

charges and (4) scoring function. All these sources of error

were addressed in a retrospective analysis to highlight

problems in our docking protocol and the results are

summarized in Table 3 and will be described in detail

below.

Influence of starting ligand conformations

RosettaLigand requires ligand conformations to be pre-

generated to consider the ligand flexibility in docking.

Ensemble of carefully generated ligand conformations

generally produces better results than using single lowest

energy conformation [52]. In this study, fragment ligand

conformations were generated using LowModeMD search

algorithm [38] in MOE2010.10. In case of fragment-size

ligands there are few rotatable bonds and conformational

diversity is not as vast as drug-like ligands and the con-

formational search algorithm can sample the ligand con-

formational space well for fragment like ligands. Although

inaccurate ligand conformation might not be the source of

error, we tested this by generating ligand conformations

using a systematic search algorithm and a stochastic search

algorithm in MOE2010.10. We repeated the docking cal-

culation using 3GY4 as receptor and there was no

improvement in the virtual screening performance.

Ligand pose sampling

RosettaLigand is a Monte Carlo simulated annealing

algorithm that employs a stochastic conformational search

to identify low-energy protein ligand complexes [22, 26,

27]. Therefore, sufficient sampling is an ultimate require-

ment to discover near native poses. In our docking proto-

col, 5,000 protein ligand binding poses were generated and

ranked by our scoring scheme. Considering that these 5,000

poses may not sample the binding site sufficiently to gen-

erate the near native pose, we raised the number of output

poses from docking run to 10,000. However no significant

improvement in the virtual screening performance was

observed as AUC value only increased from 0.652 to

0.660. This marginal improvement in virtual screening

performance is not worth the doubling of computational

time.

Ligand partial charges

RosettaLigand’s energy function involves the calculation

of contributions from various energy components like

electrostatic, van der Waals, hydrogen bond, solvent effects

[22, 26, 27]. Therefore, the correct docking pose and

docking score of the pose heavily depends upon the

accurate partial charges on the ligand. The partial charges

are even more important when the protein system is bovine

pancreatic trypsin, as the inhibitor binding site is composed

of negative charged residue Asp189 which plays an

important role in cleaving substrate peptide. The presence

of positively charge functionalities is hence desired for

compounds able to inhibit trypsin. In this study, MMFF94s

partial charges [39] were assigned to the SAMPL3 chal-

lenge fragment library. The MMFF94s partial charges were

used because of the positive experiences derived from

other studies in our group using these set of charges. To

retrospectively study the influence of ligand partial charges

on the performance of docking based virtual screening we

have applied AM1-BCC [53] and Gasteiger [54] partial

Table 3 Effect of ligand conformation, ligand pose sampling, ligand

partial charges and scoring function on virtual screening performance

Method AUC CI. AUC (95%)

Ligand conformation

LowModeMD 0.651 0.753–0.55

Stochastic 0.628 0.741–0.515

Systematic 0.621 0.723–0.519

Ligand pose sampling

5,000 poses 0.651 0.753–0.55

10,000 poses 0.617 0.726–0.508

Ligand charges

MMFF94s 0.651 0.753–0.55

AM1-BCC 0.637 0.745–0.528

Gasteiger 0.706 0.793–0.619

Scoring function

RosettaLigand 0.706 0.793–0.619

Autodock 0.731 0.839–0.622

DrugScore 0.673 0.792–0.554

AUC represents area under receiver operating characteristic curve and

CI.AUC values represent the AUC values at 95% confidence interval.

The AUC values shown here are calculated after docking SAMPL3

challenge fragment library to best performing receptor PDB 3GY4
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charges to SAMPL3 challenge fragment library using

MOE2010.10 and docked the library to trypsin best per-

forming receptor 3GY4. As seen in Fig. 9 and Table 3,

application of Gasteiger partial charges to the fragment

library improved the performance of virtual screening with

AUC values increases from 0.652 to 0.706. Using AM1-

BCC charges, there was no improvement in the virtual

screening performance as the AUC value was 0.637 which

is even worse than using MMFF94s charges. This

improvement in the virtual screening performance of Ro-

settaLigand using Gasteiger charges may be attributed to

the fact that empirical charge calculation method gives

higher absolute value for partial charge to a selected atom

than semi-empirical AM1-BCC method and MMFF94s

forcefield based charges. This results in accurate handling

of electrostatic interactions between the atomic pair and

thus results in better and near to native binding pose as

compared to other charge calculation methods.

The top ranked docking poses produced by RosettaLi-

gand using Gasteiger charges were then compared with the

native binding poses for seven fragments (frag. vs. 115,

frag. vs. 129, frag. vs. 188, frag. vs. 198, frag. vs. 236, frag.

vs. 339 and frag. vs. 366) in the SAMPL3 challenge

fragment library. As seen from Fig. 8, the docking poses

for five out of seven fragments were close to the binding

mode displayed in the crystal structures with the RMSD

value of 3.72, 4.95, 1.91, 0.96, 1.50, 1.58 and 0.84 Å
´

for

frag. versus 115, frag. versus 129, frag. versus 188, frag.

versus 198, frag. versus 236, frag. versus 339 and frag.

versus 366 respectively. The improvement in the identifi-

cation of near native poses for these fragments by

RosettaLigand may be attributed to the accurate description

of partial charges that results in more pronounced effect of

electrostatic interactions between each atomic pair. This

results into well defined protein ligand geometry as com-

pared to MMFF94s charges used earlier.

Scoring function

The scoring function inside RosettaLigand was used to

perform the prospective virtual screening of the SAMPL3

fragment library. It was desirable to access whether the

virtual screening performance of our protocol can be fur-

ther improved by rescoring the RosettaLigand generated

poses with some other scoring function. We have chosen

Autodock scoring function [55–57] as representative for

empirical scoring function and DrugScore [58, 59] for

knowledge based scoring function. The docking scores of

RosettaLigand generated binding poses were re-calculated

using Autodock and DrugScore scoring function and the

ranked list for SAMPL3 challenge fragment library was

produced. The ROC curve representing the performance of

Autodock and DrugScore scoring function is presented in

Fig. 10 and the AUC values are shown in Table 3. The use

of Autodock scoring function on RosettaLigand generated

poses slightly improved the virtual screening performance

as the AUC increased from 0.706 to 0.731. However, there

was no improvement while using knowledge based scoring

function DrugScore as the AUC deteriorated from 0.706 to

0.674. The results showed that although there is no big
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Fig. 9 The effect of three different partial charge calculation

methods on molecular docking of SAMPL3 fragment library
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Fig. 10 The receiver operating characteristic (ROC) curve describing

the comparison of three different scoring functions on ranking the

active fragments ahead of inactives from SAMPL3 challenge

fragment library
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difference in the performance of RosettaLigand and

Autodock scoring function, there is some margin for

improvement in RosettaLigand’s scoring function. The

results pointed out the need for improvement in the scoring

function of RosettaLigand in order to increase its fragment

docking performance.

Lessons learnt from SAMPL3 challenge

SAMPL3 fragment based virtual screening challenge was a

great platform for researchers working in the field of uti-

lizing computational approaches for fragment based drug

discovery. SAMPL3 challenge gives scientific community

an opportunity to evaluate their programs, methods and

protocols in a blind testing environment. As the test data

for SAMPL3 challenge were not previously published

anywhere, the blind testing environment would remove any

bias associated with performing fragment screening and

selecting hits. SAMPL3 challenge also presents an oppor-

tunity for researchers to learn from their experiences, share

the results and experiences from their approach with those

working with different approaches. We participated in

SAMPL3 fragment screening challenge to evaluate our

fragment based virtual screening protocol that we are

planning to use in our drug discovery projects. Although

the results of our SAMPL3 fragment screening challenge

were poor, there are lots of things we have learned from the

SAMPL3 challenge. One of the specific things we learned

is the importance of accurate assignment of partial charges

to the atoms of ligands. There are several charge methods

available and because of the fundamental differences in

their algorithm, significant differences may occur in elec-

trostatic assignment on atoms. The charge models not only

could affect the docking scores but also the docked poses

and hence the docking accuracy. This is even more

important in the protein system under study i.e. trypsin in

which electrostatic interactions is the dominant force of

inhibitor binding and the presence of charged group is

essential [60]. We have assigned MMFF94s forcefield

based partial charges [39] to SAMPL3 fragment library but

the best virtual screening performance could be drawn

using Gasteiger charges [54]. The better performance may

be due to the accurate description charges on each ligand

atoms. Another important thing we learned is using mul-

tiple receptor PDBs for docking does not always help. It

has been reported in literature that using multiple crystal-

lographic or molecular dynamics derived receptor ensem-

ble in docking improves the virtual screening performance

[46–48]. However in our case, even using the best per-

forming receptor could not improve virtual screening per-

formance displayed by using single receptor. The selection

of appropriate receptor conformation for docking is very

important in virtual screening. We have found that virtual

screening performance varied from moderate to worse for

different trypsin PDBs used in our virtual screening protocol.

In this case, careful selection of crystallographically gener-

ated receptor PDBs is very important and non-performing

receptor PDBs could be eliminated by performing enrichment

analyses if some actives against target protein are known. In

our case too many receptor conformations were considered

which led to the reduced performance of our virtual screening

protocol. The only problem here is that when no inhibitor

information is available it is very difficult to find out a priori

which receptor PDB is going to perform better than the other.

The big take away message from SAMPL3 fragment

screening challenge is that the success of a particular charge

calculation method/scoring function/receptor conformation/

docking program highly depends upon the target protein

system, and performing preliminary evaluation test runs

would help to pick up the best combination. SAMPL3 frag-

ment based virtual screening challenge also highlighted one

direction for our future research as there is still wide margin of

improvement in the fragment based virtual screening protocol

involving full flexible docking simulation from RosettaLi-

gand. As seen from the retrospective analysis of our SAMPL3

results, moderate success can be obtained without using any

fragment specific settings. The performance may be further

enhanced if RosettaLigand scoring function were improved

with some fragment specific weighting to energetic terms.

Rosetta sampling methodology which simultaneously opti-

mizes protein sidechain, protein backbone and ligand degree

of freedom is a major strength of RosettaLigand. However,

weights to energetic terms to its scoring function are derived

using linear fitting to experimental data composed of mostly

drug-size ligands. Therefore, fragment specific weighting

may improve docking performance.

Conclusion

Fragment based virtual screening remains a challenging

area for computational tools and protocols. Nevertheless,

our SAMPL3 fragment screening challenge study suggests

that current tools and protocols can be used to identify

initial fragment hits for further optimization in a fragment

based drug discovery program. Our study provided

important points that need to be considered carefully to

improve success rate with structure based docking:

(1) Availability of information about inhibitors and

protein ligand interaction information always helps.

Program parameters and screening protocols that

provide better enrichment of actives should be used.

(2) Receptor PDBs for either single receptor docking or

multiple receptors docking should be selected after

careful analysis of all available ones.
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(3) Protein flexibility, along with the ligand flexibility

should be considered in docking, either by using full

flexible programs like RosettaLigand or by docking to

receptor ensembles.

(4) Methods for calculating ligand and protein partial

charges should be selected depending upon the

protein active site environment and protein ligand

interaction information.

(5) Sufficient conformational sampling of fragments

within the binding pocket is required to find out the

near native binding pose.
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