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Abstract The applicability domain (AD) of models

developed for regulatory use has attached great attention

recently. The AD of quantitative structure–activity rela-

tionship (QSAR) models is the response and chemical

structure space in which the model makes predictions with

a given reliability. The evaluation of AD of regressions

QSAR models for congeneric sets of chemicals can be find

in many papers and books while the issue about metrics for

the evaluation of an AD for the non-linear models (like

neural networks) for the diverse set of chemicals represents

the new field of investigations in QSAR studies. The

scientific society is standing before the challenge to find

out reliable way for the evaluation of an AD of non linear

models. The new metrics for the evaluation of the AD of

the counter propagation artificial neural network (CP ANN)

models are discussed in the article: the Euclidean distances

between an object (molecule) and the corresponding exci-

ted neuron of the neural network and between an object

(molecule) and the representative object (vector of average

values of descriptors). The investigation of the training and

test sets chemicals coverage in the descriptors space was

made with the respect to false predicted chemicals. The

leverage approach was used to compare non linear (CP

ANN) models with linear ones.
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Introduction

According to the Organization for Economic Co-operation

and Development (OECD) guidance document on the

validation of quantitative structure–activity relationship

(QSAR) models used for regulatory purposes [1] published

in 2007 the prediction models should be accompanied by a

definition of the applicability domain (AD). The AD was

defined as the response and chemicals structure space in

which the model makes predictions with a given reliability

[1, 2]. The general definition of the AD of a (Q)SAR model

is given in several papers [2–4]. The authors [5] proposed a

stepwise approach for determining the model applicability

domain based on the general requirements for variation of

the physicochemical properties of chemicals, the structural

similarity between chemicals that are correctly predicted,

and on a mechanistic understanding of the modelled end-

point based on the metabolism simulation. Netzeva et al.

[2] represented approaches for describing the AD of a

model: methods based on ranges of molecular descriptors,

geometrical methods, distance-based methods, and proba-

bility distribution-based methods. Three distance based

approaches are widely used in QSAR research: Euclidean,
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Mahalanobis and city-block distance [2]. The Euclidean

distance (ED) is commonly used for the determination of

the distance between two points which are taken as a

similarity measure between two compounds in an

n-dimensional descriptor space. In the study we selected

ED metrics for the counter propagation artificial neural

network (CP ANN) models to explore the training and test

sets chemicals coverage and descriptors space in relation to

false predictions.

Classification models were applied in this study.

Therefore, we focused on the AD for classification prob-

lem. Different classification approaches have been devel-

oped over the years. The pattern classification methods are

reported in the book [6]. Authors compared different

classification techniques. The main goal of classification

methods was to establish boundaries between groups in an

n-dimensional space. These decision boundaries using EDs

should be linear if we use regression methods. It means that

the groups of points should be linearly separable: active

and inactive compounds in the descriptor space can be

separated by a line, a plane or a hyper plane. In contrast,

the artificial neural networks (ANNs) can generate com-

plex decision boundaries and therefore provide low error

classification results being implemented for complex data

[7]. It was noted [8] that although neural networks are

equivalent to statistical classifiers, they offer more effec-

tive computational algorithm.

Carcinogenicity is a very complex endpoint that is

extremely difficult to model [9]. We deal with non-liner

relationships. The application of exploratory statistical

tools like Principal Component Analysis (PCA) is appro-

priate if the data really does form a line or a plane in the

input space, but if the data forms a curved line or a surface

and etc., the linear PCA is not suitable. In such a case

Kohonen self organizing maps (SOMs) will overcome the

approximation problem due to their topological ordering

property. The SOM provides a discrete approximation of

finding so-called principal curves or principal surfaces,

and may therefore be viewed as a non-linear generalization

of PCA [8].

A very important issue that should be taken into account

during the determination of the AD of a model is uncer-

tainty. In the literature [10] authors discussed the two main

different types of uncertainty: input uncertainty and vari-

ability and structural (model) uncertainties that derives from

simplifications of the reality due to limited systematic

knowledge. Carcinogenicity is a complex endpoint con-

tained uncertainty and noises. The specific of the ANN

algorithm enables to get reliable results treating the data

contained uncertainty and noises. However, researchers

should keep in the mind that due to the uncertainty associ-

ated with individual (Q)SAR predictions, some predictions

may fall within the defined AD of the model, but be unre-

liable due to properties and features not accounted by the

model. In contrast, a chemical falling outside the defined

AD, may still exhibit the response being modelled, because

it elicits this response by a mechanism not accounted by the

model in question. This problem was discussed in the article

[2].

The ADs of models in our study were analyzed using the

ED between objects (molecules) and central neurons of

neural networks as well as the ED between objects (mol-

ecules) and the vector of average values of the descriptors.

The investigation of the training and test sets chemicals

coverage in models and descriptors space was made with

the respect to false predicted chemicals. Additionally, we

demonstrated the results of leverage approach [11, 12]

applied for the evaluation of descriptors space in CP ANN

models for comparison with linear models. Here we con-

sidered the AD of models for prediction of carcinogenicity

class based on our research work within the CAESAR

project [13–15].

There is not a clear consensus about the determination

of thresholds in AD for non-linear classification models. As

we deal with non-linear models we did not fix a ‘‘warning’’

threshold, but we rather investigated the prediction accu-

racy of model in the chemical and descriptors space and

tried to find out the space where models gave reliable

predictions. We evaluated how different metrics relevant to

CP ANN correlated with each other and how they can be

used in the interpretation of the AD of classification CP

ANN models.

Data

In the study we used models that were built using the

dataset of 805 chemicals extracted from CPDBAS: Car-

cinogenic Potency Database Summary Tables located at

Distributed Structure-Searchable Toxicity (DSSTox) Pub-

lic Database Network http://www.epa.gov/ncct/dsstox/

sdf_cpdbas.html [16]. The carcinogenic class (carcino-

gens (P-positive) and non-carcinogens (NP-not positive))

was assigned by the tests results on rats (male and female).

The eight (8) MDL descriptors were used in the model A

and the twelve (12) Dragon descriptors in the model B. We

have got a good statistical prediction of carcinogenic class:

an accuracy for the training set (644 compounds) was 91%

and 89% for models A and B, respectively while accuracy

of the test set (161 compounds) was equal to 73 and 69%

for model A and model B, correspondingly. The accuracy

of the external test set (738 compounds) was equal to 61.4

and 60.0% for models A and B, respectively. These models

were described in our previous study [15].
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Methods

CP ANN network and interpretation of input data

CP ANN is one of the most popular algorithms suitable for

modeling classes separated with non-linear boundaries. The

brief survey of the method is given in the supplementary

material section ‘‘online resource’’ (The CPANN network

method) to better understand some parameters of CP ANN

models which could be used for characterisation of the AD of

QSAR models. The description of the CPANN algorithm for

classification is included in the supplementary material sec-

tion ‘‘online resource’’ (CPANN algorithm for classification).

The ED between a molecule (an input pattern)

and a central node

The ED is the common way of measuring the distance

between vectors and can be calculated as the distance

between an input pattern (molecules) and a central (win-

ning) node in the Kohonen layer.

The ED between the input pattern (X) and a central node

‘‘ci’’ can be expressed using the following equation:

ED X;wcið Þ ¼ sqrt

�
xT

1 � wci1

� �2þ xT
2 � wci2

� �2þ � � �

þ xT
m � wcim

� �2
�
; ð1Þ

where wci1, wci2,…, wcim are the weights to the neuron ‘‘ci’’

corresponding to particular descriptor, and m is the number

of descriptors or levels corresponding to a particular

descriptor in the Kohonen layer. Input patterns for each level

are illustrated in Table 1 as input vectors. They can be

expressed as transposed matrixes. In the equation we denoted

the input vector 1, 2,…, m as x1
T, x2

T,…, xm
T . Each transpose

matrix (x1
T, x2

T,…, xm
T ) includes the values of descriptors D1,

D2,…, Dm correspondingly, calculated for each molecule.

The Kohonen neural network or self organizing map

(SOM) is an unsupervised learning algorithm. It does

not give us direct information on the actual classifica-

tion (carcinogens and non-carcinogens) of the data

samples. It merely clusters and classifies the data set

based on the set attributes (features of the descriptors)

used [17]. Authors [18] showed that structural similarity

of individual molecules in the same cluster is controlled

and directed by the descriptors introduced into the

model.

In this study the ED to the central neuron has been used

as a ‘‘distance to model’’ metric with respect to true and

false predictions, to describe the coverage of chemicals in

the training and test sets.

The ED between a molecule (an object) and the vector

of average values of descriptors

It should be noted that the ED between molecules and

central neurons in Kohonen layers indicates the chemicals

space coverage, while the distance between objects (mol-

ecules expressed as vectors of values of descriptors) and

the representative object (a vector of average values of

descriptors) illustrates the descriptors space. The descrip-

tors space in CPANN models was also considered in this

study. As was pointed above, the structure of s-th com-

pound represented by m-dimensional vector of descriptors

can be expressed as xs = (xs1, xs2,… xsm). Therefore, the

ED between an object ‘‘s’’ (molecule‘‘s’’ represented as a

vector of descriptors (1,2,…, m)) and the vector of average

values of particular descriptors (1, 2,…, m) related to all

chemicals ‘‘k’’in the dataset have been calculated using the

following equation (see Table 2):

EDs x; ave dð Þ ¼ sqrt xs1 � ave d1ð Þ2
�

þ xs2 � ave d2ð Þ2þ. . .þ xsm � ave dmð Þ2
� ð2Þ

Table 1 The input data matrix

using in CP ANN algorithm

J Comput Aided Mol Des (2011) 25:1147–1158 1149

123



where

ave d1 ¼ ðx11 þ x21 þ . . .xs1 þ � � � þ xk1Þ=k

ave d2 ¼ ðx12 þ x22 þ . . .xs2 þ � � � þ xk2Þ=k

ave dm ¼ ðx1m þ x2m þ . . .xsm þ � � � þ xkmÞ=k

In the Eq. 2 the average value of 1st, 2d,…, mth descriptor

for dataset containing ‘‘k’’ compounds was labelled as

ave_d1, ave_d2, …, ave_dm, respectively. The ED between

all objects (all molecules represented as a vector of

descriptors) and the vector of average values of particular

descriptors can be plotted versus predicted values (Y_pre-

dicted) or difference between target and predicted values

(Y_target–Y_predicted). As a result, one can get a graphi-

cal representation of how the descriptor values of chemi-

cals in the training set are distributed in relation to the class

predicted by the model or according to the prediction error.

The leverage approach

The distance-based method, specifically the leverage

approach [11, 12], was applied in our study for the com-

parison between linear and non linear models approaches.

Leverages are measures of the distance between the x

values for an observation and the mean of x values for all

observations. In terms of parameters used in our study this

approach provides a measure of the distance between the

descriptors values for a chemical and the mean of

descriptor values for all chemicals. A large leverage value

indicates that the x values of an observation are far from

the center of x values for all observations. The leverage h

of a compound measures its influence on the model. The

leverage of a compound in the original variable space is

defined as:

hi ¼ xT
i XT X
� ��1

xi i ¼ 1; . . .; nð Þ ð3Þ

where xi is the descriptor vector of the considered com-

pound and X is the model matrix formed with descriptors

values from the training set.

Williams plots can be applied to visualize the AD of

QSAR models, where leverage values (or hat values) are

plotted versus standardized residuals for each compounds

[19, 20]. As we deal with classification non linear CP ANN

model we plotted the difference between target and pre-

dicted values (Y_target-Y_predicted) for our response

instead of residues which could be calculated in case of

regression model. Then we have investigated the distribu-

tion of chemicals along the x axis.

The warning leverage (h*) of leverage threshold is

generally fixed at 3p/n, where n is the number of training

chemicals, and p the number of model variables (descrip-

tors) plus one. In Williams plot, chemicals influential on

the structural domain of the model, are characterized by

leverage (hat value) exceeding warning leverage threshold

and they should be carefully examined. Therefore, we

considered chemicals outside the limits keeping in mind

that these thresholds are suitable only in the case of linear

models while we are dealing with non-linear ones.

Results and discussions

The reliability prediction analysis depending

on the thresholds of classification models

The goal of an AD is to set up boundaries whereby the

obtained predicted values can be trusted with confidence.

Hence, it follows that the essential problem of the AD

definition is to find out the uncertainty areas where less

reliable predictions fall. It should be emphasized that the

accuracy (ACC) of models indicates their level of

Table 2 The input data matrix

complemented with calculation

of Euclidean distance between

molecules represented as a

vectors of descriptors (1, 2,…,

m) and the vector of the average

values of particular descriptors

(1, 2,…, m) related to all

chemicals ‘‘k’’ in the dataset
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reliability. Therefore, uncertainty areas in our models

depend on ACC of models which is proportional to the

correctly predicted compounds (carcinogens and non-car-

cinogens). The ACC of CPANN classification models, in

turn, depends on the selected threshold. (see ‘‘CPANN

algorithm for classification’’ in supplementary material

section ‘‘online resource’’).

In the modeling we accepted target (T = Y_target) as

one (1) for carcinogen class and as zero (0) for non-car-

cinogen (discrete numbers in our classification models).

The predicted values of response (Y = Y_predicted) are

expressed as continues values in the interval from 0 to 1.

The thresholds of models serve for the separation of car-

cinogens and non-carcinogens (see Fig. 1). As was repor-

ted in the article [15] the threshold of model A was

established as 0.45 while the threshold of model B was

equal to 0.5. If S is a compound to be predicted and y(S) is

a continuous prediction value, calculated by the model,

then the predicted class for the given compound S (c(S)) is

identified by the following requirements:

c Sð Þ
�

1 ¼ carcinogen; y Sð Þ[ 0:45; 0 ¼ non carcinogen;

y Sð Þ� 0:45
	

for model A

c Sð Þ
�

1 ¼ carcinogen; y Sð Þ[ 0:5; 0 ¼ non carcinogen;

y Sð Þ� 0:5g for model B:

It is obvious that for carcinogens with Y_target equal to 1

the predicted values from 0 to 0.45 (model A) or from 0 to

0.5 (model B) are false predicted while the values closer to

1 will be more reliable and visa versa, in the case of non-

carcinogens with Y_target equal to 0 the predicted values

from 1 to 0.45 (model A) or from 1 to 0.5 (model B) are

false predicted while the values closer to 0 will be more

reliable. The data closer to the threshold can be determined

by our algorithm as correctly predicted but they are less

reliable. Thus, we can conclude that the area closer to the

threshold is the uncertainty area because here the results of

a model contain very high uncertainty in prediction.

A measure of the prediction uncertainty can be also

expressed as the absolute value of the difference d(S)
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Fig. 1 Plots of ED to the central neuron (with indication of

carcinogens (P) and non-carcinogens (NP)) versus Y_predicted (and

Y_target) for model A (a for training set and b for test set) and for

model B (c for training set and d for test set). Notes: positive

(P) target data are specified as squares (filled square); non-positive

(NP) target data marked as triangles (filled triangle); positive

(P) predicted data identified as circles (filled circles); non positive

(NP) predicted data represented as diamonds (filled diamonds)
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between the prediction value and the nearest label of target

values (0 for non-carcinogens and 1 for carcinogens).

d Sð Þ ¼ min 0� y Sð Þj j; 1� y Sð Þj jf ð4Þ

Figure 2 plots the ED to the central neuron versus

(Y_target-Y_predicted) and shows the distribution of true

predicted (true positive (TP) ? true negative (TN)) and

false predicted (false positive (FP) ? false negative (FN))

chemicals in relation to the threshold. Thus, true predicted

chemicals in the model A (Fig. 2a) are located between

-0.45 and 0.55 while in the model B (Fig. 2b) the true

predicted chemicals are distributed between -0.5 and 0.5.

All predicted values below -0.45 and above 0.55 are false

predicted in the model A while in the model B false pre-

dicted chemicals are located below -0.5 and above 0.5.

The analysis of the AD metric expressed as the ED

between molecules (objects) and the central neuron

The ED between objects (molecules) and central neuron in

Kohonen layer of CP ANN models is the essential char-

acteristic of neural network. We used this metrics to

compare the training and test sets chemical coverage of

models with respect to false predicted chemical space.

The ED represents the interval between a node in the

Kohonen layer and an input pattern. The distances are

unitless, because all descriptors have been autoscaled. It

was noted in the literature [18] that in fact, the sum of

distances of all molecules obtained after training of the

network during one epoch is equal to the cumulative

training error associated with the Kohonen layer. Thus, the

ED depends on the input values of descriptors from one

side and is connected with the errors from another one.

The distribution of the ED to the central neuron versus

Y_predicted (and Y_target) is presented in Fig. 1a–d

for model A and B, respectively, with indication of

carcinogens (P) and non-carcinogens (NP). Figure 1a, c

correspond to the training set of models A and B while

Fig. 1b and d are related to the test set of model A and

B respectively. In Fig. 1 positive (P-carcinogens) target

data are specified as squares ( ) located on the level

Y = 1, non-positive (NP—non-carcinogens) target are

marked as triangles ( ) located on the level Y = 0, P

predicted data identified as circles (d) while NP predicted

data represented as diamonds ( ).

As was pointed above Fig. 1a, c illustrate the discrimi-

nation between carcinogens and non-carcinogens on each

side of the thresholds 0.45 and 0.5 in case of model A and

B correspondingly. The area close to threshold represents

the uncertainty zone of the prediction. The false predicted

or predicted with high level of uncertainty chemicals are

aggregated here. Thus, the predicted carcinogens (P) (d),

which are closer to the edge of class P (Y = 1;( )) and the

predicted non-carcinogens (NP) ( ) located close to the

edge of class NP (Y = 0;( )), are assumed to have better

prediction accuracy than dots, located in the middle

(uncertainty area) between the classes near the value 0.45

for model A and 0.5 for model B.

The model A with higher accuracy (91% (training set)

and 73% (test set)) results in less sparse distribution of

chemicals in comparison with model B (accuracy 89%

(training set) and 69% (test set) in the plot of the ED versus

Y_predicted (see Fig. 1). The similar observation was

obtained comparing the training and test sets. It should be

noted that the distribution of chemicals from the training

set (Fig. 1a, c) is less sparse in comparison with the test set

(Fig. 1b, d) because the ACC of the training set is greater

(91% model A and 89% model B) then the test one (73%

model A and 69% model B).

In the model B we obtained a less sparse distribution in

the case of carcinogens (the majority of chemicals dis-

tributed in the narror interval ED \ 1.5). The distribution

Fig. 2 Plots of ED to the central neuron versus (Y_target—
Y_predicted) for the model A (a) and for the model B (b) with

indication of true and false predicted chemicals. Notes: TP true

positive, TN true negative, FP false positive, FN false negative. Test

data are specified as squares (filled square) while training data are

identified as circles (filled circle)
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of non-carcinogens in turn was observed in the wider

interval of ED \ 5.

Figure 1 shows that errors of prediction and uncertainty

areas don’t depend on value of the ED. True and false

predicted chemicals are spread more or less evenly

throughout the studied space (0 \ ED \ 5). We can con-

clude that coverage estimation should be used only as a

warning, and not as a final decision of a ‘‘model applica-

bility’’. We have considered chemical space in the interval

of the ED from 0 till 5 here. The studied models are

characterized by the ED less than 5.

The more detail characterization of chemicals with the

largest ED is given below.

Comparison of AD metrics for non linear

model and linear one

The comparison of three different metrics: the ED between

objects molecules (objects) and the central neuron (metric

1), the ED between vectors of descriptors and vectors of

average values of the descriptors (metric 2) as well as the

leverage (metric 3) was described here. The first two

metrics were aimed for the characterization of non linear

models while the leverage approach usually intent for the

characterization of linear models.

It was noted in the Joint Research Center (JRS) report

[21] that the definition of similarity for molecules depends

on the representation of the molecules under consideration

in the descriptor space. It should be highlighted that the

selected 2D descriptors represent the arrangement of atoms

using the topology of molecule and the connectivity of

constituting atoms. Thus, the ED here demonstrates the

similarity or dissimilarity between the compared objects

(molecules). The ED between vectors of descriptors for

each molecule in the dataset and the vector of average

values of particular descriptors (metric 2) and the leverage

(metric 3) were used to explore the descriptor space.

To compare different AD metrics we have plotted the

ED to central neuron (Fig. 3a, b) (related to the chemicals

space coverage), the ED to vector of average descriptors

(Fig. 3c, d) and the leverage (Fig. 3e, f) (related to the

descriptors space) versus (Y_target-Y_predited). Fig-

ure 3a, c, e correspond to the model A while Fig. 3b, d, f

relate to the model B. In Fig. 3 we have marked only the

more distant chemicals while in Figure 2SI of the Online

Resource one can see all chemicals labelled. The detail

information about chemicals labelled in Fig. 3 is shown in

the supplementary material ‘‘Online Resource’’ Table 1SI

including their name and the CAS registration number

(CAS_RN), the molecular weight (MW), and the indication

of maximum or minimum value of descriptors intrinsic for

studied compounds. Information about carcinogens (P) and

non-carcinogens (NP) is presented in the table as well as

the indication of model (A, B), if the chemical was found in

one or both models approximately at the same level of the

ED. Chemicals from the training and the test set are rep-

resented separately.

The following findings were obtained analyzing the

chemicals with the largest ED to the central neuron or to

the vector of average values of particular descriptors or the

leverage (see chemicals located from the right side in

Fig. 3). First of all, the majority of compounds from the

training set have MW greater than 500 or close to 500.

Thus, the compounds numbers 151, 19, 107, 635, 521, 550,

226 and 642 have the MW equal to 1,135, 1,255, 536, 811,

666, 823, 457, and 629 respectively. Some of chemicals

correspond to the largest (max) or smallest (min) value of

descriptors (see Table 1SI of the ‘‘Online Resource’’). The

majority of chemicals are NP-non carcinogens. The pointed

features are intrinsic for both models A and B.

Comparing all three metrics one can notice the simi-

larity in the distribution of the most distant chemicals in

both models (model A and B). Thus, the compounds

marked with number 19, 107, 151, 550, 635, and 642 have

the largest value of the ED or the leverage.

The most distant chemical from the test set can be found

under the number 37 (see Fig. 3a). This compound is

Cyclosporin A (CAS59865-13-3) with formula C62H111N

11O12, MW = 1,202. Cyclosporin A has the Y_target

value = 0. It is NP chemicals while it was predicted with

score 0.9838 as carcinogen (Y_target_carcinogen = 1). The

ED was very high = 4.7606 in the model A. We suggested

that due to the complex chemical structure the model could

not be accurate in estimating this compound. From the other

hand, we have found that this chemical has the smallest value

of molecular connectivity descriptor D4 (dxp9- difference

simple 9th order path chi indices) in comparison with values

for the all others chemicals in the dataset (see Table 1SI of

the ‘‘Online Resource’’).

It should be pointed that for linear models the Williams

plot (the plots of standard residuals on the y-axis versus

leverage values on the x-axis) is typically used as was

described in the section methods. From these plots, the

applicability domain is established on the left from the

leverage threshold (or limit) (h* = 3p/n, where p is num-

ber of descriptors plus 1 and n is the number of compounds

in the training set). According to this equation we set the

leverage threshold at 0.04 for model A and 0.06 for model

B. According to these pointed limits (see Fig. 3e (model A)

and F (model B)) a lot of chemicals appeared to be outside

domain. Practically we cannot use such thresholds for the

determination of applicability domain of our models as the

chemicals outside these limits are correctly predicted and

the model is reliable not only inside the pointed domain.

The maximal value of the ED characterizes the bound-

aries of studied models. The metric 1 can be used for
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characterization of chemical space, the metric 2 charac-

terise the descriptors space.

The similarities in studied metrics were found in respect

to distribution of chemicals which have the MW greater

500. In the following section we explored the relationship

between the MW and the ED to the central neuron.

How MW affect the distribution of chemicals

depending on the ED to the central neuron in respect

to the false prediction

The studied chemicals were divided into three groups:

compounds with MW greater than 500 (Fig. 4a), compounds
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Fig. 3 Plots of ED to the central neuron versus (Y_target-Y_pre-
dicted) (a, b); ED to vector of average descriptors versus (Y_target-
Y_predicted) (c, d) and the leverage versus (Y_target-Y_predicted)

(e, f) for models A and B correspondingly. Note: The training data are

identified as circles (filled circle) while the test data are specified as

triangles (open triangle)
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with MW between 250 and 500 (Fig. 4b) and compounds

with MW less than 250 (Fig. 4c). Figure 4 shows the plots of

the ED to central neuron versus Y_predicted for pointed

groups of chemicals for model A.

In Fig. 4 positive (P) target data are specified as squares

(j) located on the level Y = 1, non-positive (NP) target

marked as diamonds (r) located on the level Y = 0, P

predicted data identified as circles (s) while NP predicted

data represented as triangles (D). As shown in Fig. 4a the

compounds with largest MW have the largest ED values in

comparison with chemicals from other groups (Fig. 4b, c).

Interestingly, all chemicals with MW bigger than 500 are

correctly predicted while chemicals with MW smaller than

250 (Fig. 4c) have false predicted results (see P predicted

(s) and NP predicted (D) chemicals located outside the

threshold 0.45). For the group of chemicals with MW

between 250 and 500 (Fig. 4b) we have got all true pre-

dicted carcinogens (P) and a few wrongly predicted non-

carcinogens (NP) which are located above the threshold

0.45.

The following conclusions can be done. Chemicals with

the MW less than 250 have the smallest ED (see Fig. 4c) in

comparison with chemicals from other groups (Fig. 4a, b).

The majority of chemicals with large ED are correctly

predicted. CP ANN algorithm is able to correctly predict

complex molecules with large MW. On the contrary, the

majority of wrongly predicted chemicals have MW less

than 250.

How different SAs affect the distribution of chemicals

depending on the ED to the central neuron in respect

to false prediction

In this part of the study the compounds with specific car-

cinogenicity structural alerts (SA) were investigated. We

have extracted alerts from the Toxtree program for the

dataset of 805 compounds. More detailed information

related to carcinogenic structural alerts (SA) and descrip-

tion of their symbols is given in the literature [22].

The largest groups of chemicals in our study have the

following SAs: SA_8: Aliphatic halogens (47 compounds);

SA_21: alkyl and aryl N-nitroso groups (107 compounds);

SA_28: primary aromatic amine, hydroxyl amine and its

derived esters (52 compounds); SA_X denotes others SAs

in the dataset; NA denotes compounds which have no

alerts. We also included chemicals containing two differ-

ent SAs—(SA27 ? SA28) (14chemicals) where SA_27

belongs to nitro-aromatic compounds.

Figure 5 represents ED to central neuron versus Y_

predicted (and Y target) for each pointed above group of

chemicals. Y target data are specified as squares (j) while

predicted data represented as circles (s).

The groups of chemicals containing pointed above car-

cinogenic SAs do not have large dispersion by ED value

(Fig. 5a–d). The greatest scattering of chemicals was

obtained in the case of compounds without alerts (NA

chemicals) (Fig. 5f). Non congeneric chemicals with dif-

ferent SAs marked as SA_X gave us also wide data scat-

tering (Fig. 5e).
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Fig. 5 Plots of ED to central neuron versus Y_predicted (and
Y_target) for compounds with SA_8 (a), SA_21 (b), SA_28 (c),

SA_27_28 (d), SA_X (e) and NA- no alert compounds (f). Notes
SA_8: Aliphatic halogens (47 compounds); SA_21: alkyl and aryl

N-nitroso groups (107 compounds); SA_28: primary aromatic amine,

hydroxyl amine and its derived esters (52 compounds); SA_27_28-

compounds containing both SAs 27 and 28 (14 compounds) where

SA_27: Nitro-aromatic compounds; SA_X- others SAs in dataset;

NA- compounds with no alerts. Y target data are specified as squares

(filled square) while Y predicted data represented as circles (open
circle)
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Conclusion

The ED was proposed for characterisation of non-linear

CPANN models. Three metrics were compared to describe

the domain of models: ED between objects (molecules) and

central neurons of neural networks, ED between objects

(molecules) and the representative object (vector of aver-

age values of descriptors) (as a characteristics of non linear

models) as well as and leverage (hat value) (as a charac-

teristic of linear models).

The ED between objects (molecules) and central neuron

in Kohonen lyer of CPANN models gave us ability to

compare the training and test sets chemical coverage of

models with respect to false predicted chemical space. The

ED between vectors of real values of descriptors and the

vector of average values of descriptors was used to explore

the coverage of the descriptor space for the training and the

test set chemicals in the models with respect to the space of

wrongly predicted chemicals. Additionally, we showed the

results of the leverage approach applied for evaluation of

descriptors space for comparison with linear models. The

threshold of leverage approach is not suitable for non linear

method like CP ANN.

Chemicals with the maximal value of ED to central neu-

ron were investigated. The majority of compounds with the

largest ED has the largest MW (greater than 500), and/or are

NP-non-carcinogens, and/or corresponds to chemicals with

largest or smallest value of descriptors. The large value of the

ED in model is not evidence of wrong prediction.

In the study we did not fix a ‘‘warning’’ threshold but,

rather investigated the prediction accuracy of the model in

chemical and descriptors space and try to find out the space

where models give reliable predictions.

The ED in the non linear models demonstrates a

boundaries where the model was built and is applicable

with the determined reliability.
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