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Abstract In silico methods characterizing molecular com-

pounds with respect to pharmacologically relevant properties

can accelerate the identification of new drugs and reduce their

development costs. Quantitative structure–activity/-property

relationship (QSAR/QSPR) correlate structure and physico-

chemical properties of molecular compounds with a specific

functional activity/property under study. Typically a large

number of molecular features are generated for the com-

pounds. In many cases the number of generated features

exceeds the number of molecular compounds with known

property values that are available for learning. Machine

learning methods tend to overfit the training data in such sit-

uations, i.e. the method adjusts to very specific features of the

training data, which are not characteristic for the considered

property. This problem can be alleviated by diminishing the

influence of unimportant, redundant or even misleading fea-

tures. A better strategy is to eliminate such features com-

pletely. Ideally, a molecular property can be described by a

small number of features that are chemically interpretable.

The purpose of the present contribution is to provide a pre-

dictive modeling approach, which combines feature genera-

tion, feature selection, model building and control of

overtraining into a single application called DemQSAR.

DemQSAR is used to predict human volume of distribution

(VDss) and human clearance (CL). To control overtraining,

quadratic and linear regularization terms were employed. A

recursive feature selection approach is used to reduce the

number of descriptors. The prediction performance is as good

as the best predictions reported in the recent literature. The

example presented here demonstrates that DemQSAR can

generate a model that uses very few features while main-

taining high predictive power. A standalone DemQSAR Java

application for model building of any user defined property as

well as a web interface for the prediction of human VDss and

CL is available on the webpage of DemPRED: http://agknapp.

chemie.fu-berlin.de/dempred/.
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Abbreviations

VDSS Volume of distribution at steady state

CL Clearance

QSA/PR Quantitative structure–activity/-property

relationship

GMFE Geometric mean fold-error

RFE Recursive feature elimination

CDK Chemistry development kit

PST Performance size trade-off

Background

Discovering new drugs is a time consuming and resource

intensive endeavor. A promising compound, which shows a
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desired activity in vitro, may fail in vivo due to toxicity or

unacceptable pharmacokinetic characteristics. In fact many

compounds are filtered out during late stages of drug dis-

covery as they show adverse effects or have other undesired

properties. The pharmaceutical industry has a need to detect

these compounds at early stages of drug discovery in order

to save money, resources, and time [1, 2]. Therefore, in

vitro screening methods have been developed over the past

years to predict ADME-Tox (absorption, distribution,

metabolism, excretion, toxicity) parameters of new com-

pounds and prioritize drug candidates [3–7]. Nevertheless,

even in vitro methods are still resource intensive and time

consuming. To overcome these problems various in silico

screening methods have been developed [8–13]. The

advantages are significant as nowadays computers are cheap

and predictions are easy and fast to compute. The working

principle of in silico prediction is to correlate descriptors

(features) of a large number of putative drug candidates

with their activity or other relevant functional properties

and uses these correlations in a predictive manner. These

approaches are known as quantitative structure–activity/-

property relationship (QSAR/QSPR) [14–17].

Many QSAR software products have been presented in

the past [18–20]. However, most of the available software

packages for QSAR analysis are not free of charge and thus

not readily accessible to everyone, which hampers usage,

validation, and comparison of performances of different

approaches. Even if the developer of a QSAR model has

the necessary licenses, the generated models cannot be

made publicly available through web services as the end

user may not have valid licenses. There are many open

source machine learning packages available in various

programming languages [21–25] and open source software

packages that generate QSAR descriptors [26–28]. These

packages can be combined to build QSAR models, though

some basic programming skills are still required. Hence,

there is a need for QSAR software that is easy to use,

powerful, widely applicable, and free of charge.

To address this need we introduce here the DemQSAR

software and demonstrate its usefulness for predicting

human volume of distribution (VDss) and clearance of

drugs (CL). DemQSAR combines feature generation, fea-

ture selection, model building, and control of overtraining

into a single platform-independent Java application.

DemQSAR makes use of the open source CDK library [29]

to calculate various QSAR descriptors and topological

fingerprints, which can be complemented by additional

descriptors. The feature generation step is followed by an

optional feature selection step. The core of the model

building process is a linear scoring function, which allows

combining various loss functions and kernels. The gener-

ated models are saved into a single file and thus can be

shared easily.

The performance of DemQSAR has been tested by

building models for the prediction of human VDss and CL.

Volume of distribution is a measure of how a drug is dis-

tributed between plasma and tissues. Clearance is a mea-

sure of the rate at which a drug is removed from the body.

Both values together determine the half-life of a drug and

thus the appropriate dose and frequency of drug applica-

tion. A drug should be administered such that the free

plasma concentration is large enough to obtain an effect

throughout the dosing interval, while lessening the maxi-

mal concentration over time by clearance and thereby

reducing the potential for side effects. The generated

DemQSAR models are able to predict human VDss and CL

of new compounds within a geometric mean fold error

(GMFE) of 2.0 and 2.4 respectively. Both models are

accessible via an easy to use web interface, which does not

require any additional knowledge of QSAR analysis. Fur-

thermore, a standalone Java application for model building

of any user defined target property is available for down-

load free of charge.

Methods

Datasets of compounds

To build models for the prediction of human VDss and CL,

training datasets of compounds with experimentally mea-

sured VDss and CL values are needed. There are two

publicly available datasets, which were compiled by large

scale literature searches. Obach and coworkers [30] pub-

lished a dataset of 670 compounds together with their

VDss, CL, mean residence time and terminal half-life.

These molecular properties were obtained or derived from

original references. Only studies based on intravenous

application were considered. Earlier Lombardo and

coworkers [31] published a dataset of 384 compounds,

which also contains the human VDss. A comparison of both

datasets (from Lombardo and Obach) by compound name,

CAS number, and structure revealed that only nine com-

pounds of the Lombardo dataset were not present in the

Obach dataset. Hence, for consistency reasons, only com-

pounds from the Obach dataset were used throughout this

study. To ensure that all descriptors could be calculated for

all compounds we removed compounds containing phos-

phorous, boron, and metal atoms, all macrocycles, and

some fragment-like compounds, e.g. Metformin, from the

dataset. This resulted in a final dataset of 584 compounds

referred to as DataWhole.

To test the performance of our models on an indepen-

dent test set, DataWhole was divided into a training and

test set. All 338 compounds that were already present in the

older dataset of Lombardo and coworkers [31] were used to
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train the prediction models. All remaining compounds that

were added by Obach and coworkers [30] were used as an

independent test set. This resulted in a training set of 338

compounds and a test set of 246 compounds from now on

referred to as DataTrain and DataTest respectively. This is

a historically based split of the data, albeit only 60% of the

data are used for learning. We believe it may provide a

more realistic testing scheme than a random split. To

decrease the influence of the division into train and test set

and to monitor how the result behave in case the training

set is increased, we additionally applied a 10-fold cross-

validation on DataWhole to measure the performance of

our models. Finally the performance has been tested on an

external independent test set of 29 compounds provided by

Berellini and coworkers [11], referred to as DataExternal.

Table 1 gives an overview of the data sets of compounds

used in this study. All data sets used in this study are

available as supplementary material.

Molecular descriptors

We used several software packages to compute molecular

descriptors and topological fingerprints, which characterize

the structures and physicochemical features of the mole-

cules. Table 2 provides an overview of the applied soft-

ware packages and the number of calculated descriptors. A

total of 404 molecular descriptors were computed for each

compound using various software packages (ACD/Labs,

ClogP, Volsurf, MolConn-Z, Scitegic, MOE, Pipeline

Pilot). A complete list of computed molecular descriptors

can be found in the supplementary material. In addition

four different kinds of fingerprints were generated: Day-

light (1,024 features), Isis (166 features), ECFP4 (1,024

features), FCFP4 (1,024 features). Concatenation of these

features resulted in a total of 3,642 features, referred to as

commercial descriptors. Most of the software packages

which were used to calculate these descriptors are not free

of charge. To make the final model publicly available and

also give the user the possibility to build new predictor

models we additionally used the open-source Chemistry

Development Kit (CDK) to calculate descriptors [29]. The

CDK is a free open-source Java library for structural

chemo- and bioinformatics and is developed by more than

30 contributors world-wide. The CDK library is tightly

integrated into DemQSAR such that no additional setup is

needed by the user. CDK descriptors and fingerprints are

automatically calculated during model building if desired.

Table 1 Overview of used datasets

Name Size Description

DataWhole 584 [30]

DataTrain 338 [31]

DataTest 246 DataWhole without DataTrain

Data10Fold 58/59 DataWhole randomly splitted into 10 parts.

DataExternal 29 [11]

Table 2 Overview of

computed and used molecular

features

A detailed description can be

found in supplementary material

Commercial # Description Reference

ACD/labs 4 Fraction anionic/cationic and pKa values [45]

ClogP 1 Calculated logP [46]

Volsurf 104 Molecular descriptors from 3D interaction fields [47]

MolConn-Z 55 Molecular connectivity, shape, and information indices [48]

Scitegic 56 Various molecular descriptors [49]

MOE 2D 184 Various molecular descriptors [50]

Daylight 1,024 Path based structure fingerprints [49]

Isis Keys 166 Fragments to describe overall molecular structure [49]

ECFP4 1,024 Atom type based, extended connectivity fingerprint [49]

FCFP4 1,024 Functional class based, extended connectivity fingerprint [49]

Sum 3,642

Public Description Reference

QSAR 219 Various molecular and physico chemical properties [29, 51]

Standard 1,024 Daylight style hashed fingerprints

Extended 1,024 Extended by ring structures

Graph Only 1,024 Does not take bond orders into account

Estate 79 Fingerprints using the E-state fragments

MACCS 166 166 predefined MDL keys

Substructure 307 Predefined CDK substructure occurrence

Sum 3,843
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The CDK library provides 219 molecular descriptors and

six different types of fingerprints. Concatenation of molec-

ular descriptors and fingerprints yields a total of 3,843

descriptors referred to as CDK descriptors. A detailed

description of all CDK descriptors and fingerprints can be

found in the supplementary material.

Scoring function

Describing molecules by real valued descriptor vectors x~i 2
R

d allows their representation as points in a d-dimensional

feature space. In a general two-class classification approach,

a hypersurface is defined that separates the data points

belonging to different classes. In the simplest case, the

hypersurface is planar separating the multidimensional fea-

ture space into two half-spaces such that all positive data

points (property value ?1) are located on one side of the

hyperplane whereas all negative data points (property value

-1) are located on the other side. New data points are then

classified according to the half-space they belong to.

In a regression task a hyperplane is constructed where

the distances of the data points to the hyperplane are pro-

portional to their property values. The property value of a

new molecule can then be predicted by computing its

proportional distance to the hyperplane. To determine the

parameter vector w~ normal to the hyperplane and the offset

b of the hyperplane from the origin we set up an objective

function L that is minimal for the optimal hyperplane:

L w~; bð Þ ¼ 1� k1 þ k2ð Þ
N

XN

i¼1

li g f x~i; w~; bð Þ;mið Þf g
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

model terms

þ k2jjw~jj22 þ k1jjw~jj11|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
regularization terms

; ð1Þ

where mi is the property value and g f ;mið Þ is a loss

function that determines stiffness of the correlation

between the property values mi and the scoring function

f x~ið Þ. The additional parameters li in the objective function

(1) can be used to weigh more reliable data points higher

than others. Once a hyperplane is defined new, compounds

can be predicted using a linear scoring function:

f x~; w~; bð Þ ¼ w~t � x~þ b: ð2Þ

The objective function L, Eq. 1, consists of two parts

that compete with each other. The first part involves the so

called ‘model terms’, which optimize the prediction

performance on the training set (recall). Whenever the

considered model returns a poor prediction on the training

set the loss-function g fi;mið Þ invokes a penalty that

depends on the error margin. Hence, during learning the

hyperplane parameters will be chosen such that predictions

on the training set are as close as possible to their

experimentally measured property values. Figure 1 gives

an overview of the loss functions available in DemQSAR.

For regression analysis, e.g. squared error loss functions

are used. They punish deviations from the property value in

both directions evenly. However, due to the quadratic form

of this loss function, outliers have a strong influence on the

resulting model. Hence, in cases where outliers are

expected, the Lorentzian loss function may be a better

choice. Both squared error and Lorentzian loss function can

also be used for classification tasks. However, for

classification, better results may be achieved with loss

functions, which only punish deviations in one direction.

As a consequence positive data points classified as strongly

positive and negative data points classified as strongly

negative are not punished. For that purpose loss functions

such as the Smooth Hinge, Sigmodial, Binomial Log

Likelihood (BNLL) and Weighted Biased Regression

(WBR) loss functions may be used, which mostly differ

in the way they treat outliers (see Fig. 1).

Regularization

Determining the model parameters such that the training

data are recalled optimally can lead to overfitting, i.e. the

model parameters are particularly adjusted to recall the

property values of the training set, but may show low

performance in predicting property values of new com-

pounds. Therefore, the objective function is augmented by

two regularization terms: a quadratic Tikhonov, k2 jjw* jj22,

[32] and a linear Lasso regularization, k1 jjw
* jj11, [33]

(0 \ k2 ? k1 \ 1). Both regularization terms adopt their

minimum value when all components of the parameter

vector w~ vanish. Normally this is in conflict with the first

term of Eq. 1, which requires specific non-vanishing model

parameters. The trade-off is that the model parameters

governing the less important features are set to small

(Tikhonov) or even vanishing (Lasso) values. Model

parameters referring to features that exhibit strong corre-

lations with the property values are kept. Hence, increasing

the strength of one of the two regularization terms by

increasing the corresponding k value leads to a simplified

model description. As a consequence the recall perfor-

mance decreases, while simultaneously the prediction

performance can increase, which demonstrates that over-

fitting is reduced. However, if the regularization terms

become too large not only recall but also prediction per-

formance will decrease, as important features may now be

suppressed as well.

The aim is to optimize the regularization parameters

(k1, k2) by increasing their values up to the point just before

the prediction performance starts to diminish. DemQSAR
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does this automatically by evaluating the prediction per-

formance observing the error in k-times n-fold cross-vali-

dation. For that purpose we define a candidate set of k
values which cover a range to be tested. For each k value of

this set the training set is randomly divided into n subsets.

One subset is retained as a validation set while the other

n - 1 subsets are used to train the model. This process is

repeated n times such that each subset is used exactly once

as a validation set. Repeating the whole process k-times

ensures that the initial division has no influence on the

estimated error. The average over these k times n validation

errors is the estimated performance. The k values that

reveal the smallest validation error are then used to train

the classifier on the whole dataset.

Feature selection

Recent software developments allow one to calculate many

descriptors for molecular compounds. Selecting the fea-

tures most relevant for prediction and reducing hidden

dependencies among the features are key issues in deriving

meaningful models. DemQSAR offers two approaches to

automatically select relevant features.

The first one is to use a linear Lasso regularization. Due to

its linear form the Lasso regularization leads to sparse models

where the weights of many features are set to zero rigorously.

According to the structure of the scoring function, Eq. 2,

features whose weights are set to zero are ignored.

The second approach is to use a quadratic Tikhonov

regularization. Using a Tikhonov regularization, none of

the feature weights will be set exactly to zero. Neverthe-

less, the quadratic Tikhonov regularization can also be used

for explicit feature selection. Assuming unimportant fea-

tures will get smaller parameter weights than important

ones, a backward selection can be performed by removing

features with small weights after each training round. This

approach is called RFE (recursive feature elimination) [34].

In spite of its simplicity, the RFE algorithm yields excel-

lent results and has been successfully used in many clas-

sification and regression tasks [34–37].

To determine for both feature selection methods, RFE

and Lasso, when to stop, the feature subset performances

can be measured in two ways. The first method is to leave

out a test set. Prediction performances on this test set are

then used to estimate the prediction performance of the

actual feature subset. However, it can be difficult to extract

a representative test set from the whole data set, especially

for small datasets one may want to use all available data for

model building. Therefore, feature subset performances are

estimated using k-times n-fold cross-validation, where in

the present application k = 5 and n = 10. But, selecting a

feature subset based on the smallest estimated error may

not be the best choice. If a prediction model with optimal

performance is desired, a large number of features may be

necessary. Alternatively, a prediction model that uses only

a small number of features is easier to interpret. These are

two conflicting objectives: good performance is most often

achieved with more features whereas easy interpretation

requires small feature sets. To solve this conflict with

variable emphasis we provide a feature selection criterion

that can compromise between high performance and a

small size of employed features. Let Err(S) be the error of

feature subset S estimated via cross validation and let

Num(S) be the number of features in subset S. We fur-

thermore define Smin as the smallest feature subset during
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Fig. 1 Different loss functions

g(f,m) implemented in

DemQSAR as a function of the

difference f - m between the

value of the scoring function

f estimating the property value

and the corresponding true

property value m. Left side one-

sided loss functions, which can

be used for two-class

classification tasks. Right side
symmetric loss functions, which

can be used for classification

and regression tasks. Algebraic

expressions of the different loss

functions can be found in the

supplementary material
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feature selection (one single feature) and Sopt as the feature

subset with smallest estimated error. The finally selected

subset Sfin fulfills the following conditions

min NumðSfinÞ
s:t: ErrðSfinÞ�ErrðSoptÞþPST ErrðSminÞ�ErrðSoptÞ

� � ;

for given PST with 0�PST�1:

:

ð3Þ

The quantity PST (performance-size-tradeoff) is a user

defined parameter, which controls the finally selected

feature subset Sfin. If PST is set to 0 the feature subset with

the smallest estimated error will be selected, i.e. Sfin = Sopt.

For this choice Num(Sfin) may be large. However, as

mentioned above the user may be interested in smaller

feature subsets. Larger PST values will yield feature

subsets of smaller sizes. If PST is set to 1, the smallest

possible feature set is taken, which consists of just a single

feature, i.e. Sfin = Smin.

Nonlinear models

For most QSAR applications there are many more

descriptors available than there are compounds. Hence, a

linear model will most often be the best choice. However,

there may be problems where a linear model is not suffi-

ciently flexible to describe the studied data. In such a case,

a non-linear transformation of the original model data into

a generalized feature space may render the dataset more

suitable for a linear separation. This corresponds to a non-

linear separation in the original feature space using a more

general hypersurface instead of a hyperplane. Nevertheless,

an explicit transformation of the dataset of compounds may

computationally be too expensive or even intractable.

Instead of transforming the compound data explicitly,

DemQSAR employs the so called kernel trick [38] to

transform the data implicitly. For that purpose, the objec-

tive function L, Eq. 1, is rewritten such that the parameter

vector w~ can be expressed as a weighted sum of the training

feature vectors x~i

w~ ¼
XN

i¼1

aix~i; ð4Þ

with

ai ¼ �
1� k2ð Þli

N2k2

og f w~; b; x~ið Þ;mið Þ
of

: ð5Þ

Hence, we can rewrite the linear scoring function as

f w~; b; x~ð Þ ¼
XN

i¼1

aix~
t � x~i þ bð Þ ¼

XN

i¼1

aiK x~t; x~ið Þ þ bð Þ:

ð6Þ

Now, instead of finding the hyperplane normal w~, we

determine the scalar multipliers ai Eq. 5. Note that finding

the multipliers as well as predicting new data points can be

done solely using the values of the dot products x~t � x~i.

Replacing all dot products by a kernel function K x~t; x~ið Þ
transforms the linear model into a non-linear model [39,

40]. DemQSAR comes with three widely used kernel

functions which can be used for non-linear classification

and regression: the polynomial kernel, radial basis function

(RBF), and sigmodial kernel. Algebraic expressions of

these kernel functions can be found as supplementary

material.

Classification of unbalanced data

For a two-class (? and -class) classification task problems

can arise if the sizes of the two classes available for

learning are very different. To avoid false positives for the

majority class, it can be advantageous to split the N?

positive x~þi from the N- negative x~�j data (N = N? ? N-)

leading to the balanced objective function:

Lbalanced ¼ 1� k2ð Þ
X

s¼þ�

ws

Ns

XNs

i¼1

lig f x~s
i

� �
;ms

i

� �
þ k2w~t � w~;

ð7Þ

where N is the size of the data set and w? and w-

(w? ? w- = 1) are the weights for the positive and neg-

ative data, respectively.

Normalization and transformation

As each feature represents a different molecular property

whose numerical value depends on the units used, the

values of different features can span very different scales.

Therefore, it is important to normalize the features of the

training dataset before the computations are performed to

ensure a fair comparison between different features. For

this purpose, each feature of the training set is subject to a

linear transformation such that it has a zero mean and a

standard deviation of unity. Of course, the same linear

transformation must also be applied for the test set. Fea-

tures that have a standard deviation of zero in the training

set do not contain any information for model building and

are therefore removed from training and test sets before

further processing. Since both properties VDss and CL

cover a broad range of values and are not normally dis-

tributed, they have been transformed to log10 scale prior to

model building, yielding bmi ¼ log10ðmiÞ. Figure 2 shows

a binned histogram of the log transformed VDss and CL

values for the DataWhole.
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Quality assessment

Two different quality measurements were used to assess

prediction performance. These are the predictive coeffi-

cient of determination (R2),

R2 ¼ 1�

P
m

bmexp � bmpred

� �2

P
m

bmexp � average bmexp

� �� �2
ð8Þ

and the geometric mean fold error (GMFE),

GMFE ¼ exp
1

N

X

m

ln
mpred

mexp

� ������

�����: ð9Þ

Where N denotes the size of the predicted data set; and

mexp and mpred represent the experimental and predicted

target values respectively (here, m = VDss or CL). bmexp,

bmpred denote the log10 transformed experimental and

predicted target values respectively. Note that many papers

compute R2 by just squaring the linear correlation coefficient,

sometimes also called Pearson’s product-moment

coefficient. This may result in different values compared to

using the correct definition, Eq. 8 [41]. The GMFE is not

defined for negative target values. Hence, target values were

transformed back from log10 scale to normal scale before

computing the GMFE. The coefficient of determination,

Eq. 8, measures the quadratic error and thus may be strongly

affected by outliers. This is not the case for the GMFE, Eq. 9.

A perfect model yields a GMFE value of 1. A model with a

GMFE of 2 would make predictions on average twofold off

(100% above or 50% below). Models with a GMFE B 2 are

usually considered to be successful [7].

Results

The squared error and the Lorentzian loss functions were

tested and the former was found to perform better. From

the considered kernels (linear, polynomial, RBF, sigmo-

dial) the linear showed the best results (data not shown).

Hence, all results shown in the present study were obtained

with the linear squared error model. We had no additional

information which data points are more reliable than oth-

ers. Hence, all data points were weighted equally by setting

the li parameter to unity.

Using Lasso regularization for feature selection is much

faster than the RFE method, since feature selection and

model building are combined into a single training round.

For RFE selection a new model has to be built after each

feature elimination step. Nevertheless, a recursive feature

selection yields more detailed insight into the importance

of individual features, as only one is deleted after each

training round. Thus, for our studies k1 has been set to zero,

and feature selection has been performed using RFE.

Suitable values of the regularization parameter k2 were

determined as described in the Methods section. For our

experiments the candidate set of k2 values to be tested

during cross-validation has been set to [10-4, 10-3, 10-2,

0.1, 0.2, 0.3…0.9, 0.93]. The optimized values were

between 0.7 and 0.9 for all models. Smaller values resulted

in a much lower prediction performance indicating that

overfitting occurred (results not shown). This can be

explained by the fact that the number of features is much

larger than the number of data points.

DataTrain/DataTest

The DataTrain set has been used for initial model building

with different PST values, Eq. 3. Table 3 shows prediction

results of these models for the DataTest set. The DataTest

set has been neither used for model building nor for feature

selection and, hence, represents an independent test set.

For human VDss, using all 3,642 commercial features

resulted in a GMFE of 2.03 and R2 of 0.52. Using all open

source CDK features yielded comparable results with a

GMFE and R2 of 2.11 and 0.45, respectively. Using feature

−6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

−6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4Fig. 2 Binned histogram of the

log transformed VDss and CL

values for the DataWhole
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selection the initial number of features could be strongly

reduced without deteriorating the prediction performance.

With PST = 0.0, the RFE feature selection utilized 524 out

of the 3,642 commercial features and performed almost

similarly to using all features. A PST of 0.4 resulted in only

22 commercial features, predicting human VDss with a

GMFE of 2.21. For open source CDK features, feature

selection yielded similar results. Here, with PST = 0.0 the

initial feature number was reduced from 3,843 to 380,

resulting in a model that performed slightly better than

using all features (GMFE: 2.08). PST = 0.4 resulted in just

18 features, predicting human VDss with a GMFE of 2.31.

Commercial and open source CDK features yield

clearance prediction performances with GMFEs of about

2.5. Feature selection did not improve the results. Never-

theless, the number of features can be reduced considerably

without decreasing the predictive power significantly.

Figure 3 shows the prediction performance for VDss on

DataTest using CDK and commercial descriptors depend-

ing on the number of features. It can be seen clearly that the

number of descriptors can be reduced remarkably while

maintaining the predictive power. The commercial and

CDK descriptors reach their minimum GMFE at 406 and

267 descriptors, respectively.

DataWhole

Table 4 shows the results of 10-fold cross-validation using

DataWhole. During cross validation it is crucial not to use

the left out subset for any stage of model building,

including feature selection. Otherwise the test set infor-

mation is implicitly used. This will lead to overly opti-

mistic prediction results and does not reflect the real

predictive power of the model [41]. In this study the left

out subset has not been used at any stage of model building

including feature selection. Thus the left out subset repre-

sents an independent, external test set which was randomly

selected out of the training set. Repeating the prediction for

all left out subsets all data points in DataWhole are pre-

dicted once as part of an independent, external test set.

Therefore, the results in Table 4 represent an unbiased

prediction of DataWhole and are representative for the

predictive power of the model.

For human VDss predictions the results are consistent

with those found for the initial single split of the datasets

from Lombardo and Obach. A small improvement in

prediction performance can be explained by the fact that a

larger fraction of compounds is used for training (90%)

than for the initial single split (60%). Using all com-

mercial features without feature selection, human VDss

can be predicted with GMFE of 2.01 and R2 of 0.56.

Applying feature selection with PST = 0.0 yields a subset

of 758 features, which perform as good as using all fea-

tures. Further reduction of the number of features dete-

riorates the results slightly. Nevertheless, when using only

27 features human VDss can still be predicted with GMFE

of 2.24.

CL predictions were slightly better for random cross-

validation than for the artificial single split between train-

ing and test set. But, prediction performance of CL remains

worse than for VDss [42]. Again, the best results were

obtained when using all commercial or CDK features

resulting in a GMFE of about 2.4. Feature selection

resulted in only slightly worse predictions, but was able to

reduce the number of features remarkably.

Table 3 Prediction results for

DataTest. DataTrain has been

used to build the model

The regularization parameter k2

has been optimized by applying

5-times a 10-fold cross-

validation

Descriptors Volume of distribution: VDss Clearance: CL

# feat. GMFE R2 # feat. GMFE R2

Commercial

All features 3,642 2.03 0.52 3,642 2.47 0.19

PST: 0.0 524 2.04 0.52 631 2.5 0.19

PST: 0.4 22 2.21 0.42 46 2.52 0.18

CDK

All features 3,843 2.11 0.45 3,843 2.48 0.21

PST: 0.0 380 2.08 0.5 660 2.5 0.2

PST: 0.4 18 2.31 0.36 54 2.62 0.13

0 500 1000 1500 2000 2500 3000
2

2.1

2.2

2.3

Fig. 3 Prediction performance for VDss on DataTest during feature

selection with RFE. Dotted line CDK features, Solid line commercial

features. Features with a standard deviation of zero were removed

previous to model building
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DataExternal

Finally all available compounds of DataWhole have been

used for model building with various PST parameter val-

ues. Table 5 shows prediction results of these models on

DataExternal. For human VDss all feature subsets show

excellent performance. Using only 27 commercial features

the external test set could be predicted with GMFE of 1.81

and R2 of 0.53. Similar results were obtained using open

source CDK features. Using a subset of just 23 CDK fea-

tures, a GMFE of 1.84 could be achieved. The supple-

mental material contains names and structures of the best

four and worst four VDss predictions. However, it is not

obvious which structural parts of a compound influence its

prediction accuracy. One has to keep in mind that all

measured values originate from in vivo human experi-

ments. Sample sizes are therefore very limited and some-

times highly biased. Hence, predictions may seem quite

poor for individual compounds even if they are not. This

fact hampers the determination of chemical groups which

influence the prediction accuracy. Predictions for clearance

were quite poor compared to VDss predictions. The best

results were obtained using CDK features for the reduced

set of 671 features (PST = 0), where GMFE and R2 are

2.65 and 0.26, respectively.

Using very small feature subsets human VDss predictions

were still of good quality allowing direct interpretation of

the selected features. Setting PST = 0.6 resulted in eight

commercial or eight CDK features that were able to predict

the external test set with GMFE = 1.89 or GFME = 2.04,

respectively. Figure 4 illustrates these selected features

ordered by their absolute parameter value. Since all features

were normalized before model building, relative parameter

values reflect the importance of a particular feature. That is,

the larger a parameter compared to others the more impor-

tant its influence on human VDss, irrespective of its absolute

magnitude. Fingerprints are hashed and therefore hard to

interpret but all other physicochemical features have a clear

Table 4 Prediction results for applying 10-fold cross-validation on DataWhole

Descriptors Volume of distribution: VDss Clearance: CL

# feat.a GMFEb R2b # feat.a GMFEb R2b

Commercial

All features 3,642 2.01 0.56 3,642 2.37 0.27

PST: 0.0 758 2.01 0.56 778.1 2.39 0.27

PST: 0.4 27 2.24 0.44 60.4 2.53 0.2

CDK

All features 3,843 2.09 0.52 3,843 2.39 0.27

PST: 0.0 641.9 2.09 0.52 549.9 2.42 0.26

PST: 0.4 26.3 2.35 0.4 51.6 2.58 0.19

The regularization parameter k2 has been optimized applying 5-times 10-fold cross-validation. Whole model building procedure including

feature selection has been performed for every cross-validation step, i.e. each data point has been predicted once as part of an external,

independent test set. Thus, these results represent an unbiased prediction of DataWhole
a Number of selected features averaged over 10-fold cross-validation
b Results computed for the complete dataset (DataWhole), not averaged over 10-folds

Table 5 Prediction results for

DataExternal

Prediction models were

generated using DataWhole

Descriptors Volume of distribution: VDss Clearance: CL

# feat. GMFE R2 # feat. GMFE R2

Commercial

All features 3,642 1.79 0.47 3,642 2.64 0.18

PST: 0.0 836 1.79 0.48 788 2.67 0.15

PST: 0.4 27 1.81 0.53 65 2.69 0.17

PST: 0.6 8 1.89 0.49 25 2.76 0.10

CDK

All features 3,843 1.93 0.37 3,843 2.65 0.26

PST: 0.0 578 1.88 0.45 671 2.62 0.20

PST: 0.4 23 1.84 0.45 49 2.77 0.09

PST: 0.6 8 2.04 0.36 19 3 0.04
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meaning. Among the commercial features strong positive

correlations with human VDss were observed for: ‘‘fraction

cationic at pH 7’’, ‘‘pKa MB (mostly basic)’’ and ‘‘VS-

descriptor LgD 10/9/8 (logarithm of the partition coefficient

between 1-octanol and water)’’. Strong negative correlations

were observed for the following interpretable feature: ‘‘frac-

tion anionic at pH 7’’. Hence, the human VDss of a compound

could be enhanced by increasing its cationic fraction and

decreasing its anionic fraction at pH 7 or by increasing its

octanol–water distribution coefficient, logD (hydrophobic

drugs). For CDK features strong positive correlations with

human VDss were observed for various substructures: 83

(carboxylic ester), 22 (primary aliph amine) and 25 (quater-

nary aliph ammonium). Smart patterns for these substructures

are provided as supplementary material. Furthermore nega-

tive correlations were observed for TopoPSA and Khs.do.

TopoPSA is a calculation of topological polar surface area

based on fragment contributions. Khs.do counts the number of

double bonded oxygen atoms (O = *).

Y-randomization

Another tool for model validation in QSAR/QSPR analysis

is y-randomization [43]. The performance of the original

model is compared to that of models built for randomly

shuffled property values, based on the original features. For

this purpose, the VDss and CL values of DataWhole were

randomly shuffled and used for model building including

automatic feature selection. The generated VDss and CL

models have been used to predict the VDss and CL values

of DataExternal respectively. This procedure has been

repeated 25 times. As seen in Table 6 the y-randomized

models show no predictive power, having negative R2 and

large GMFE. These results indicate that the CL models,

despite their overall low performance, still have some

statistical significance.

Discussion

In the present application we used DemQSAR to build in

silico models for human volume of distribution at steady

state (VDss) and human clearance (CL). The prediction

performances were measured on a left out test set (Data-

Test) as well as by applying a 10-fold cross-validation for

all data (Data10Fold). The DemQSAR application was

able to select small feature sets that yielded GMFE pre-

diction performance of about 2.0 for human VDss. Human

CL prediction was performing considerably worse. This
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Fig. 4 Parameter weights for the human VDss prediction model using

all data (DataWhole) with PST = 0.6 where eight features remain. As

larger the absolute values of the weights are as more important are the

corresponding features. Left side commercial features. Right side
CDK features

Table 6 Y-randomization results

Descriptors Volume of distribution: VDss Clearance: CL

# feat. GMFE R2 # feat. GMFE R2

All features 3,642 2.7 -0.14 3,642 3.2 -0.1

PST: 0.0 692 2.66 -0.1 692 3.18 -0.08

PST: 0.4 70.6 2.62 -0.05 73.5 3.17 -0.05

The VDss and CL values of DataWhole were randomly shuffled and used for model building. The generated models have been used to predict

DataExternal. Given values represent averages over 25 separate runs
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can be explained by the fact that clearance depends

strongly on drug metabolism, which itself is highly variable

(numerous diverse enzymes, multiple sites per molecule)

[42]. Nevertheless, y-randomization experiments showed

that predictions for clearance are still statistically signifi-

cant with GMFE of about 2.35.

Prediction results were verified on an external inde-

pendent test set of 29 compounds (DataExternal). Here our

models achieved GMFE = 1.8 for human VDss using just

27 selected descriptors. Berellini et al. [11] used the same

original dataset which consists of 669 compounds to per-

form in silico predictions of human VDss. The models have

been assessed using the same external test set of 29 com-

pounds used in this study (DataExternal). Their best model

yielded also a GMFE of 1.8.

Yu [10] combined the original dataset of 669 com-

pounds and the additional 29 compounds of the DataEx-

ternal to build models for the prediction of human CL. His

model did not perform well on neutral compounds, which

were therefore removed previous to model building. On the

remaining 462 compounds Yu’s model yielded GMFE =

2.17 in a fivefold cross-validation and GMFE = 2.25 in a

threefold cross-validation. However, when predicting all

compounds including the neutral ones Yu’s model just

achieved GMFE = 2.46 in a threefold cross-validation.

Our models yielded a GMFE of about 2.4 using a 10-fold

cross-validation on all data (DataWhole) including neutral

compounds which is comparable to Yu’s results.

Prediction performances using the open source CDK

feature sets were most often as good as those using their

commercial counterparts reaching GMFEs of about 2.0 for

human VDss predictions and around 2.4 for human CL

predictions in 10-fold cross-validation. Hence, CDK fea-

tures seem to be a good alternative to commercial features

for scientific research [44].

The regularization parameters k2 had a large influence

on the predictive power of the models (results not shown).

If the regularization parameter was set too small overfitting

occurred resulting in low predictive power. This can be

explained by the fact that the number of initial descriptors

is much larger than the number of data points. Hence, it is

very important to set the regularization parameter to an

appropriate value. DemQSAR can do this in an automated

way as proposed in the Methods section.

A simple linear model without any kernels yielded best

results. This can be explained by the fact that the usage of

kernels adds a nonlinearity and thus additional information

to the input descriptors. Since the number of parameters is

Fig. 5 Human VDss and CL

values are predicted.

Furthermore 2-dimensional

structures, smiles codes,

molecular structure formula and

molecular weights are computed

for a better overview. All results

can be downloaded as pre-

formatted Excel, text and XML

files
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much larger than the number of training data, adding

additional information from a kernel may hamper the

model building process.

Many studies in this field perform a cross validation or

leave one out prediction after model optimization or feature

selection. However, in doing so, the test set information is

used implicitly leading to biased prediction results, which

are too optimistic [41]. In our computations these biased

models were able to predict VDss with GMFE of 1.7 and

CL with GMFE of 1.9, which is much better than the

unbiased prediction performance (VDss GMFE 2.0, CL

GMFE 2.4). Nevertheless, when done properly, cross val-

idation is a powerful tool for estimating the predictive

power of a model. Our results show that the cross valida-

tion results are consistent with those found for the initial

split (DataTrain, DataTest). Therefore, during cross vali-

dation it is crucial not to use the left out subset for any

stage of model optimization including feature selection.

Conclusions

We presented a publicly available and platform indepen-

dent application for QSAR analysis called DemQSAR.

DemQSAR integrates the open source CDK library to

compute various molecular descriptors and fingerprints.

QSAR models can thus be built without any additional

software. Only two dimensional structures of the molecules

have to be provided. CDK features can be easily comple-

mented by external feature sets computed by other soft-

ware. DemQSAR incorporates two state of the art feature

selection strategies: embedded Lasso and RFE. Depending

on whether a classification or regression analysis is per-

formed the appropriate quality measures are computed

automatically. A flowchart of the standalone application is

provided as supplementary material.

The final models for the prediction of human VDss and

human CL are accessible through an easy to use web interface

(http://agknapp.chemie.fu-berlin.de/dempred/demqsar). In

addition to the predicted VDss and CL values, 2-dimensional

images, smiles codes, molecular formula and molecular

weights are computed for the uploaded compounds. All results

can be exported in pre-formatted Excel, text and XML files.

Figure 5 shows a screenshot of the DemQSAR web interface

where compounds of the external test set were predicted. The

provided web server is to our knowledge the only publicly

available resource to predict human VDss and CL.

The focus of this paper was not just to build good

models for VDss and CL predictions, but also to demon-

strate examples of the web application DemQSAR. Nev-

ertheless, the predictive power of the generated models for

VDss and CL are comparable to the best results of previous

publications. All models were generated with a publicly

available, fully automated approach. No additional pro-

gramming was needed by the user and features were not

selected by hand as done in other works. Hence, its public

availability, fully automated approach and good predictive

power make DemQSAR an interesting tool for many other

QSA/PR tasks.
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