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Abstract In proteins, glutamate (Glu) residues are

transformed into c-carboxyglutamate (Gla) residues in a

process called carboxylation. The process of protein car-

boxylation catalyzed by c-glutamyl carboxylase is deemed

to be important due to its involvement in biological pro-

cesses such as blood clotting cascade and bone growth.

There is an increasing interest within the scientific com-

munity to identify protein carboxylation sites. However,

experimental identification of carboxylation sites via mass

spectrometry-based methods is observed to be expensive,

time-consuming, and labor-intensive. Thus, we were

motivated to design a computational method for identifying

protein carboxylation sites. This work aims to investigate

the protein carboxylation by considering the composition

of amino acids that surround modification sites. With the

implication of a modified residue prefers to be accessible

on the surface of a protein, the solvent-accessible surface

area (ASA) around carboxylation sites is also investigated.

Radial basis function network is then employed to build a

predictive model using various features for identifying

carboxylation sites. Based on a five-fold cross-validation

evaluation, a predictive model trained using the combined

features of amino acid sequence (AA20D), amino acid

composition, and ASA, yields the highest accuracy at

0.874. Furthermore, an independent test done involving

data not included in the cross-validation process indicates

that in silico identification is a feasible means of pre-

liminary analysis. Additionally, the predictive method

presented in this work is implemented as Carboxylator

(http://csb.cse.yzu.edu.tw/Carboxylator/), a web-based tool

for identifying carboxylated proteins with modification

sites in order to help users in investigating c-glutamyl

carboxylation.

Keywords Protein carboxylation � Amino acid

composition � Solvent accessible surface area (ASA)

Introduction

In proteins, glutamate (Glu) residues are transformed into

c-carboxyglutamate (Gla) residues in a process called car-

boxylation to aid in various cellular mechanisms. Carbox-

ylation is a post-translational modification (PTM) of Glu

residues in proteins wherein a carboxylic acid group is added

into a substrate protein. The modification is catalyzed by a

vitamin K-activated c-glutamyl carboxylase which trans-

forms a glutamate (Glu) residue to a c-carboxyglutamate
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(Gla) residue upon adding a carbon dioxide (CO2) com-

pound at the c-position [1, 2]. Vitamin K-dependent gamma-

glutamyl carboxylase plays a crucial role in the vitamin K

cycle [3] and is associated the formation of calcium oxalate

urolithiasis [4]. Carboxylated proteins can be activated when

Gla domain binds Ca2? [5, 6]. Since Glu is a weak Ca2?

chelator and Gla is a much stronger one, the vitamin

K-dependent step greatly increases the Ca2?-binding

capacity of a protein [1]. Studies conducted over the last few

years have revealed that the c-glutamyl carboxylated pro-

teins in vertebrates can be categorized into three main

groups [7]. The first group comprises the carboxylated

proteins with an amino terminal Gla domain, and includes

vitamin K-dependent blood coagulation factors and

co-regulators of blood coagulation [8]. The second group is

composed of osteocalcin and matrix Gla protein (MGP)

[6, 9], and includes three and five Gla residues, respectively,

which are critical to the regulation of bone growth and

extraosseous calcification [10, 11]. The third group is the

c-glutamyl carboxylase, itself, which includes Gla residues

[12]. Carboxylation generally occurs in factors II, VII,

IX, and X, protein C, protein S, as well in some bone proteins

[9, 13].

The process of Carboxylation plays a significant role in a

wide array of biological processes. It is primarily involved

in the blood clotting cascade [14]. Moreover, it is also

required for receptor-binding and initiating mitogenic

activities in some proteins [8]. Owing to the importance of

protein carboxylation in biological mechanisms, a great

amount of effort is being put in order to continue identifying

an increasing number of experimentally confirmed c-glut-

amyl carboxylation sites. A previous work has utilized mass

spectrometry to reveal that vitamin K-dependent carbox-

ylation is a processive PTM in which multiple carboxyla-

tions occur during a single substrate binding event [14].

However, experimental identification of carboxylation sites

via mass spectrometry-based methods is observed to be

expensive, time-consuming, and labor-intensive. Poten-

tially, in silico methods can be used to characterize car-

boxylated sites before experiments are conducted.

In this work, we present a novel method of identifying

carboxylation sites. A side-chain of amino acid that

undergoes PTM prefers to be accessible on the surface of a

protein [15]. In addition to investigating the composition of

amino acids that surround carboxylation sites, the structural

characteristics such as solvent-accessible surface area

(ASA) of carboxylated sites are also studied in detail. We

then evaluate the capacity of various features in differen-

tiating carboxylation sites from non-carboxylation sites by

establishing predictive models using radial basis function

network (RBFN). Lastly, we aim to further study carbox-

ylation by investigating the linear distribution in carbox-

ylation sites as well as the functional preference of

carboxylated proteins. A web-based protein carboxylation

sites prediction system utilizing the approach presented in

this study is implemented for the scientific community

(http://csb.cse.yzu.edu.tw/Carboxylator/).

Materials and methods

Figure 1 presents the analytical flowchart of this study

which comprises of four major steps—data preparation,

features investigation, model construction and assessment,

and independent testing. Following the model construction

and assessment, the selected models which contain the

highest predictive accuracy are tested on an independent

data set. The parameters and training features that provide

the best predictive performance are used to implement the

web-based system. Each process is described in detail as

follows.

Data preparation

A total of 1,112 Gla residues from 177 protein entries from

multiple organisms are available in dbPTM [16]—a com-

prehensive resource which contains PTM data from Uni-

ProtKB [17] and HPRD [18]. Non-experimental sites,

annotated as ‘‘by similarity’’, ‘‘potential’’, and ‘‘probable’’

in the ‘‘MOD_RES’’ fields of UniProtKB are then removed

yielding 454 experimentally-verified carboxylation sites

from 132 carboxylated proteins. Basing on the observation

that carboxylation sites mainly occur on Glu residues, this

work regards all experimentally-verified carboxylated Glu

residues as positive instances. On the other hand, Glu

residues found in experimentally-verified carboxylated

proteins but are not annotated as carboxylation sites are

regarded as the negative instances. Consequently, a total of

844 non-carboxylated Glu sites are defined as the negative

set. Next, amino acid composition (AAC) and ASA around

the carboxylation sites are explored with reference to a

previous work [19]. The said features are extracted and

used in order to construct a predictive model. The resulting

models are then evaluated in terms of its ability to differ-

entiate carboxylation sites from non-carboxylation sites.

With reference to the reduction of the homology in the

training set of N-Ace [20], two carboxylated protein

sequences with more than 30% identity were defined as

homologous sequences. Then, two homologous sequences

are specified to re-align the fragment sequences using a

window length of 2n ? 1, centered on the carboxylation

sites using BL2SEQ [21]. For two fragment sequences

having an identity higher than 50%, if the carboxylation

sites from the two proteins are found in the same positions,

only one site is kept while the other is discarded. The non-

homologous negative data are generated using the same
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approach as the positive. The removal of homologous

sequences is done to in order to avoid an overestimation in

the predictive performance.

Investigation of sequence feature

The composition of amino acids in carboxylation sites are

investigated in this study. For the positive and negative

sets, respectively, fragments of amino acids are extracted

using a window size of 2n ? 1 centered on the Gla residue

where different values of n varying from four to ten are

used to determine the optimal window length. Next, an

orthogonal binary coding scheme is adopted to transform

amino acids into numeric vectors, in the so-called

20-dimensional vector coding (AA20D). For example,

glycine (G) is encoded as ‘‘10000000000000000000;’’

alanine (A) is encoded as ‘‘01000000000000000000,’’ and

so on. The number of feature vectors that represent the

flanking amino acids that surround the carboxylation site is

(2n ? 1) 9 20. With reference to a previous work [20],

AAC is considered as the elementary feature in con-

structing the predictive model to determine the optimal

window size.

Investigation of structural feature

In order to study the characteristics of carboxylation sites

in a more in-depth manner, various structural features are

investigated. It has been reported that amino acid side

chains which undergo PTM tends to be accessible on the

surface of a protein [15]. With this, the solvent-ASA

preference surrounding carboxylation sites is measured.

RVP-Net [22, 23] is used to compute the ASA values of a

protein sequence due to the limitation that almost all

experimental carboxylation sites do not have a corre-

sponding protein tertiary structure in PDB [30]. A previous

investigation of protein methylation [19] demonstrated that

the RVP-Net-computed ASA value is very similar to the

observed values in the protein tertiary structure. RVP-net

applies neural network to predict the real value of residual

Fig. 1 Analytical flowchart.

The four main steps in this study

are data preparation, features

investigation, model

construction and assessment,

and independent testing. In data

preparation, the experimentally

verified carboxylation sites are

taken from UniProt and HPRD

databases. The investigation of

features explores the substrate

site specificity of carboxylation

sites based on sequence and

structural characteristics. The

explored features are then used

in a predictive model to

differentiate carboxylation sites

from non-carboxylation sites.

Following the model

construction and prediction

assessment, the model with the

highest predictive accuracy

is tested using an independent

data set

J Comput Aided Mol Des (2011) 25:987–995 989

123



ASAs based on neighborhood information, with a mean

absolute error of 18.0–19.5%, defined as the absolute dif-

ference between the predicted and experimental values of

the relative ASA per residue [23]. The computed ASA

value refers to the percentage of the solvent-accessible area

of each amino acid on the protein sequence. The whole

protein sequence containing an experimentally verified

carboxylation site is entered into RVP-Net to compute for

the ASA value of all residues.

Construction of predictive model

In this work, the QuickRBF package [24] has been

employed to construct RBFN classifiers. The general

architecture an RBFN consists of three layers, namely the

input layer, the hidden layer, and the output layer. The input

layer broadcasts the coordinates of the input vector to each

of the nodes in the hidden layer. Each node in the hidden

layer then produces an activation based on the associated

radial basis kernel function. Finally, each node in the output

layer computes a linear combination of the activations

of the hidden nodes. The general mathematical form of

the output nodes in RBFN is as follows: cjðxÞ ¼
Pk

i¼1

wji/ð x� lik k; riÞ; where cjðxÞ denotes the function corre-

sponding to the j th output node and is a linear combination

of k radial basis functions /() with center li and bandwidth

ri; Also, wji denotes the weight associated with the corre-

lation between the j th output node and the i th hidden node.

In this work, we adopted a fixed bandwidth (r) of 5, and

used all input nodes as centers (k = n). With its several

bioinformatics applications, classification based on RBFN

has been extensively adopted to predict PTMs such as

glycosylation sites [25] and ubiquitylation sites [26].

Assessment of predictive performance

Prior to the construction of a final model, the predictive

performance of the models with varying parameters are

evaluated by performing k-fold cross validation. It is

reported that cross-validation evaluation is important for the

application of a predictor [27]. In doing k-fold cross vali-

dation, rhe training data is divided into k groups by splitting

each dataset into k approximately equal sized subgroups. In

one round of cross-validation, a subgroup is regarded as the

test set, and the remaining k - 1 subgroups are regarded as

the training set. The cross-validation process is repeated

k rounds, with each of the k subgroups used as the test set in

turn. Then, the k results are combined to produce a single

estimation. The advantage of k-fold cross-validation is that

all original data are regarded as both training set and test set,

and each data is used for testing exactly once. In this study,

k is set to five. The impact of using the following features:

amino acid sequence, AAC, and ASA, is evaluated by five-

fold cross-validation to determine which features are best

utilized to establish models that can effectively differentiate

between carboxylation sites and non-carboxylation sites.

The following measures of predictive performance of the

trained models are defined:

Pr ecision ðPr eÞ ¼ TP

TPþ FP
ð1Þ

Sensitivity ðSnÞ ¼ TP

TPþ FN
ð2Þ

Specificity ðSpÞ ¼ TN

TNþ FP
ð3Þ

Accuracy ðAccÞ ¼ TPþ TN

TPþ FNþ TNþ FP
ð4Þ

Matthews Correlation Coefficient (MCC)

¼ ðTP� TNÞ � ðFN� FPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTNþ FPÞ � ðTPþ FPÞ � ðTNþ FNÞ

p

ð5Þ

where TP, TN, FP and FN represent the numbers of

true positives, true negatives, false positives and false

Table 1 Five-fold cross-validations of the 17-mer RBFN models trained with various features

Training features Pre Sn Sp Acc MCC

Orthogonal binary coding of amino acid

sequence (AA20D)

0.706 0.786 0.814 0.805 0.597

Amino acid composition (AAC) 0.686 0.790 0.802 0.792 0.587

Accessible surface area (ASA) 0.662 0.757 0.790 0.779 0.533

AA20D ? AAC 0.736 0.815 0.842 0.833 0.641

AA20D ? ASA 0.770 0.819 0.861 0.847 0.659

AAC ? ASA 0.749 0.842 0.851 0.842 0.646

AA20D ? AAC ? ASA 0.801 0.839 0.892 0.874 0.723

The model containing best performance is marked with bold. Pre precision, Sn sensitivity, Sp specificity, Acc accuracy, MCC Matthews

Correlation Coefficient
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negatives, respectively. Additionally, the parameters of the

predictive models, window length, cost, and gamma value

of the RBFN models are optimized to maximize predictive

accuracy. The optimized parameters which yield the

highest accuracy are then used to construct predictive

models for independent testing.

Independent testing

Subsequent to the construction of the predictive model, an

independent test is carried out to ensure that the model if

not over-fit to the training set. We randomly select around

15% of the experimental carboxylated proteins as the

independent test set. The non-homologous training data

comprises of 292 carboxylated glutamate residues (positive

set of training data) and 566 non-carboxylated glutamate

residues (negative set of training data) from 78 carboxyl-

ated proteins. Additionally, a total of 50 carboxylated

glutamate residues and 93 non-carboxylated glutamate

residues from 13 carboxylated proteins, none of which are

included in the training data set, are regarded as the posi-

tive set and negative set for independent testing respec-

tively. After the evaluation using k-fold cross-validation,

the trained model with the highest accuracy is evaluated

using the independent test data.

Results and discussion

Distribution of carboxylation sites and other PTMs

on carboxylated proteins

Morris et al. [14] utilized mass spectrometry to show that

multiple carboxylation processes occur during a single

substrate binding event. The growing interest in mass

spectrometric proteomic studies of c-glutamyl carboxyla-

tion demands a detailed characterization of protein car-

boxylation sites. To examine the linear distribution of

carboxylation sites on proteins, the distance between two

neighboring carboxylation sites is measured. Figure 2

reveals that two immediately adjacent carboxylation sites

are separated by one amino acid or by three amino acids.

Overall, almost all (97.5%) carboxylation sites are located

within a distance of seven amino acids, and so are very

close together. Previous works have suggested that efficient

carboxylation of native substrates requires the binding of a

conserved region to carboxylase [2, 28]. Therefore, further

analysis of PTMs on carboxylated proteins—especially

those in the Gla domain—is needed. All annotations of

PTMs in carboxylated proteins are taken from UniProtKB

[17]. Table S1 (Supplementary Materials) reveals that

hydroxylation and glycosylation are the most abundant

PTM types on carboxylated proteins. Twenty-seven and 24

carboxylated proteins were found to have 41 hydroxylation

sites and 84 glycosylation sites, respectively. As shown in

Fig. S1 (Supplementary Materials), most of the 41

hydroxylation sites are located close to carboxylation sites

whereas most of the 84 glycosylation sites are far from

carboxylation sites. The 27 proteins (about 30% of all

carboxylated proteins) that contain co-occurring hydrox-

ylation and carboxylation sites are aligned using a multiple

sequence alignment tool ClustalW [29]. Figure S2 (Sup-

plementary Materials) shows that these 27 proteins are

clustered into three groups of homologous proteins, which

are secreted proteins [30], calcium binding proteins [31],

and osteocalcin [32]. The occurrence of other PTMs may

be considered to infer the function of carboxylated

proteins.

Fig. 2 Statistical analysis of

distance between neighboring

carboxylation sites. Almost all

carboxylation sites (97.5%)

were separated by seven or

fewer amino acids
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Amino acid composition and accessible surface area

at carboxylation sites

The AAC of 21-mer carboxylated fragments is graphically

visualized using WebLogo [33, 34] to reveal the relative

frequency of the corresponding amino acid at each position

around the carboxylation sites. Based on the frequency plot

as shown in Fig. 3a, carboxylation sites are observed to

contain highly concentrated Glu residues around the car-

boxylation sites. It is observed that the high conservation of

negatively charged glutamate residue coincides with pre-

vious findings [5] that the c-carboxylation recognition site

suffices to direct vitamin K-dependent carboxylation on an

adjacent glutamate-rich region of thrombin in a propeptide-

thrombin chimera. Aside from the AAC feature, the sol-

vent-ASA of amino acids was considered to explore the

structural characteristics of carboxylation sites. Figure 3b

compares the mean percentage of ASA obtained using a

21-mer window (from -10 to ?10) between carboxylation

sites and non-carboxylation sites. The analysis reveals that

the flanking region of carboxylation sites has a high pref-

erence for the solvent-ASA, especially at carboxylation

sites. The mean percentage of ASA on carboxylated glu-

tamate residues is 37.6%, resulting in a great exposure to

the solvent. In the investigation of ASA curves, the notable

difference between carboxylation sites and non-carboxyl-

ation sites is found in the region from -7 to -4.

Optimizing window length based on amino acid

sequence

The optimal window length that best predicts carboxylation

sites on Glu residues is determined by doing a five-fold

cross-validation on models that are trained using the

AA20D features of carboxylation sites with various win-

dow sizes 2n ? 1, where n varies from four to ten. As the

window size varies from 9 to 21, it is observed that the

predictive accuracy improves slightly from 0.728 to 0.808.

As the window size increases, the predictive specificity

improves while the sensitivity declines. Overall, the mod-

els trained using a window size of 15 and 17 performs best.

Given the computational efficiency and overall perfor-

mance of the trained models, 17-mer is selected as the

length of the window in the following implementation.

Based on the training feature of amino acid sequence, the

precision, sensitivity, specificity, accuracy, and MCC

resulting from a model with a 17-mer window size are

0.706, 0.786, 0.814, 0.805, and 0.597, respectively.

Predictive performance of models using various

features

The investigated features are evaluated to create a predic-

tive model for identifying carboxylation sites. From the

training data set, amino acid sequences are encoded into

Fig. 3 Sequence and structural

features around carboxylation

sites with 21-mer window

length (from -10 to ?10).

a Frequency plot of amino acid

composition around

carboxylation sites. b Average

ASA percentage at

carboxylation sites (blue line)

and non-carboxylation sites

(red line)
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20-dimensional vector and AAC, denoted ‘‘AA20D’’ and

‘‘AAC’’, respectively. Moreover, the ASA using the RVP-

net ASA values. Table 1 shows that the precision, sensi-

tivity, specificity, accuracy, and MCC of the model trained

with AAC could reach 0.686, 0.790, 0.802, 0.792, and

0.587, respectively. The model trained with ASA could

reach an accuracy of 0.779. It is observed that the model

trained using a orthogonal binary coding of amino acids

(AA20D) slightly outperforms those trained with AAC

alone or ASA alone.

With interest to a possible improvement in predictive

performance by training the models using a hybrid com-

bination of features, a model is trained and evaluated using

a hybrid combination of AA20D, AAC, and ASA. In

comparison to the performance achieved using individual

features, AA20D is crucial for training a model with other

individual features. The model trained using a combination

of AA20D and ASA substantially outperforms those

trained with single feature but slightly outperforms those

that are trained with a hybrid combination of two features.

The model trained using a combination of AA20D, AAC

and ASA has the best overall accuracy. The predictive

precision, sensitivity, specificity, accuracy, and MCC of

the best model are 0.801, 0.839, 0.892, 0.874, and 0.723,

respectively. It would be noticed that the model trained

with the feature of ASA could improve the prediction

performance. In conclusion, five-fold cross-validation

indicates that the model that is trained using a combination

of AA20D, AAC and ASA performs best, and is therefore

adopted in further independent testing.

Evaluation of the predictive model using

an independent test set

The effectiveness of the studied features that yield the

highest accuracy in cross-validation is evaluated using an

independent test. Based on the performance evaluation using

five-fold cross-validation, the model trained using a 17-mer

window length and the combined features of amino acid

sequence (AA20D), AAC, and ASA are selected. Table 2

shows that the predictive sensitivity falls slightly during

independent testing and specificity falls by around 10%.

Overall, independent testing reveals that the model has an

accuracy of 0.825, which approximates to that of cross-val-

idation. The precision, sensitivity, specificity, and MCC in

independent testing are 0.705, 0.860, 0.806, and 0.642,

respectively. Accordingly, independent testing demonstrates

that the amino acid sequence (AA20D), AAC, and ASA can

distinguish between carboxylation and non-carboxylation

sites when data are truly blind to the cross-validation process.

Implementation of a web-based system for identifying

carboxylation sites

Since experimental identification is time-consuming

and labor-intensive, precisely identifying the sites of

Fig. 4 Web interface (Carboxylator) for proposed prediction scheme
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c-glutamyl carboxylation on the substrate is difficult even in a

carboxylated protein. Hence, an effective prediction tool is

required to identify potential carboxylation sites efficiently.

Following the cross-validation evaluation and independent

testing, the amino acid sequence (AA20D), amino acids

composition (AAC), and ASA are utilized to construct an

RBFN model to predict the glutamate residues that are

involved in carboxylation. As presented in Fig. 4, users can

submit their uncharacterized protein sequences, then the

prediction system, called Carboxylator, efficiently returns the

predictions, including the carboxylated position, flanking

amino acids, and the probability of carboxylation. With regard

to the functional analysis of carboxylated proteins, the

implementation of the proposed prediction scheme effectively

helps users to elucidate the biological function of an unchar-

acterized protein.

Conclusions

Although the high-throughput mass spectrometry has been

wildly used in proteomics, studies on substrate site speci-

ficity of c-glutamyl carboxylation are subject to technical

limitations. With the collection of experimentally verified

carboxylation sites from UniProtKB and HPRD, 454

experimentally verified carboxylation sites have been

identified in 132 carboxylated proteins. After the con-

struction of a training data and an independent test data, the

composition of the flanking amino acids among the training

data is studied. This study also investigated the structural

characteristics of carboxylated proteins such as solvent-

ASA. Based on ASA curves, the region composed of amino

acids from position -7 to -4 exhibits notable differences

between carboxylation sites and non-carboxylation sites.

The mean percentage of ASA values on the carboxylated

glutamate residues is 37.6% which shows that it is greatly

exposed to the solvent. A five-fold cross-validation evalu-

ation demonstrates that incorporating the structural feature

of ASA could improve the prediction of protein carbox-

ylation sites. Furthermore, an independent test concurs that

the proposed model can differentiate carboxylation sites

from non-carboxylation sites. To enable efficient analysis

of c-glutamyl carboxylation, the predictive approach was

established as Carboxylator, a web-based tool for identi-

fying carboxylated proteins with modification sites.

Although the independent tests verify that the proposed

method performs accurately and robustly, some issues

warrant further investigation. The structural affinities of

carboxylation sites should be studied in detail, particularly

when the flanking amino acids are not conserved. The

solvent-ASA and secondary structure, the B-factor, intrin-

sic disordered region, protein linker region, and other

factors should also be examined at experimental carbox-

ylation sites in the protein regions with PDB entries. More

importantly, it should be noted that clues may be found

from analysis of gene ontology [35], the occurrence of

other PTMs, and the network context of protein–protein

interactions regarding further functions of carboxylated

proteins. These may be used to further investigate the

biological functions of carboxylated proteins.
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