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Abstract Peroxisome Proliferator-Activated Receptor c
(PPARc) full agonists are molecules with powerful insulin-

sensitizing action that are used as antidiabetic drugs.

Unfortunately, these compounds also present various side

effects. Recent results suggest that effective PPARc ago-

nists should show a low transactivation activity but a high

binding affinity to inhibit phosphorylation at Ser273. We

use several structure activity relationship studies of syn-

thetic PPARc agonists to explore the different binding

features of full and partial PPARc agonists with the aim of

differentiating the features needed for binding and those

needed for the transactivation activity of PPARc. Our

results suggest that effective partial agonists should have a

hydrophobic moiety and an acceptor site with an appro-

priate conformation to interact with arm II and establish a

hydrogen bond with Ser342 or an equivalent residue at arm

III. Despite the fact that interactions with arm I increase the

binding affinity, this region should be avoided in order to

not increase the transactivation activity of potential PPARc
partial agonists.
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Abbreviations

LBD Ligand binding domain

PPAR Peroxisome proliferator-activated receptor

QSAR Quantitative structure–activity relationship

SAR Structure activity relationship

TZDs Thiazolidinediones

Introduction

Peroxisome Proliferator-Activated Receptor c (PPARc) is a

ligand-activated transcription factor and a member of the

nuclear receptor superfamily that plays an important role in

adipogenesis and glucose homeostasis [1]. PPARc is acti-

vated by polyunsaturated fatty acids and their metabolites.

This transcription factor regulates the expression of adi-

pocyte-specific genes [2]; its function is, therefore, essen-

tial to fat cell formation, and PPARc full agonists stimulate

triglyceride storage and the differentiation of preadipocytes

into adipocytes [1]. Some PPARc full agonists, such as

thiazolidinediones (TZDs), also have a powerful insulin-

sensitizing action and are used as antidiabetic drugs [3].

Unfortunately, TZDs present various side effects, including

weight gain, increased adipogenesis, renal fluid retention,

bone fracture and increased incidence of cardiovascular

events [4–6]. Other compounds with poor agonist activities

for PPARc, called PPARc modulators or PPARc partial

agonists, retain very good antidiabetic effects without these

undesired side effects [4]. Therefore, several partial ago-

nists of PPARc are being developed as new-antidiabetic

drugs [6–8]. Analyses of a large number of crystallographic

structures of the PPARc ligand-binding domain (LBD)
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bound to an agonist have revealed that PPARc has at least

two binding modes in a single binding site. These two

binding modes correspond to full and partial agonists [9].

The binding pocket of PPARc has a Y-shaped form, con-

sisting of an entrance (arm III) that branches off into two

pockets. Arm I is extended toward H12, and arm II is

situated between helix H3 and a b-sheet [10]. Arm I is the

only substantially polar cavity of the PPARc ligand-bind-

ing domain, whereas arms II and III are mainly hydro-

phobic [10]. Full agonists occupy arm I, making a net of

hydrogen bonds with the side chains of Ser289, His323,

His449 and Tyr473 [9, 11]. These interactions stabilize

H12 and are responsible for the transactivation activity of

PPARc [9, 11]. In addition, full agonists also occupy arm II

through a hydrophobic tail that is present in all ligands of

this class [9, 11]. However, partial agonists interact mainly

with arm III through a hydrogen bond with Ser342, but also

with arm II through several hydrophobic interactions [12,

13]. This binding mode causes a lesser degree of H12

stabilization and an increase in the stabilization of H3 that

affects the recruitment of coactivators and decreases the

transactivation activity of PPARc [7, 14].

However, the previous model does not explain why

compounds with different PPARc transactivation activities

show the same insulin-sensitizing power. Recently, Choi et

al. [15] revealed a new mechanism of action for the anti-

diabetic effect of some PPARc agonists. This mechanism is

completely independent of the classical PPARc transacti-

vation activity and relies instead on inhibition of the

phosphorylation of PPARc at Ser273, thereby preventing

the unregulated expression of some genes, including adipsin

(a fat-cell-selective gene, the expression of which is altered

in obesity) and adiponectin (an insulin-sensitizing adipo-

kine) [15]. This alternative mechanism could clarify a long-

standing paradox of why PPARc activation by a wide range

of ligands does not always correlate with the ligands’ in

vivo efficacy [16]. With this new knowledge, many research

groups have had to accordingly shift their focus from their

past drug discovery efforts on PPARc, which were focused

exclusively on potency and agonist activity. It is now nec-

essary to develop effective and safe antidiabetic therapies

that maximize the inhibition of PPARc phosphorylation at

Ser273 and reduce the side effects observed with current

PPARc drugs [8, 15]. It seems likely that at least some of the

problematic side effects of PPARc full agonists, such as

weight gain or fluid retention, may occur through classical

agonist action and that a substantial portion of the thera-

peutic benefits of full and partial PPARc agonists occurs

through the inhibition of the PPARc phosphorylation at

Ser273 [15]. Thus, an effective partial agonist of PPARc
would have a weak transactivation activity and high phos-

phorylation inhibitory activity on PPARc at Ser273. This

kind of compound would maintain its antidiabetic effects

while reducing undesired side effects. Until researchers

shift their focus to study the potency of the phosphorylation

inhibitory activity at Ser273, binding affinity would be used

instead to evaluate potential drug candidates. In this sense,

the antidiabetic potency of PPARc ligand drugs correlates

very well with their binding affinities [17]. In the present

study, after reviewing the binding features of full and partial

agonists, we use several structure activity relationship

(SAR) studies of synthetic PPARc agonists to explore the

different binding features of full and partial PPARc ago-

nists. Our goal was to differentiate the features needed for

binding from those needed for the transactivation activity of

PPARc. Thus, our rationale consists of defining which

interactions between the ligand-binding domain of PPARc
and its ligands increases the binding affinity without

increasing the PPARc transactivation activity. This infor-

mation would allow us to predict the features that will

produce optimal PPARc agonists for use as antidiabetic

drugs.

Computational methods

Datasets

A dataset of 205 PPARc agonists with measured IC50

values (i.e., binding affinity measured by the displace-

ment of a radiolabeled full agonist) and transactivation

activity was assembled from several SAR studies [18–29]

(see Table 1). The IC50 (nM) values were then transformed

to -log IC50 (pIC50) (see Supporting Information Table S1).

The transactivation activities were expressed as the per-

centage of maximal activation relative to the full agonist

rosiglitazone (% max activation) (see Supporting Infor-

mation Table S2). All compounds were drawn with

ChemDraw Ultra v11.0 (CambridgeSoft Corporation,

Cambridge, MA, USA; http://www.cambridgesoft.com),

and their 3D structures were minimized with the LigPrep

v2.4 program (Schrödinger LLC., Portland, USA;

http://www.schrodinger.com) using an OPLS_2005 force

field at pH 7.0 with the rest of the parameters at default.

Clustering

A structural similarity analysis of all PPARc agonists was

performed using the Canvas v1.2 program (Schrödinger

LLC., Portland, USA; http://www.schrodinger.com). For

each compound, a set of MOLPRINT2D fingerprints was

calculated using the default parameters. A similarity

matrix, based on the Tanimoto similarities between each

set of fingerprints, was calculated. In order to classify the

compounds into several clusters, a Tanimoto cutoff of 0.8
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was used. Seven groups of compounds were then obtained.

Some of the groups were grouped together because the com-

pounds they contained were chemically very similar, i.e. they

contained the same core scaffold, obtaining at the end five

different clusters of compounds. The compounds of each

cluster represent therefore a group of very similar compounds,

with an average Tanimoto coefficient of their MOLPRINT2D

fingerprints greater than 0.8. The similarity matrix was also

used as an input for the DendroUPGMA server (http://

genomes.urv.es/UPGMA/) [30] to represent, as a dendro-

gram, the chemical similarities between molecules.

Pharmacophore construction

Energetically optimized, structure-based pharmacophores

were constructed with the Glide v5.6 program (Schrödinger

LLC., Portland, USA; http://www.schrodinger.com). This

program accurately characterizes protein–ligand interac-

tions based on energetic contributions such that energeti-

cally favorable features are incorporated into the

pharmacophore [31]. The Glide XP scoring function was

used to obtain an energetic description of each complex.

The pharmacophore sites are ranked based on the Glide XP

energies, and the most favorable sites are selected for the

pharmacophore hypothesis. Aromatic rings were considered

as hydrophobic groups. The PPARc residues that interact

with the sites of the above pharmacophores were visualized

with the LigandScout v2.03 program (Inte:ligand, Vienna,

Austria, http://www.inteligand.com/ligandscout/) [32].

Molecular alignments

The most crucial step for a 3D-QSAR construction model is

the alignment of the molecules. We chose a structure-based

docking strategy that was carried out using the poses predicted

by docking using the Glide v5.6 program (Schrödinger LLC.,

Portland, USA; http://www.schrodinger.com). We only ana-

lyzed compounds with a similar chemical structure that we

predicted that have very similar binding features to the

receptor. These compounds were docked within the binding

site of the 2Q5P PDB structure. The binding site was defined

using the Receptor Grid Generation panel with the default

options. Standard-precision (SP) docking was selected for

screening the ligands. We selected the flexible docking mode,

meaning that Glide internally generated conformations during

the docking process. We did not request any constraints for

docking. Each docking run recorded at most twenty poses per

ligand that survived the post-docking minimization. Glide-

Score was used as the fitness function. The best scoring pose

was selected for each ligand and used as an input structure for

subsequent 3D-QSAR analyses. Moreover, to confirm that the

docked poses that we obtained were realistic, we inspected

manually the group of best scoring poses for each compound

of the selected clusters to confirm that they contain the

important intermolecular interactions with the receptor that

we detect at the binding features analysis (and that, obviously,

are also present in the 2Q5P complex). In addition, a cross

docking analysis of the molecules used to build the 3D-QSAR

with other PPARc conformations derived from PDB com-

plexes (i.e., 2Q5S and 2P4Y) showed similar results to the

ones obtained with 2Q5P. Thus, this knowledge-based

selection of docked poses ensures their realism.

Generation of the 3D-QSAR models

The selected conformations of the ligands, obtained with

the previously described alignment protocol, were used

for the generation of a pair of 3D-QSAR models (one for

pIC50 and another for the percentage of maximal activation).

The Phase v3.2 program (Schrödinger LLC., Portland, USA;

http://www.schrodinger.com) was employed to carry out

the calculations using the Atom-Based 3D-QSAR panel. In

the atom-based 3D-QSAR, a molecule is treated as a set of

overlapping van der Waals spheres. To encode the basic

characteristics of the local chemical structure, each atom

(and hence each sphere) is placed into one of six categories

according to a simple set of rules: hydrogen atoms attached

to polar atoms are classified as hydrogen bond donors (D);

carbons, halogens, and C–H hydrogens are classified as

hydrophobic/non-polar (H); atoms with an explicit nega-

tive ionic charge are classified as negative ionic (N); atoms

with an explicit positive ionic charge are classified as

positive ionic (P); non-ionic nitrogen and oxygen atoms are

Table 1 Structure activity relationship (SAR) studies of the PPARc
agonists used in the current study

Series Cluster Transactivation

activity (% max.

activation)a

Binding affinity

pIC50

Ref

No.

ligands

Activity

range

No.

ligands

Activity

range

sar1 1 18 4–33 30 6.50–8.70 [18]

sar2 2 11 20–51 13 7.77–9.00 [19]

sar3 2 13 21–97 17 5.20–9.00 [20]

sar4 2 8 19–33 11 6.96–9.00 [21]

sar5 2 18 14–47 19 6.14–9.00 [22]

sar6 3 – – 16 5.44–7.00 [23]

sar7 1 – – 30 5.03–9.00 [24]

sar8 4 12 26–65 11 4.91–8.10 [25]

sar9 4 9 24–71 – – [26]

sar10 4 10 30–92 – – [27]

sar11 3 20 25–89 – – [28]

sar12 5 17 19–93 – – [29]

a % of maximal activation relative to the full agonist rosiglitazone
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classified as electron-withdrawing (W); and all other types

of atoms are classified as miscellaneous (X) [33]. The

docking-predicted conformations of each ligand were first

imported into the program together with their activity data.

Then, training and test sets were chosen randomly using the

Phase program. We chose a high training set percentage

(80%) because the main aim of our models was to explain

the relation between the selected ligands and their activi-

ties, not to predict activity values. Furthermore, in order to

discard a possible influence of the splitting of the ligands

into the training and test subsets on the resulting pair of

3D-QSAR models, we (1) randomly selected other 10

different training/test sets, (2) obtained their corresponding

pairs of 3D-QSAR models, and (3) check their similarity

relative to the initial pair of models by visual inspection.

The 3D-QSAR model partitions the space occupied by the

ligands into a cubic grid. Any structural component can

occupy part of one or more cubes. The size of the cubes

selected was 1 Å. The independent variables in the

regression were given by the binary-valued occupancies

(‘‘bits’’) of the cubes (by structural components), while the

dependent variables were the transactivation activity or the

binding affinity. The regression was done by constructing a

series of models with an increasing number of partial least

square (PLS) factors. The accuracy of the models increases

when the number of PLS factors increases until over-fitting

starts to occur.

Statistical validations of the 3D-QSAR models

The performance of the initial pair of 3D-QSAR models

was evaluated by measuring the accuracy of the predic-

tions. The statistical parameters that were used to evaluate

the predictions for the training set were: (a) the coefficient

of determination (R2); (b) the standard deviation of

regression (SD); (c) the F statistic, which measures the

overall significance of the model; (d) the statistical sig-

nificance (P), which measures the probability that the

correlation could occur by chance; and (e) a stability value,

which has a maximum value of 1 and measures the stability

of the model predictions with changes in the training set

composition. The parameters used to evaluate the predic-

tions for the test set were: (a) Q2, the equivalent of R2 for

the test set; (b) the root-mean-square error (RMSE); and (c)

the Pearson correlation coefficient (r).

Results and discussion

Binding features of partial agonists

A total of 205 structures of PPARc agonists were retrieved

from 12 SAR studies (sar1-12) of synthetic PPARc agonists

(Table 1) [18–29]. Based on their chemical similarities,

these 205 compounds can be grouped into five clusters

(Fig. 1). Cluster 1 is composed of ligands from sar1 (aryl

indole-2-carboxylic acids) and sar7 (N-sulfonyl-2-indole

carboxamides), which consist of an indole system that con-

tains a carboxylic group or a sulfonyl group at the second

position [18, 24]. In essence, all of the ligands from this

cluster have two lipophilic parts on either side of an acidic

center. Cluster 2 is the largest family and contains com-

pounds from sar2 (3-acylindole-1-benzylcarboxylic acids)

[19], sar3 (benzoyl 2-methyl indoles) [20], sar4 (N-benzyl-

indoles) [21] and sar5 (7-azaindoles) [22]. Compounds from

this cluster have an indole group, like the compounds from

cluster 1, but otherwise follow a different pattern. These

compounds are made up of an acidic head and a lipophilic

tail. Cluster 3 contains a series of ligands from sar6

(5-substituted 2-benzoylaminobenzoic acids) [23] and sar11

(2,4,6-trisubstitutedpyrimidine-5-carboxylic acid deriva-

tives) [28]. Although the sar11 series seems to be more

related to the sar12 series shown in Fig. 1, the core scaffolds

of the sar11 and sar6 series are chemically very similar. We

therefore decided to cluster these two series together in

cluster 3. The compounds from this cluster follow the same

pattern as cluster 1, but without the presence of an indole

group. The sar8 [25], sar9 [26] and sar10 [27] series form

cluster 4. The compounds from this cluster are derivatives of

telmisartan, a compound that, in addition to being a PPARc
partial agonist, is also a selective angiotensin II AT1 receptor

blocker. Finally, cercosporamide derivatives from the sar12

series [29] form cluster 5.

With the aim of analyzing the binding differences

between different PPARc agonists, we constructed at least

one energetically optimized pharmacophore [31] for each

of the above clusters. This methodology quantifies the

importance of each pharmacophore feature and allowed us

to analyze the differences of receptor-ligand contacts

between clusters. Table 2 shows the eight energy-based

pharmacophores constructed from eight PDB structures

that contain the PPARc LBD crystallized with a partial

agonist. Most of the pharmacophore sites are aromatic

rings, highlighting the importance of hydrophobic inter-

actions for the binding of PPARc agonists with the

receptor. Another significant feature is the presence of an

acceptor site together with a negative site in the majority of

the pharmacophores. This site corresponds to a carboxylic

group present in the majority of the PPARc partial agonists

that forms a hydrogen bond with the Ser342 from the LBD

of PPARc. A comparison of the energy-based pharmaco-

phores between clusters shows that the pharmacophores

from clusters 1, 2 and 3 are similar, although the positions

of the hydrophobic sites vary. The pharmacophores from

clusters 4 and 5 are, however, slightly different. They

contain an additional donor site, and the hydrophobic sites
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occupy a different region when compared with the phar-

macophores from clusters 1, 2 and 3. Table 2 also shows

the energy-based pharmacophore of a PPARc full agonist.

This pharmacophore has sites similar to those of the pre-

vious pharmacophores, but their locations are very differ-

ent, highlighting the binding differences between full and

partial PPARc agonists.

Table 2 also shows the binding differences between full

and partial agonists (and between some partial agonists)

from the receptor point of view. In this table, the PPARc
residues that interact with each site of the pharmacophores

are shown. The hydrophobic interactions between Ile281,

Ala292, Ile326, Ile341, Leu330, Leu333, Val339, Met348,

Leu353 and Met364 and the hydrophobic sites of the

ligands are conserved in the majority of the structures (see

Table 2), even for the full agonist. The residue that inter-

acts through a hydrogen bond with the acceptor/negative

site of the ligand differs depending on whether the ligand is

a full or partial agonist. Partial agonists (with the exception

of compounds from cluster 5) form a hydrogen bond with

Ser342. However, the residues that interact through a

hydrogen bond in full agonists are usually Ser289 and

Tyr473. There are other binding differences between par-

tial and full agonists. If we split the LBD of PPARc into

three parts, arm I, arm II and arm III (see Fig. 2), we

observe that the partial agonists (with the exception of

compounds from cluster 4) basically interact with arms II

and III, but the full agonists basically interact with arms I

and II (see Table 2). Thus, in agreement with previous

results [10], our analyses show that full and partial agonists

Fig. 1 Representation of PPARc partial agonist clusters. A total of 205 synthetic compounds from 12 SAR series were clustered by comparing

their MOLPRINT2D fingerprints. The 2D structure of a representative member of each cluster is also shown
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Table 2 Energy-based pharmacophores for eight structures that contain the PPARc ligand-binding domain crystallized with a partial agonist

plus one structure complexed with a full agonist

Cluster PDB code Energetic pharmacophore Contact residues

ARM I ARM II ARM III

1 2Q5S Ile326

Phe363

Ile249

Ile281

Val339

Ile341

Met348

Leu353

Met364

Ala292

Leu330

Ser342*

2HFP Ile326 Ile281

Met329

Val339

Ile341

Met348

Leu353

Met364

Ile262

Lys265*

Arg288

Ala292

Leu330

Leu333

Ser342*

2 2Q5P Ile326

Tyr327

Phe264

Ile281

Val339

Ile341

Met348

Arg288

Ala292

Leu330

Leu333

Ser342*

2P4Y Ile326

Tyr327

Phe363

Ile281

Met329

Val339

Ile341

Met348

Leu353

Met364

Phe287

Ala292

Leu330

Leu333

Ser342*

3 2Q6S – Ile249

Leu255

Phe264

Val339

Met364

Ala292

Leu330

Leu333

Ser342*

Cmpd 50 Ile326 Leu255

Ile281

Val339

Ile341

Leu353

Met364

Ile262

Thr268

Ala292

Leu330

Leu333

Ser342*

4 3KMG Phe282

Ser289*

Ile326

Tyr327*

Phe363

Leu453

Leu465

Leu469

Ile281

Val339

Ile341

Met348

Met364

Arg288*

Ala292

Leu330

Leu333

Ser342*
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show different binding patterns for the LBD of PPARc.

The binding patterns of different partial agonists are also

slightly different. Ligands from cluster 4 occupy arm I, like

full agonists, and also make two additional hydrogen bonds

with Ser289 and Tyr327 (see Table 2). Ligands from

cluster 5 make few contacts with the LBD of PPARc
because they are surrounded by several water molecules.

The binding profiles of compounds from clusters 1, 2 and 3

are similar (see Table 2).

Generation of 3D-QSAR models

We selected the sar1, sar2, sar3, sar4 and sar5 series of

PPARc agonists for the construction of two 3D-QSAR

models. 3D-QSAR techniques have efficiently provided

models in reasonable agreement with those deduced by the

crystal structure of PPARc complexes [34]. We used this

methodology not for predicting the activity or binding

affinity of putative PPARc agonists, but rather to analyze

which interactions between the LBD of PPARc and its

ligands increase the binding affinity without increasing the

PPARc transactivation activity. The sar1, sar2, sar3, sar4

and sar5 series were selected because for these compounds

we have a wide range of measured IC50 (i.e., binding

affinity measured by the displacement of a radiolabeled full

agonist) values, tested under the same assay conditions,

and values for the transactivation activity (see Table 1).

Ligands from sar8 were not used because their binding

mode is quite different from that used by the agonists from

clusters 1 and 2 (see Table 2). The sar1, sar2, sar3, sar4

and sar5 series form clusters 1 and 2 in Fig. 1 and contain a

set of 82 indole-based PPARc agonist derivates with a

similar binding profile. With these compounds, we con-

structed two atom-based 3D-QSAR models, one analyzing

the binding affinity between the ligands and PPARc (called

the pIC50 model) and one analyzing the transactivation

activity of PPARc (called the transactivation model). For

the first model, we used values of pIC50, and for the sec-

ond, we used the percentage of maximal activation relative

to the full agonist rosiglitazone. Activation levels that

reach the maximal activation of rosiglitazone are consid-

ered full agonists, while those reaching 20–60% of rosig-

litazone maximal activation are considered partial agonists.

Table 3 and Fig. 3 show the statistic fits of the constructed

3D-QSAR models. For both models, as it is shown in

Fig. 3, the activity values of the ligands from the training

and test sets are homogeneously distributed along all the

activity range. In both models, to avoid an over-fitting

effect, two PLS factors were chosen. The Pearson corre-

lation coefficient of the pIC50 model was 0.77 with an R2

Table 2 continued

Cluster PDB code Energetic pharmacophore Contact residues

ARM I ARM II ARM III

5 3LMP Ile326 Met334

Leu353

Met364

Leu330

Cys285*

Full agonist 1FM9 Phe282

Ser289*

Ile326

Phe360

Phe363

Leu453

Ile456

Leu465

Leu469

Tyr473*

Ile281

Val339

Ile341

Met348

Leu353

Met364

Leu330

Pink spheres represent hydrogen bond acceptors, green spheres represent hydrophobic groups, orange rings represent aromatic rings, light-blue

spheres represent hydrogen bond donors, and red spheres represent negative ionizable groups. The PPARc residues involved in the interaction

with the ligand are also shown. All interactions correspond to hydrophobic interactions, with the exception of the residues marked with an

asterisk, which form hydrogen bonds with the polar groups of the ligands. The interactions conserved in the majority of the structures that contain

a PPARc agonist are shown in bold. All energetic pharmacophores are presented in the same relative orientation in order to allow for an easier

comparison. Contact residues were defined using LigandScout
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for the training set and a Q2 for the test set of 0.67 and 0.55,

respectively. For the transactivation model, the Pearson

correlation coefficient was 0.72 with an R2 for the training

set and a Q2 for the test set of 0.71 and 0.40, respectively.

The low Q2 values imply that there is a greater difference

between the experimental values of binding affinity and

transactivation activity and the values predicted by each

model. This difference is more important when predicting

the transactivation activity of full agonists (see Fig. 3b).

This may be due to the fact that the great majority of

compounds in the dataset used are partial agonists. The R2

values for the training set are better. As our main purpose

was to use the 3D-QSAR models for analyzing the inter-

actions between the LBD of PPARc and a group of similar

PPARc agonists, the R2 values are more relevant. These R2

values and the scatter plots for the training set in Fig. 3

indicate a reasonably good correlation between the pre-

dicted and experimental activities and validate the use of

both models.

Figures 4 and 5 show the representation of the

3D-QSAR models. In these figures, the cubes that represent

the model are displayed and colored according to the sign

of their coefficient values. Blue and red cubes are used,

respectively, for positive and negative coefficients and

indicate regions that increase or decrease the analyzed

parameter. One of the advantages of using these repre-

sentations is that the position of the cubes of the 3D-QSAR

model can be compared with the positions of the amino

acid residues in the active site. This might give an insight

as to which functional groups are desirable or undesirable

at certain positions in a molecule. Figure 4b shows the

favorable and unfavorable regions for the binding affinity.

Similar favorable and unfavorable regions were obtained

when ten additional 3D-QSAR models were generated

using different training set selections obtained at random

(results not shown). The favorable regions for binding are

located at regions that interact with arms I and II and the

right part of arm III (which includes Ser342) of the LBD of

PPARc. When viewing the 3D-QSAR model by atom type,

we see that the hydrophobic (Fig. 4c) and the electron-

withdrawing contributions (Fig. 4d) are the most important

for the binding affinity of the compounds analyzed

(whereas the rest of the contributions have a very limited

role in binding affinity; results not shown). The electron-

withdrawing contributions are favorable at arm I, where

hydrogen bonds with Ser289, His323, His449 and Tyr473

can be established, and arm II, where a hydrogen bond with

Ser342 is common to most PPARc partial agonists.

Hydrophobic interactions are the most important binding

forces between PPARc agonists and the LBD of PPARc.

The representation of the 3D-QSAR model in Fig. 4c

suggests that, when more hydrophobic interactions occur

with arm I and arm II of the LBD of PPARc, a greater

binding affinity is seen in the compound. Figure 4e and f

display the cubes of the 3D-QSAR model grid that are

occupied by two compounds from the SAR series analyzed.

In these representations, we can see which parts of the

ligand have a positive or a negative contribution to the

parameter analyzed, which is, in this case, the binding

affinity. Figure 4e shows the sar1_24 compound [18],

Fig. 2 a The ligand-binding domain (LBD) of PPARc complexed

with a partial agonist, a benzoyl 2-methyl indole derivate (MRL-24

from PDB 2Q5P), colored in blue, superimposed with the structure of

a full agonist, farglitazar, colored in green. The partial agonist

occupies mainly arm II and arm III of the LDB of PPARc, but the full

agonist occupies mainly arm I and arm II. b The main interactions

between the PPARc partial agonist MRL-24 and the LBD of PPARc.

The conserved hydrophobic interactions between Ile281, Ala292,

Ile326, Ile341, Leu333, Met348 and Met364 and the hydrophobic

sites of MRL-24 are shown. These interactions are common to nearly

all PPARc agonists, including full agonists. Hydrogen bonds between

Ser342 and the carboxylic acid from MRL-24 are also shown by a

dashed yellow line. This hydrogen bond is conserved between some

PPARc partial agonists but not for full agonists
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which has one of the lowest binding affinities in this series.

Our 3D-QSAR model explains the low binding affinity of

this compound because, although it can partially interact

with arm II through a carboxylic group (see the upper blue

cubes in Fig. 4e), it lacks a hydrophobic moiety at indole

position 6 to interact with arm I. This compound also

contains a trifluoromethyl group, a group with high elec-

tronegativity, located in the hydrophobic environment of

arm III (see the red cubes in Fig. 4e). When the compound

from our ligand dataset with the highest binding affinity

(i.e., sar2_1 in Fig. 4f) is considered in the context of the

model, we see an excellent fit with the blue areas of the

model (see Fig. 4f).

Figure 5 shows a representation of the transactivation

model. In this model, the transactivation activity of PPARc
is the variable analyzed. Figure 5a shows the favorable and

unfavorable regions for transactivation activity. Similar

favorable and unfavorable regions were obtained when ten

additional 3D-QSAR models were generated using differ-

ent training set selections obtained at random (results not

shown). The favorable regions are located at arm I and at

part of arm III. Interestingly, unfavorable regions are

located at arm II and the right part (which corresponds to

Ser342) of arm III. Figure 5b–d show that the main

contribution to the transactivation activity of PPARc is

caused by hydrophobic interactions, specifically the

hydrophobic interactions that can be established with the

hydrophobic residues of the LBD of PPARc that form arm

II and part of arm I (see Fig. 5b). Hydrophobic interactions

with arm II and part of arm III are marked as unfavorable

in the model (Fig. 5b). This effect is due to the fact that

partial agonists do not occupy arm I but do occupy arm II

and the right part of arm III. In addition, an unfavorable

hydrophobic interaction is also localized at arm I (see the

red cubes at the bottom and left side of Fig. 5b). A car-

boxylic group that makes a hydrogen bond with Ser289

may occupy this part of the ligand, especially for full

PPARc agonists. This interaction is crucial for the stabil-

ization of H12 and for the transactivation activity of

PPARc. Thus, when this region is occupied by a hydro-

phobic group, a hydrogen bond cannot be established, and

the transactivation activity of PPARc decreases. The

importance of this interaction for the transactivation

activity of PPARc is also visualized in Fig. 5c and d, when

the electron-withdrawing and negatively charged contri-

butions are represented in the transactivation model. In

both figures, a blue cube at arm I (at the bottom of the

figures) represents the importance of polar interactions in

Table 3 Statistics of the best

3D-QSAR models for analyzing

the binding affinity (pIC50

model) and the transactivation

activity of PPARc (% max

activation model) derived from

an 80% randomly selected

training set

See the ‘‘Computational

methods’’ section for the meaning

of the statistical parameters used.

To avoid an over-fitting effect,

two factor models (showed in

bold) were chosen

Model # Factors SD R2 F P Stability RMSE Q2 Pearson-r

pIC50 1 0.62 0.31 26.1 3.8e-06 0.94 0.68 0.14 0.43

2 0.43 0.67 58.5 1.53e-14 0.49 0.49 0.55 0.77

3 0.36 0.78 64.5 3.66e-18 0.38 0.57 0.40 0.63

4 0.24 0.90 121.8 1.2e-26 0.15 0.63 0.26 0.51

5 0.19 0.94 166.7 1.55e-31 -0.02 0.63 0.25 0.50

% max activation 1 13.64 0.42 38.2 9.36e-08 0.85 17.83 0.28 0.55

2 9.69 0.71 64.4 8.57e-15 0.55 16.27 0.40 0.72

3 6.4 0.88 121.1 3.42e-23 0.29 17.61 0.30 0.63

4 4.75 0.93 175.7 8.78e-29 0.22 17.31 0.32 0.64

5 2.98 0.97 372.3 9.95e-38 0.15 16.33 0.40 0.72

Fig. 3 Scatter plots for the two

factors a pIC50 and b
percentage of maximal

activation models applied to the

training set (colored in gray)

and the test set (colored in

black)
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this region. Figure 5d also shows that the negatively

charged contributions at the right part of arm III are

unfavorable for the transactivation activity. This negative

contribution reflects the fact that most partial agonists have

a carboxylic group at this region that forms a hydrogen

bond with Ser342. This hydrogen bond neither stabilizes

H12 nor activates the transactivation activity of PPARc. As

the majority of partial agonists form this hydrogen bond

and their transactivation activity is low, the model marks

this interaction as unfavorable for the transactivation

activity. Figure 5e and f show, respectively, the 3D-QSAR

model represented only by the cubic volume elements that

are occupied by one of the most inactive compounds (i.e.,

the sar1_6 compound) and the most active compound (i.e.,

the sar3_12 compound) in terms of transactivation activity.

The sar1_6 compound [18] has only a maximal transacti-

vation activity of 8% relative to rosiglitazone. Figure 5e

shows that this ligand basically occupies arm III and arm II

of the receptor and makes hardly any of the favorable

interactions shown as blue cubes in Fig. 5. The sar3_12

compound [20] has a maximal transactivation activity of

97% relative to rosiglitazone. This compound fits the blue

areas of the 3D-QSAR model perfectly, as it can interact

with the receptor through the favorable regions at arms I, II

and III (see Fig. 5f).

Arm I of the LBD of PPARc is an important part for the

binding and the transactivation activity of PPARc ligands.

The ligands that occupy this arm interact with PPARc
through a series of hydrophobic interactions and a net of

hydrogen bonds with the side chains of Ser289, His323,

His449 and Tyr473. These interactions stabilize H12 and

are responsible for the transactivation activity of PPARc
[9, 11]. When a hydrophobic group occupies the region of

the carboxyl group responsible for the net of hydrogen

bonds with the side chains of Ser289, His323, His449 and

Tyr473, the transactivation activity of PPARc decreases

(see Fig. 5). Other regions of the LBD of PPARc that also

contribute to the transactivation activity of PPARc include

the regions of arms III and II that are closer to arm I.

Hydrophobic interactions in these regions are favorable for

the transactivation activity of PPARc (see Fig. 5). How-

ever, the region of arm III furthest from arm II does not

Fig. 4 Representation of the

pIC50 model. The structural

alignment of the selected

docking poses of all compounds

a was used to construct an atom-

based 3D-QSAR model. Blue
and red cubes indicate,

respectively, regions that are

favorable and unfavorable for

binding to the LBD of PPARc.

The thresholds used for

considering a region with a

positive or negative contribution

were 1.0 e-02 and -1.4 e-02,

respectively. The complete 3D-

QSAR model is displayed in

panel b, whereas panels c and d
show the hydrophobic and

electron-withdrawing

contributions, respectively.

Panels e and f show the cubic

volume elements that are

occupied by one of the

compounds of the series with

the lowest (i.e., sar1_24) and the

highest (i.e., sar2_1) binding

affinity, respectively. All panels

are presented in the same

relative orientation in order to

allow for an easier comparison
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contribute to this activity. This region, which includes

Ser342, is the region most occupied by partial agonists.

Hydrophobic interactions between the PPARc residues

from arms I and II and the hydrophobic groups of PPARc
ligands are very important for their binding (see Fig. 4). In

addition, partial agonists can establish a hydrogen bond

with Ser342. Because arm I contributes significantly to the

transactivation activity of PPARc, this region must not be

occupied by potential PPARc partial agonists.

Conclusion

The ideal PPARc partial agonists to be used as antidiabetic

compounds should show a low transactivation activity but

a high binding affinity to inhibit phosphorylation at Ser273.

Our models suggest that effective partial agonists should

have a hydrophobic moiety and an acceptor site with an

appropriate conformation to interact with arm II and to

establish a hydrogen bond with Ser342 or an equivalent

residue. Despite the fact that interactions with arm I

increase the binding affinity, this region should be avoided

in order to decrease the transactivation activity of potential

PPARc partial agonists.
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Spiegelman BM (2010) Nature 466:451

16. Houtkooper RH, Auwerx J (2010) Nature 466:443

17. Willson TM, Cobb JE, Cowan DJ, Wiethe RW, Correa ID,

Prakash SR, Beck KD, Moore LB, Kliewer SA, Lehmann JM

(1996) J Med Chem 39:665

18. Dropinski JF, Akiyama T, Einstein M, Habulihaz B, Doebber T,

Berger JP, Meinke PT, Shi GQ (2005) Bioorg Med Chem Lett

15:5035

19. Liu W, Liu K, Wood HB, McCann ME, Doebber TW, Chang CH,

Akiyama TE, Einstein M, Berger JP, Meinke PT (2009) J Med

Chem 52:4443

20. Acton JJ, Black RM, Jones AB, Moller DE, Colwell L, Doebber

TW, Macnaul KL, Berger J, Wood HB (2005) Bioorg Med Chem

Lett 15:357

21. Liu K, Black RM, Acton JJ, Mosley R, Debenham S, Abola R,

Yang M, Tschirret-Guth R, Colwell L, Liu C, Wu M, Wang CF,

MacNaul KL, McCann ME, Moller DE, Berger JP, Meinke PT,

Jones AB, Wood HB (2005) Bioorg Med Chem Lett 15:2437

22. Debenham SD, Chan A, Lau FW, Liu W, Wood HB, Lemme K,

Colwell L, Habulihaz B, Akiyama TE, Einstein M, Doebber TW,

Sharma N, Wang CF, Wu M, Berger JP, Meinke PT (2008)

Bioorg Med Chem Lett 18:4798

23. Thor M, Beierlein K, Dykes G, Gustavsson AL, Heidrich J,

Jendeberg L, Lindqvist B, Pegurier C, Roussel P, Slater M,

Svensson S, Sydow-Bäckman M, Thornström U, Uppenberg J

(2002) Bioorg Med Chem Lett 12:3565

24. Hopkins CR, O’neil SV, Laufersweiler MC, Wang Y, Pokross M,

Mekel M, Evdokimov A, Walter R, Kontoyianni M, Petrey ME,

Sabatakos G, Roesgen JT, Richardson E, Demuth TP (2006)

Bioorg Med Chem Lett 16:5659

25. Lamotte Y, Martres P, Faucher N, Laroze A, Grillot D, Ancellin N,

Saintillan Y, Beneton V, Gampe RT (2010) Bioorg Med Chem Lett

20:1399

26. Goebel M, Clemenz M, Staels B, Unger T, Kintscher U, Gust R

(2009) ChemMedChem 4:445

27. Goebel M, Staels B, Unger T, Kintscher U, Gust R (2009)

ChemMedChem 4:1136

28. Seto S, Okada K, Kiyota K, Isogai S, Iwago M, Shinozaki T,

Kitamura Y, Kohno Y, Murakami K (2010) J Med Chem 53:5012

29. Furukawa A, Arita T, Satoh S, Wakabayashi K, Hayashi S,

Matsui Y, Araki K, Kuroha M, Ohsumi J (2010) Bioorg Med

Chem Lett 20:2095
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