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Abstract Over the past 8 years, we have developed,

refined and applied a fragment based discovery approach to

a range of protein targets. Here we report computational

analyses of various aspects of our fragment library and the

results obtained for fragment screening. We reinforce the

finding of others that the experimentally observed hit rate for

screening fragments can be related to a computationally

defined druggability index for the target. In general, the

physicochemical properties of the fragment hits display the

same profile as the library, as is expected for a truly diverse

library which probes the relevant chemical space. An anal-

ysis of the fragment hits against various protein classes has

shown that the physicochemical properties of the fragments

are complementary to the properties of the target binding

site. The effectiveness of some fragments appears to be

achieved by an appropriate mix of pharmacophore features

and enhanced aromaticity, with hydrophobic interactions

playing an important role. The analysis emphasizes that it is

possible to identify small fragments that are specific for

different binding sites. To conclude, we discuss how the

results could inform further development and improvement

of our fragment library.

Keywords Fragment screening � Fragment based

drug discovery � Library design � Chemical space

Abbreviations

AK Adenosine kinase

CDK2 Cyclin-dependent kinase 2

DNAG DNA gyrase

FAAH Fatty acid amide hydrolase

HSP70 Human heat shock protein 70

HSP90 Human heat shock protein 90

JNK3 c-Jun N-terminal kinase 3

PDPK1 3-Phosphoinositide-dependent protein kinase 1

PIN-1 Peptidyl-prolyl cis/trans isomerase

PPI Protein–protein interaction

SeeDs Structural exploitation of experimental drug

startpoints

Introduction

Over the past 10 years, there has been increasing interest in

fragment based methods for drug discovery [1, 2]. The

excitement (and investment) in the methods has grown over

the past few years as a number of compounds have entered

clinical trials [1, 2] where fragment derived information has

made important contributions. The developments in the area

have recently been comprehensively reviewed by Congreve

et al. [3]. The central premise is that a small library of

compounds can sample a potentially huge chemical diversity.

The structures of fragment hits binding to an active site can

then guide medicinal chemists to rapidly expand and opti-

mise these hits into leads and then onto clinical candidates.

This provides an attractive alternative to High Throughput

Screening for identifying tractable starting points for gener-

ation of novel lead compounds, particularly for new classes

of target, provided sufficient structural data can be generated

on binding modes to guide compound optimisation. In
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addition, the entry cost to fragment based discovery is rela-

tively low as a small library of fragments (a 1,000 or so

compounds) is sufficient to give hits against most targets. For

this reason, many of the recent developments have been

driven by small, technology focussed companies.

The primary characteristic of fragments is that they are

small, weak hits. This has required developments in three

main areas—detecting fragments that bind, evolving frag-

ments into hits and the design of fragment libraries.

There has been continuing improvements in the various

biophysical methods which can detect fragment binding,

which is typically with a KD between 100 lM and 10 mM.

Initially, techniques such as NMR monitoring protein sig-

nals (HSQC) [4] and high throughput crystallography [5]

were used. These are now augmented with techniques such

as NMR that monitors ligand signals (STD, LOGSY, etc.

[6]) and Surface Plasmon Resonance [7]. Most practitio-

ners are now converging on a similar approach, where a

relatively rapid biophysical method is used to identify

which fragments are binding competitively to a target site,

with confirmed hits taken into crystallisation trials to

confirm binding and characterise binding modes. At Ver-

nalis, our fragment discovery platform is known as SeeDs

[8], where fragments are screened in pools of 8–12 com-

pounds for binding to a target through a competitive NMR

experiment. A combination of ligand monitoring NMR

experiments (STD [9], CPMG [10], Water LOGSY [11])

are measured for the pool of fragments in the presence and

absence of a competitor ligand. The main limitation this

places on the design of the fragment library is the need for

sufficient solubility (typically 0.5 mM) for the NMR

experiment to detect binding.

There are three main ways in which fragments have

been incorporated into larger hits and optimised into lead

compounds. One approach is to link fragments together, as

in the pioneering SAR by NMR approach of Abbott [4].

Although there have been some notable successes [12, 13],

it is often impossible to develop appropriate chemistry to

link fragments while maintaining the orientation and

position needed for key interactions. More successful has

been the idea of growing fragments, either by structure-

guided medicinal chemistry or by using the fragment

binding motif to search for similar compounds that can be

purchased (so-called SAR by Catalogue). A particularly

attractive approach is to use the structure of fragments (and

other hit compounds) binding to the target site to design

new compounds that combine key interaction features [14].

The ideas about how to use fragments in medicinal

chemistry optimisation campaigns continue to evolve, and

with experience is influencing the design of fragment

libraries.

As with any form of screening, the quality of hits crit-

ically depends on the library screened. If the library does

not contain appropriate compounds, it may result in no hits

in the screening, or finding hits which are inappropriate for

chemical optimization. Around the time the first generation

of the Vernalis fragment library was published [15], there

were few reports describing the design and characterization

of fragment libraries [15–17]. Since then, a few more

reports have emerged, but with little detailed analysis

provided [18–20], perhaps because this information is often

regarded as proprietary.

We have now conducted fragment screening campaigns

against many different types of targets. The fragment

library has been evolving during this time, but it is possible

to identify particular trends and characteristics of the hits

that provide useful insights into the nature of fragment

binding and guidance for further optimisation of the

library. In this paper we present a number of computational

analyses of the characteristics of the fragment library and

the hits obtained against a selected number of protein tar-

gets. Only a few reports have appeared previously of such a

retrospective analysis. The Abbott group identified certain

privileged scaffolds from the first set of screening cam-

paigns [21]. Although AstraZeneca (AZ) summarised the

characteristics of their fragment library and hit rates against

a collection of targets [19], there was not a full analysis of

the characteristics of hits obtained.

This has prompted us to perform a detailed analysis with

fragment hits obtained over the past few years. We begin

with a description of the design and implementation of our

fragment library. The physicochemical properties are then

compared across various fragment sets to examine differ-

ences or similarities. We conclude with a discussion of how

the trends observed from the analysis could be used for

future improvements in the library.

Methods

Design of the VER2004 fragment library

The first generation of the fragment library (VER2004) is

described in detail by Baurin et al. [15]. The overarching

selection criteria were that fragments had to be diverse with

suitable physicochemical properties for our screening

methodology (ligand-monitoring NMR spectroscopy) and

that the compounds were suitable to be taken forward in a

medicinal chemistry programme. The main features of the

selection process are summarised in Fig. 1.

The primary source of compounds for library enumer-

ation came from the available vendor catalogues. The first
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filter includes 2D physicochemical descriptors such as

molecular weight (100 B MW B 250, with an upper limit

of 350 for compounds containing sulfonamides), number of

rotatable bonds (NRot \ 6) and calculated water solubility

(B2 mM) [15]. The tractability filter contains the lists of

preferred and disfavoured functional groups and elements.

The list of desirable chemical moieties contains fourteen

chemical handles [15] to allow rapid chemistry to be

applied to the fragments for evolution of the compounds

and the permitted elements are H, C, N, O, F, Cl and S. The

list of disfavoured groups was compiled from a number of

studies [22–24] and extended by in-house medicinal

chemists to ensure the stability and chemical tractability of

the fragments for further work. In addition, excluding

compounds with such properties should reduce the number

of false positives due to aggregation or reaction when

screening the fragments as mixtures. All these filters are in

the SMARTS [25] format and can be applied in silico to

process large libraries of compounds efficiently. Before

diversity clustering, there is an optional target pharmaco-

phore matching stage. This stage was introduced to address

the needs of internal drug discovery projects, should they

request. For example, to enrich library with fragments

which satisfy the unique kinase hinge binding motif [26], a

subset of fragments were subjected to a kinase pharmaco-

phore match after filtering of functional groups.

The library was designed to be used for a wide range of

targets. The goal is to identify fragments that make specific

interactions with a given target so it is important that the

library contains as much chemical diversity as possible.

A measure of diversity was determined by molecular

fingerprints based on 2D 3-point pharmacophore triangles

(vide infra). The presence or the absence of the encoding

fingerprint components (pharmacophore triangles) can be

used to assess the uniqueness of a fragment for its putative

recognition pattern. The final stage in identifying fragments

is inspection by medicinal chemists before purchasing.

Although this is a rather subjective selection process, the

principal consideration was to incorporate an overall ‘expert’

view of chemical tractability and suitability of the fragments

for their potential to evolve into a lead or drug-like molecule.

The fragments which passed the visual inspection were then

purchased and subjected to quality control measurements.

The internal procedure includes checking compound identity

by NMR spectrum and if needed by mass spectrometry,

purity, stability, solubility and self-aggregation [15].

Evolution of the Vernalis fragment libraries

to give VER2008

The library has evolved continuously over the past 4 years

(VER2008) through three main routes (described in more

detail in Hubbard et al. [8]). All compounds below MW 250

synthesised in the company are considered for inclusion and

new fragments are either identified or designed from tem-

plates seen to bind to different targets during a discovery

project. Secondly, repeats of the analysis of the changing

commercially available compounds have identified new

fragments. Thirdly, compounds are removed during regular

quality control of the library (visual inspection, consultation

with chemists and mass spectrometry) with the general

objective of keeping the fragment library about the same

Vendor catalogues or in-house chemistry

Physicochemical and in silico solubility filters

Tractability filter

Target specificity filter

Diversity by pharmacophore triangles

Visual inspection

Internal QC

SeeDs library

Fig. 1 Vernalis fragment

library enumeration process.

The box with a broken line is for

an optional procedure
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size, for practical reasons. About 555 of the 1,321 fragments

identified in VER2004 have been removed during the pro-

cess of continuous assessment and improvement of the

library. Of these 555 fragments, about 40% were removed

because the compounds had decomposed in the master

plates and about 40% were removed based on the experience

of the medicinal chemists in using the fragments in dis-

covery projects. Less than 5% were removed for long term

solubility problems and 3% because compounds were no

longer available. The remainder were removed for miscel-

laneous reasons.

Fragment screening campaigns

Table S1 (supplementary material) summarises the condi-

tions used in the screening campaigns against 12 different

protein targets. As mentioned above, fragment binding is

detected using NMR spectroscopy to measure changes in

ligand signal as a fragment binds (for more detail, see

description in Hubbard et al. [8]). For a typical screening

campaign, protein samples at 10 lM are placed in NMR

tubes in an autochanger and mixtures of fragments (up to

12 at 500 lM each fragment) added to each tube. Three

spectra are then recorded (STD, Water-LOGSY and

CPMG). A competitor ligand is then added and the three

spectra recorded again. The NMR experiments are

designed to detect signals which change when the ligand

binds to the protein. The competitor ligand spectra are

recorded to identify non-specific binding. This approach

identifies fragments whose binding is disrupted by the

competitor ligand, which in all cases reported here is

shown to be because the fragment binds to the same

binding site (although in principle this could detect binding

at an allosteric site).

The resulting spectra are then inspected and a hit is

defined as a fragment which binds to and can be displaced

by the competitor ligand from the protein. The NMR

experiments are dependent on a complex set of exchange

phenomena and so it is often seen that a fragment is not a

hit in all three experiments. A Class 1 hit is defined as a

fragment which shows evidence for binding in all three

NMR experiments (STD, Water-LOGSY and CPMG), a

Class 2 hit shows changes in two experiments and a Class 3

hit in only one experiment.

Analysis of SeeDs library and fragment hits

The fragment library used in the screening campaigns

analysed here has gradually changed with time and thus

different targets were screened with a slightly different

library. The changing composition of the fragment library

could have made it difficult to compare hit rates and

features of the hits across targets. However, the overall

features of the library have remained fairly constant (see

‘‘Results and discussion’’) so it is possible to make com-

parisons. Where appropriate, the analyses presented in this

paper have taken the changing nature of the library into

account.

As the content of the screening library evolved with

time, three versions of the Vernalis SeeDs libraries were

prepared for this analysis. The first two versions are

VER2004 and VER2008 as described earlier. VER2004

includes the compounds as published in Baurin et al. [15]

paper and contains 1,275 unique compounds after remov-

ing duplicates. VER2008 is a more current version of the

library and contains 1,063 unique compounds. An amal-

gamated version (VER_ref) was also created by combining

fragments from VER2004 and VER2008. This includes

1,605 unique fragments. For analysis of the SeeDs library,

a drug reference set derived from The World Drug Index

(WDI) [27] was prepared as previously described [15]. The

filtered WDI set contains 1,141 drug compounds of

molecular weight between 250 and 550 and of O, N, C, H,

Br, I, Cl, F, S, or P only.

All fragments from the historical collection of the SeeDs

library were retrieved from the internal database as 2D SD

format and processed with the Molecular Operating Envi-

ronment (MOE) software [28]. Following the assignment

of bond orders and standard protonation states at pH = 7,

184 2D QuaSAR descriptors [28] were calculated. To

assess molecular complexity and diversity, pharmacophore

graph triangle fingerprints (GpiDAPH3) [28] were calcu-

lated. These are a collection of three-point pharmacophores

calculated from the 2D molecular graph. In this pharma-

cophore fingerprint scheme, each molecule is represented

as a set of integers (not as a binary bit-string) where each

integer encodes a distinct and unique pharmacophore

triangle, and corresponds to a fingerprint component. There

are three main stages in the GpiDAPH3 scheme [29]. In the

first stage (Fig. 2), pharmacophore features are assigned to

the heavy atoms of a molecule. There are 8 pharmacophore

features, computed from three atom properties (hydrogen-

bond donor, hydrogen-bond acceptor and pi system). The

eight features are denoted as (D, A, P, H) or (D=, A=, P=, H=)

where D is a donor, A is an acceptor, P is a neutral polar

feature which can act as a donor or an acceptor (e.g., a

hydroxyl) and H is a hydrophobe. The (D, A, P, H) notation

refers to these features when not part of a pi system, while

(D=, A=, P=, H=) denotes these features when conjugated

to a pi system. For example an sp2 aniline amino group

corresponds to D=. An (hetero) aromatic ring is repre-

sented as a hydrophobe (H=). No additional feature is

defined for anions or cations. In the second stage all pos-

sible pharmacophore triangles are formed for the detected

features and the graph distances between the features for all

triangles are calculated from the shortest path of covalent
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bonds between them. The distances are binned to give the

final triangles. Only the non-redundant set of triangles is

kept. The information associated with a triangle regarding

its feature types and interconnecting distances is then

transformed into an integer in a deterministic way and

assembled as a component into the fingerprint (Stage 3

in Fig. 2).

GpiDAPH3 fingerprints have been used in two ways in

this study. As shown in Fig. 3, the first approach is to

examine the identity of the encoding components (i.e.,

pharmacophore triangles). When a set of common integers

between two fingerprints is collected, this can be used to

calculate the similarity of two fingerprints (e.g., in the

Tanimoto coefficient calculation). The novelty can also be

calculated by the same token for a given set of unique

integers (pharmacophore triangles). The second approach

is to just count the number of components (triangles)

separately for each fingerprint. The more components a

molecule has, the more complex a molecule is suggested to

be. This is what is referred to as the number of pharma-

cophore triangles (NumPh4Triangles) in the remainder of

the study. As NumPh4Triangles is only a count number

(irrespective of the nature of the underlying triangles),

NumPh4Triangles can be used to estimate the relative

complexity of compound sets, but does not provide infor-

mation regarding the identity of the pharmacophore trian-

gles between fingerprints. All fingerprint operation and

analysis was facilitated by MOE and Scitegic Pipeline Pilot

[30].

To provide a measure of the diversity in a fashion which

would appeal to medicinal chemists, the diversity of the

SeeDs library (VER_ref) and the fragment hits were also

determined by clustering analysis based on the Jarvis-Pat-

rick clustering method [31] as implemented in MOE [28]

with the public MACCS structural keys [32, 33] and a

Tanimoto similarity metric of 0.7.

Characterization of protein surface cavities

There have been various attempts to characterize the fea-

tures that contribute to the ability to identify drug mole-

cules for a particular target binding site. Here, we have

used a computational method called SiteMap [34, 35] to

scan the entire protein surface for potential binding cavi-

ties. The location and the druggability of each cavity was

detected and ranked blindly without any information of

bound ligand. A SiteMap calculation is done in three

stages. The first stage is to locate the sites by setting up a

grid over the protein surface and site points are grouped

into sets according to various criteria to define the sites.

Second, the sites are mapped onto another grid to generate

maps for visualization. The final stage calculates a drug-

gability score (Dscore) for each site by evaluating the

identified site points and the mapping grids. Prior to

Stage 1: Assigning pharmacophore features

Stage 2: Triangle formation
A=

D=
H

6

35

H=

A=

H
3

4

4

H=

A=

D=

3

5

4

D=
H

H=

6

3 4

H=

A=

D=

HN

O

If a feature is derived from more than one atom (e.g. a benzene ring), all atoms are used to 
calculated the graph distance. The resulting distance is averaged and assigned to a bin [29].

Stage 3: Fingerprint calculation

The four unique triangles in Stage 2 are transformed into four distinct integers and become 
the components of the GpiDAPH3 fingerprint of this molecule: 

(102419, 168081, 176345, 176834)

Fig. 2 GpiDAPH3 2D 3-point pharmacophore fingerprint scheme

[28]. The fingerprint is generated in three stages [29]. Stage 1 is to

assign pharmacophore features to a molecule. Four out of eight

pharmacophore features are available for the depicted molecule and

they are hydrogen bond donor in the pi system (D=), ring (H=),

hydrogen bond acceptor in the pi system (A=) and a hydrophobe (H).

These four features constitute four unique pharmacophore triangles in

Stage 2. The uniqueness of a triangle is assessed by the feature types

and the graph distances between them. The numbers in Stage 2 are

distances in terms of bonds between features. Stage 3 is to transform

each triangle into an integer and save as a component in the

fingerprint

Molecule A Molecule B
MW = 191.25 MW =174.20

GpiDAPH3 (102976, 168641, 
176835, 176841)

(102912, 102976, 111232, 111233, 
168642, 176834, 176835, 176843, 177875)

NumPh4Triangles 4 9

H=
A=

D=

H=

D=

A=

H= H=
D=

O

N

N

N

O

Fig. 3 GpiDAPH3 fingerprint usage. The available pharmacophore

features are labelled for the two depicted molecules A and B. A
Similarity or novelty calculation based on common or novel

components (triangles)—2 common triangles between Molecule A

and Molecule B are: 102976, 176835. Molecule A has 2 novel

pharmacophore triangles (168641, 176841); Molecule B has 7 novel

pharmacophore triangles (102916, 111232, 111233, 168642, 176834,

176843, 177875) and B molecular complexity estimation based on

count of fingerprint components (NumPh4Triangles, irrespective of

the identity of the triangles)—Molecule B is more complex than

Molecule A, even though Molecule B is lighter than Molecule A. The

average NumPh4Triangles is 7
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SiteMap calculations, the X-ray structures of the 12 targets

were prepared by Protein Preparation Wizard [36] which

included adding hydrogens, assigning bond orders, opti-

mizing tautomers and rotamers of protein sidechains when

appropriate and energy minimization. The energy mini-

mization was performed for hydrogens only. After protein

preparation, all non-protein atoms were removed and the

bare protein was used for SiteMap calculations.

Results and discussion

Library evolution and analysis

The primary design principle is to have a single fragment

library that contains compounds that are compatible with our

screening approach and which will provide suitable starting

points for hit discovery for a broad range of targets. There-

fore, our design strategies took into account physicochem-

ical properties, calculated solubility, medicinal chemistry

tractability and diversity. The methods used to generate the

first version (VER2004) of the library were published in

2004 [15]. Routine screening and quality control of the

fragment library since then have led to quite high turnover

(555 fragments removed, primarily due to long term stability

concerns). There have been new fragments selected using

the same procedure and added to the library. The version as

in 2008 (VER2008) has 1,063 compounds. Table 1 sum-

marises the properties of the different fragment libraries.

Compared to VER2004, VER2008 has maintained a very

similar physicochemical profile, both in overall distribution

of properties (Fig. S1) and in average values (Table 1). One

notable difference is chemical complexity by pharmaco-

phore triangles. As a whole, VER2008 is slightly more

complex than VER2004 by five pharmacophore triangles

(NumPh4Triangles in Table 1). The increase in complexity

of VER2008 was achieved while maintaining the molecular

weight and number of heavy atoms. It is difficult to assess

the possible causes behind this as fragments were removed

from the library for a variety of reasons (see ‘‘Methods’’).

It is possible that the rather subjective process for adding

fragments to the library between VER2004 and VER2008

has unconsciously selected compounds of greater com-

plexity as lessons were learned from fragment screening

campaigns. An amalgamated version (VER_ref) has been

created as a reference for the analysis presented here by

merging fragments from VER2004 and VER2008. After

removing the duplicate compounds, VER_ref has 1,605

compounds and its physicochemical characteristics are

comparable to either VER2004 or VER2008 versions

(Table 1 and Fig. S1).

Characterization by physicochemical properties

and pharmacophore space

Maximizing the diversity of a fragment collection not only

provides a resource to screen against a variety of targets,

but also should increase the number of distinct chemotypes

in the screening output. It is equally important that the

compounds evolved from the fragments remain in a rele-

vant drug-like space after diversification. The suitability of

our fragment library has therefore been assessed by com-

parison with compounds from the WDI. Fingerprints con-

structed using 2D 3-point pharmacophore triangles and a

number of 2D descriptors were used as a measure of drug

likeness.

Table 1 summarises these characteristics for the differ-

ent fragment libraries in comparison to the WDI. The

fragment library contains molecules smaller than the WDI

drug reference set. Not surprisingly, the averaged values

for the molecular weight (MW), number of heavy atoms

(NumHeavy), rotatable bonds (NRot), and number of rings

(NumRings) fragments is therefore about half those of the

WDI compounds. Vernalis fragments are four times more

polar than WDI compounds and their number of detectable

pharmacophore triangles (NumPh4Triangles) is also four

times less than the averaged number from the WDI set.

Table 2 contains a slightly more detailed comparison of

the pharmacophoric complexity of the VER_ref and WDI

collections. In total, there are 3,898 and 9,013 unique

Table 1 Average physicochemical properties of various versions of Vernalis (VER) fragment libraries (VER2004, VER2008 and VER_ref) and

a drug reference set from World Drug Index (WDI)

Compound set Number of compounds MW NRot NumPh4Triangles NumRings NumHeavy SlogP

VER2004 1,275a 187.9 2.2 13 1.4 13.3 0.5

VER2008 1,063 193.2 2.2 18 1.6 13.6 0.4

VER_ref 1,605b 192.0 2.2 16 1.5 13.6 0.5

WDI 1,141 339.7 4.8 59 2.9 23.5 2.3

MW molecular weight, NRot number of rotatable bonds, NumPh4Triangles number of pharmacophore triangles, NumRings number of rings,

NumHeavy number of heavy atoms, SlogP [89]
a Duplicates have been removed from the published set [15]
b Compounds from VER2004 and VER2008 after duplicate removal
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pharmacophore triangles found in VER_ref and WDI,

respectively. Among those, 30% of the WDI triangles can

be found in the VER_ref. This, however, does not imply

that Vernalis fragments only probe a third of the pharma-

cophore space compared to WDI. Because of the size

difference, some of the pharmacophore triangles in WDI

can not exist in the fragments. A comparison of different

types of pharmacophore triangles may be more informative

[15]. Small, medium and large pharmacophore triangles

were constructed for three features separated by 1–3 bonds,

between 4 and 6 bonds and between 7 and more bonds,

respectively. The numbers of the resulting triangles per

compound set are shown in Table 2. For small and medium

pharmacophore triangles, 66 and 53% of WDI triangles can

be found in VER_ref. There are only four large pharma-

cophore triangles in the Vernalis library, compared to 219

from WDI. All four large triangles from VER_ref are also

part of WDI large pharmacophore collection. The analysis

confirms that our fragments do sample more than 50% of

drug-like pharmacophore space. In addition, the analysis

also revealed that there are novel pharmacophore triangles

from the Vernalis library that can not be found in WDI.

Both metrics suggest that the fragment library is balanced

between relevant chemical space and novelty. This is a

property which is needed for the library to be used for a

wide range of targets.

Comparison to the published scaffolds

The criteria used to build the Vernalis fragment library are

rather simple and largely tailored to identify compounds

compatible with our screening methods and synthetic

evolution strategies. The distinctive feature of our library

design compared to the published protocols elsewhere is

the use of pharmacophore fingerprints, rather than the

actual chemical substructures, to determine the diversity of

the library. It would be of great interest to compare the

chemical substructures of the resulting fragments in our

SeeDs library with published lists of known preferred

scaffolds. To facilitate such analysis, the compounds from

the VER_ref library were broken up into distinct scaffolds

(molecular frameworks) based on Schuffenhauer’s Scaf-

fold Tree method [37]. The Scaffold Tree analysis identi-

fied 188 unique rings and 15 types of linkers which

constitute 721 different scaffolds in VER_ref. To assess the

quality and the coverage of chemical space, benchmark

scaffolds were compiled from four studies which described

the Vertex SHAPES library [38], Novartis bioactive rings

[39], Lilly’s analysis of Phase II or later compounds [40]

and 72 kinase-targeted scaffolds by Stahura et al. [41].

For scaffold comparison, we have looked at both the

coverage of the benchmark scaffolds by VER_ref as well

as the breadth or density of coverage (proportion of

VER_ref library containing such scaffolds). In Table 3, 23

out of 30 molecular frameworks listed for Vertex SHAPES

NMR screening library selection are present in VER_ref

and this accounts for 55% of the Vernalis fragments. All

Novartis bioactive rings are present in VER_ref and they

constitute 65% of the Vernalis library. The coverage of

Lilly’s most-frequent heterocycles is also excellent (26 out

of 30 in VER_ref) but the proportion of Vernalis library

containing such rings is less than those in the Vertex library

Table 2 Comparison of Vernalis fragment library and WDI based on pharmacophore triangles

small medium large

r1

r2

r3

VER_ref WDI Common % Of WDI triangles in Vernalis % Of novel triangles in Vernalis

Total compounds 1,605 1,141 0

Total pharmacophore triangles 3,898 9,013 2,736 30 30

Smalla 225 219 144 66 36

Mediuma 308 389 208 53 32

Largea 4 219 4 2 0

a Three sets of pharmacophore triangles were examined according to the graph distances (r1–r3 in number of bonds) between vertices

(pharmacophore features) of a triangle. Small, medium or large triangles refer all three edges of a triangle to be within 1–3, 4–6 or 7 or more

bonds
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and Novartis rings. This is because a number of Lilly

scaffolds have multiple entries as the same scaffold with

different substitution patterns were counted as different.

Finally, of the 72 scaffolds targeted for kinases, 39 pass

‘SeeDs like’ filters (MW \ 250 and logS [ -3). Among

those scaffolds, 28 are present in 23% of the VER_ref

library.

The analysis of scaffolds also revealed that 497 Vernalis

fragments (28% of the library) do not contain any of the

mentioned published scaffolds. As all the Vernalis frag-

ments satisfy the same lead-like filters, this demonstrates

that our approach is able to sample the less explored

chemical space as there are additional, novel scaffolds

identified. The combination of physicochemical properties

and diversity by pharmacophore space not only identifies

the majority of the ‘privileged’ scaffolds reported by others

but also a good number of novel, lead-like fragments.

Understanding fragment hit rates

Since the concept of the ‘druggable genome’ was intro-

duced in 2002 [42], this notion combined with Lipinski’s

Rule of 5 [43] for drug-like compounds has been regarded

as one of the measures to tackle the high attrition rate

faced by the pharmaceutical industry. As a step towards

describing ‘Target Druggability’, databases of experimen-

tal protein-ligand structures [44–50] have been interrogated

by computational chemists to understand the underlying

principles influencing ligand binding [51, 52]. The first

stage of predicting protein druggability is to predict binding

sites for drug-like compounds. Many algorithms [53–66]

based on either geometric or energy methods are available

for this purpose. For clarity, target druggability in this

study is defined as the probability of a protein to bind to

small, drug-like compounds with high affinity and speci-

ficity [67, 68]. After site identification, quantitatively

ranking the druggability of the identified pockets is a more

challenging matter. Experimental techniques are available

to provide such clues at the gene [69, 70] or protein level

[71, 72]. Unfortunately, they are usually slow or costly. In

2005, scientists at Abbott presented a strategy to quickly

evaluate protein druggability by screening chemical

libraries with 2D heteronuclear-NMR [68]. The observed

NMR hit rates were shown to be correlated with a number

of surface properties calculated from the binding site.

Encouraged by the study conducted by the Abbott scien-

tists, we have also analyzed our NMR screening data with

respect to target druggability. Table 4 summarises the results

from fragment screening campaigns against 12 targets

(experimental protocols are summarised in Table S1). Many

of the targets assessed by our SeeDs approach are of direct

pharmaceutical interest such as kinases (PDPK1, CDK2 or

JNK3) and heat shock proteins (HSP90 and HSP70). The list

also covers targets which some may perceive as difficult or

high-risk [73], like protein–protein interactions (PIN-1, PPI-

1, PPI-2 and PPI-3). The SeeDs Class 1 hit rate varies from

0.4 to 7.3%. Our fragment screening hit rates are roughly an

order of magnitude higher than those reported by Abbott

[68]. This could be due to a variety of factors including

different sensitivity of chosen NMR techniques, screening

buffer conditions, libraries of different content and size.

However, like Abbott, the great majority of our fragment hits

when crystallized with their respective protein targets bind to

the sites which are known to bind small molecules as inferred

from existing structural data. Among all 12 targets, high

affinity (\300 nM) small-molecular ligands have been

reported in the literature [14, 74–79] except for HSP70, PIN-

1 and PPI-3 which correspond to the lowest hit rates observed

(between 0.4 and 0.7%). For targets which yielded high hit

rates ([2%), all nine proteins have potent small molecule

binders known to date. So our finding is consistent with

Abbott’s, even though different techniques were used to

detect binding. Our data suggest that fragment binding hit

rate by 1D NMR could also be seen as an indication that

potent ligands could be developed for a particular binding

site (i.e., druggability).

To appreciate the observed hit rates at the atomic level,

the protein surface of all 12 targets were characterized by

SiteMap [34]. SiteMap reads in a ‘bare’ protein structure

with all non-protein atoms removed and returns the location,

volume, surface and shape of potential pockets to bind small

molecules. All the identified pockets are also ranked based

on their calculated druggability scores. As seen in Table 4,

all but two fragment binding sites were correctly predicted

and ranked by SiteMap. For PPI-3, the internal crystallo-

graphic data could not confidently pinpoint the exact loca-

tion or the binding modes of the fragment hits. For PIN-1,

the fragment binding site was correctly predicted by Site-

Map but ranked as the second best druggable site. Examin-

ing the SiteMap results on PIN-1 revealed that the most

Table 3 Comparison of scaffolds from Vernalis SeeDs library with

published lists

Benchmark

scaffolds

VER_ref coverage of

benchmark scaffolds

Coverage density in

VER_ref library (%)

Vertex SHAPE

library [38]

23/30 55

Novartis Bioactive

Rings [39]

30/30 65

Lilly heterocycles

[40]

26/30 26

Kinase targeted [41] 28/39a 23

The coverage density is the proportion of the Vernalis library con-

taining such scaffolds
a Among all 72 scaffolds, only 39 passed the SeeDs like filters and 28

of those can be found in VER_ref
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druggable site was predicted to be the packing site for the

N-terminus WW domain of PIN-1 on the catalytic domain

(peptidyl-prolyl cis/trans isomerase, PPIase) [80, 81]. The

PIN-1 crystal structure (2ITK [82]) used for SiteMap cal-

culation contains the C-terminus catalytic domain only,

leaving out the N-terminus WW domain. Since the WW

packing site was left bare, SiteMap did recognize the site and

prioritized it to be more favorable than the catalytic site from

the PPIase domain.

SiteMap also calculates a score (Dscore) for each pocket

to indicate its druggability potential. Dscore considers three

key aspects of a binding site which are the size, degree of

enclosure and hydrophilicity of a binding site [35]. Using

Class 1 hit rate of 2% as a cut-off, all targets which yielded

high hit rates ([2%) have Dscore greater than 0.8 (Fig. 4;

Table 4). For three targets which returned\2% hit rates, two

of them have Dscore\0.6. HSP70 is the anomaly from the

list which has Dscore greater than 0.8 but resulted in a low

hit rate. Examining the HSP70 ATP binding site revealed

that it is lined by side-chain atoms of flexible residues and

has shown to be very malleable depending on the ligand

(internal unpublished data). This dynamic feature observed

for the HSP70 ATP binding site is currently unable to

be captured during SiteMap calculations. In addition, the

HSP70 NMR screen revealed a large amount of non-com-

petitive fragment hits which may also be related to the

dynamic properties of the HSP70 binding site. Taking out

HSP70, it is encouraging to see that the SiteMap Dscore

appears to be a good indicator for the level of NMR hit rate

one should expect for a target from our limited list. There is a

Table 4 SeeDs screening hit rates for 12 protein targets

Protein Number of hits Library size Class 1 hit rate High affinity

ligandsd
Fragment binding

site rankinge

Totala Class 1b Class 1 seriesc % Category

AK 15 11 10 308 3.6 High Yes 1

CDK2 109 40 35 1,250 3.1 High Yes 1

DNA gyrase 54 44 39 855 4.9 High Yes 1

FAAH 81 63 51 868 7.3 High Yes 1

HSP70 38 6 5 1,351 0.4 Low No 1

HSP90 82 60 42 1,351 4.4 High Yes 1

JNK3 101 55 53 1,351 4.0 High Yes 1

PDPK1 119 58 54 1,260 4.5 High Yes 1

PIN-1 13 5 4 1,351 0.4 Low No 2

PPI-1 40 34 23 1,064 3.2 High Yes 1

PPI-2 52 24 20 1,068 2.2 High Yes 1

PPI-3 39 10 9 1,351 0.7 Low No N/Df

Average 62 34 29 3.2

Total unique fragments 462 288

a Total number of fragments identified by at least one NMR experiment to interfere with the binding of known competitor compound
b Number of fragments identified by all three NMR experiments (STD, Water-LOGSY and CPMG) to interfere with the binding of known

competitor compound
c Total number of unique chemical series suggested by the clustering results of Class 1 fragment hits with a Tanimoto coefficient of 0.70 and

MACCS keys
d Reported affinities \300 nM. Please refer to the main text for references
e SiteMap [34] ranking of the fragment binding site compared to the rest of the putative sites from the same target identified by SiteMap
f Not detected by SiteMap
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Fig. 4 Targets with observed high ([2%, blue bars) and low (\2%,

purple bars) Class 1 hit rates compared to the druggability score

(Dscore) calculated by SiteMap [34]. The red arrow indicates the

minimum Dscore for targets yielding high hit rates for the current

data set
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‘gray’ zone of Dscore between 0.6 and 0.8 which is not

represented by our data set. With more targets coming

through in the future, a better assessment may be possible

with respect to Dscore and fragment screening hit rates.

In order to deduce what a good binding site should be,

Dscore and its three components were plotted (Fig. 5). In

addition, an additional parameter called site compactness

[68] was introduced to assess the binding sites. Site com-

pactness is a ratio of the site volume to its total surface area.

The relevant parameters were plotted for three groups of

binding sites, experimentally observed binding sites which

yielded high or low hit rates (see Table 4) and other binding

sites detected by SiteMap which are not experimentally

observed (non-binding sites). The averaged values have

been calculated for each group and normalized against the

ones from the high hit rate group. Consistent with Fig. 4,

Dscore clearly discriminates binding sites of high hit rates

from the rest. The experimentally observed binding sites

also tend to be significantly larger than the sites where no

known molecule binds (Size columns in Fig. 5). A ‘good’

binding site is much better enclosed by the surrounding

protein atoms (Enclosure in Fig. 5). The surface property

should also be more hydrophobic in nature. The site com-

pactness value also suggests that a good binding site tends to

be compact and could be an additional useful indicator to

separate more druggable sites from less ones based on our

data set. The surface property trend observed here regarding

a good binding site agrees entirely with previous findings

[54, 61, 68, 83–85]. The combination of size, enclosure and

hydrophilicity (Dscore) correlates with observed Class 1 hit

rates with an R2 value of 0.51. Substituting enclosure

with compactness while keeping the other two parameters

untouched (modified Dscore) improves the correlation with

hit rates with an R2 value of 0.61. Of note is that the equation

to calculate original or modified Dscore has not been refit

with the current data set. The weighting factors were taken as

they were when fitting to the original training set [35].

Refitting the Dscore equation to the current data set would

give weighting factors more sensitive to the current dataset

leading to higher R2 values. However, given the size of the

data sets and the nature of data acquired are different

between our study and the original SiteMap study, it may not

be appropriate to do so. Nonetheless, both fragment hits and

high-affinity ligands do share the same binding sites and are

dictated by the same principle of molecular recognition.

This is why assessing NMR screening hit rates with calcu-

lated Dscore led to a very reasonable classification.

Analysis of fragment hits

The Vernalis fragment library has been screened against a

variety of targets including kinases, ATPases, protein–pro-

tein interaction targets and others. In our experience, an

average hit rate for the most robust Class 1 hits is 3.2% and

this corresponds to 34 unique competitive fragment hits

constituting 29 chemical series (Table 4). As a reference, the

whole VER_ref library has 1,483 distinct clusters (out of

1,605 fragments) when generated with a Tanimoto coeffi-

cient of 0.70. The averaged 3.2% hit rate has given us con-

fidence in this library to find sensible starting points for most

of our programs. We are also reassured that the pharmaco-

phore diversity applied during library enumeration has

indeed translated into diverse chemical series in the

screening output. On the other hand, we also recognized that

each screen will have different sensitivity introduced by

optimizing the screening condition for each protein target

such as varying the buffer conditions and the protein con-

centration. The identification of hits relies on changes in

NMR signals during STD and LOGSY experiments, and it is

well-known that changes in signal are not necessarily related

to binding, and vice versa. The thermodynamics and kinetics

of binding of the competitor ligand will also have an effect.

It is difficult to conduct a detailed analysis of the hits

obtained from screening campaigns against different targets

run at different times, with different buffer and instrument

conditions and interpreted by different operators. However,
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some lessons can be learnt to inform future generations of

library design by inspecting the number and the type of hits

collected throughout the years based on some common

physicochemical properties.

Comparison of Hits, Non-Hits and overall library

We first separated the VER_ref library into two subsets,

one consisting of fragments which have been identified as

competitive binders (Hits) by at least one NMR experiment

(Class 1, 2 or 3, see ‘‘Methods’’) for a given target and the

other set containing fragments which have not been rec-

ognized as hits by any of our 12 internal projects (Non-

Hits). The Hits were made up of 29% of the compounds in

the VER_ref library and 18% of the VER_ref library were

Class 1 hits. This leaves 71% of the VER_ref library which

has not been found to bind competitively with any of the 12

targets.

A number of physicochemical properties have been

examined for different sets of fragments to see if any

particular compound property could explain why only a

third of the library were competitive binders. Figure 6

shows the distribution plots of molecular weight (MW),

rotatable bonds (NRot), SlogP, total number of pharma-

cophore triangles and the number of rings for the VER_ref

library, Hits, Class 1 hits and Non-Hits. In terms of aver-

aged molecular weight and rotatable bonds (Table 5), there

is little difference between Hits, Non-Hits and the VER_ref

library. The histograms in Fig. 6a, b indicate that the dis-

tribution of MW and NRot for Hits and Non-Hits are

similar to each other and follow the curves of the VER_ref

library. However, there is a small tendency for the Hits to

have slightly lower MW and NRot. For example, 64% of

the Hits are below MW of 200, compared to 59% of Non-

Hits and 72% of Hits have two or less rotatable bonds,

compared to 64% of Non-Hits. Although only a small

effect, it may be that the slightly more rigid fragments

(lower NRot) that make up the Hits have a higher entropic

gain on binding than the Non-Hits.

There is a clear separation between Hits and Non-

Hits when considering SlogP. As shown in Fig. 6c, the Hits

appear to be generally more hydrophobic than Non-Hits,

with on average twice the hydrophobicity as measured by

SlogP (Table 5). This observation agrees with the general

observation that hydrophobicity promotes binding [68, 83,

84] and echoes the SiteMap analysis of binding surface

properties (Hydrophobicity in Fig. 5). The importance of

enhanced hydrophobicity was also highlighted by two other

groups which performed fragment screening with various

techniques [18, 19]. AstraZeneca (AZ) also reported a

similar level of hydrophobicity enhancement for fragment

hits (*two-fold). However, the averaged ClogP value of AZ

fragment hits is 2.1 [19], compared to the averaged SlogP

value of 0.8 for our Hits. While different algorithms used for

logP calculation will lead to slightly different values [86],

the over twofold difference of logP observed for fragment

hits is most likely due to the logP difference in the starting

library. The VER_ref library has a mean logP of 0.5, com-

pared to the mean logP of 1.4 for the AZ library. VER_ref

may be so hydrophilic because of the high solubility

requirement for the NMR detection methods used. We found

that the use of a water solubility filter in the first two itera-

tions of our fragment library design cycle [15] drove the

SlogP values to the lower (more hydrophilic) range.

The consequences of having such a hydrophilic library

are important and help a general strategy for evolving hits

from the fragments. Arguably, the central scaffold is making

the key directional interactions (polar, hydrogen bonding

etc.) in the target binding site and should be optimal before

adding the usually more hydrophobic bulk that is used to

increase potency. However, this analysis has highlighted

that the fragment library could stand further enrichment with

more hydrophobic fragments. As the in silico water solu-

bility model we use has been reasonably predictive (88% of

the fragments correctly predicted to be soluble at 2 mM

[15]), we should be able to bias subsequent library curation

with fragments with relatively higher SlogP. As shown in

Fig. 6c, applying a cut-off of 2 mM for water solubility still

allows us to sample an ample range of SlogP.

The pharmacophore triangles present in Hits are little

different from those seen for Non-Hits in terms of averaged

number of triangles encoded by each fragment (Table 5;

Fig. 6d). The distribution curves of pharmacophore trian-

gles for the four fragment sets (VER_ref, Hits, Class 1 hits

and Non-Hits) are also very similar and Hits do not enrich a

particular range of pharmacophore triangles (Fig. 6d).

Plotting the same histogram with a finer bin width revealed

that an area populated more frequently by Hits compared to

Non-Hits is when the number of pharmacophore triangles

is greater than 4 (data not shown). This could suggest a

minimum requirement of pharmacophore complexity for a

fragment for specific binding. Curiously, Class 1 hits

appear to be more complex than Class 2–3 hits having, on

average, an additional three pharmacophore triangles

(Table 5). The enhanced pharmacophore complexity

observed for Class 1 hits is likely to improve the chance of

a small fragment for specific protein binding by having an

appropriate combination of pharmacophore features.

Moreover, the binding is likely to be achieved with suffi-

cient affinity which allows such fragments to be detected

consistently in a series of NMR screening experiments. A

preliminary analysis of the experimental results from NMR

screening suggests that STD registers the most hits for

more targets than the other methods, but that LOGSY and

CPMG can detect more hits for some targets. There appears

to be no general rule of which NMR experiment is most
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robust for which type of target, though the tendency is that

STD works reliably for kinases and LOGSY where water

molecules are important in ligand binding, as in HSP90.

Figure 6e summarises the number and types of ring

structures present in the different categories. Although the

number of rings is the same, the Hits contain more two-ring

compounds than the Non-Hits. An increased number of

rings is an efficient way to improve complexity without

being penalized by entropy. In addition, a ring allows more

pharmacophore features to be incorporated without sig-

nificantly increasing the number of rotatable bonds. This

may make some fragments more efficient binders than the

others and more easily seen to bind by NMR. Two simple

measures were devised to look at the degree of overall

cyclization and of aromatization. The degree of cyclization

(cyclicity) is determined by the ratio between the number

of ring bonds and total number of bonds between heavy

atoms and the degree of aromatization (aromaticity) is

assessed by the ratio between the number of aromatic

bonds and total number of bonds between heavy atoms. As

shown in Table 6, while the overall cyclicity has remained

fairly constant among all fragment sets, the Hits appear to

be more aromatic than Non-Hits by 13%. The Class 1 hits

were shown to have one of the highest aromaticity.
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Fig. 6 Distribution plots of a molecular weight (MW), b number of rotatable bonds (NRot), c SlogP, d number of pharmacophore (ph4) triangles

and e number of rings for the whole library (VER_ref), all hits (Class 1–3), Class 1 hits and non-hits
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These analyses show that there are subtle differences in

the distribution of the various properties between Hit and

Non-Hit fragments which reflect the properties to be

expected for increased affinity of binding. However, these

differences are small and the average values for most of the

properties are quite similar between Hits and Non-Hits.

This confirms that the library design procedure has gen-

erated a suitable library for screening. The next section

considers how well this library performs across a range of

different targets.

Analysis of hits across different targets

An early concern about fragments was whether specific

binding could be achieved with such small compounds. We

have analysed the output from screening the library against

12 targets to assess the degree of target discrimination by

fragments. Among all fragment hits, 62% of the fragments

were competitive binders with just one target and another

24% were hits for two targets. Considering how small

fragments are, this reflects quite a high target specificity.

There are nine fragments which were identified as com-

petitive binders 42–50% of the time (this corresponds to

5–6 of the 12 screens shown in Table 4). This pool of nine

fragments, representing 0.6% of the library (VER_ref),

appears to be rather versatile binders. Interestingly, among

the nine versatile fragments, they showed a preference for

ATP binding proteins as their average probability (80%) of

hitting an ATP binding protein is higher than the expected

average (58%). This may suggest these 9 fragments to be

‘generic’ scaffolds for ATP binding proteins. All but two of

the nine fragments have a bicyclic ring with nitrogen and

oxygen atoms decorated around the ring. Flexible align-

ment of those fragments with adenine suggests multiple

solutions for the overlays and some of the overlays have

been verified by X-ray crystallography (internal unpub-

lished data).

The nature of the chemical space covered by the frag-

ment hits has been assessed by clustering on Tanimoto

similarity with MACCS fingerprints and the results are

summarized in Table 4. When clustering at a similarity

threshold of 0.70, more than 84% of the fragment hits are

unique clusters and the mean Tanimoto similarity score is

0.40 (±0.15) between all cluster centroid fragments for a

given target. This suggests that the redundancy of chemical

scaffolds in the fragment hits is very small. The diversity in

fragment hits seems to be preserved across all 12 targets.

This has shown that the pharmacophore diversity driven

selection has been productive in adding fragments with

distinctive features.

Figure 7 plots the average properties of all the fragment

hits and the properties of the hits for two protein families,

kinases and protein–protein interaction (PPI). Overall, the

properties are quite similar across the different targets

though with some interesting differences in detail. Frag-

ment hits for PPI are slightly heavier on average by a MW

of about a carbon (Fig. 7a) and this is also reflected in the

number of heavy atoms (14 for PPI hits and 13 non-PPI

hits). The size increase observed for PPI hits was achieved

not by increasing the number of rotatable bonds (Fig. 7b)

but mainly by having a higher number of rings (Fig. 7e).

The fragment hits for PPI also appear to be more hydro-

phobic than hits for other targets (Fig. 7c). These trends for

the PPI hits are consistent with the nature of their binding

sites, as most known PPI binding sites are a collective set

of small and shallow hydrophobic pockets.

Although no differences have been observed for the

average number of pharmacophore triangles among dif-

ferent sets of hits (Fig. 7d), the level of complexity

required for a fragment to be detected in binding varies

Table 5 Average properties for various compound sets as plotted in

Figs. 6 and 7

Compound set MW NRot SlogP NumPh4Triangles NumRings

VER_ref 192 2.2 0.5 16 1.5

Non-hitsa 194 2.3 0.4 16 1.5

All hits 189 2.0 0.8 15 1.6

Class 1b 190 1.9 0.8 17 1.6

Class 2–3b 188 2.1 0.8 14 1.5

Kinase hits 186 1.8 0.9 16 1.6

PPI hits 202 2.1 1.2 16 1.8

a Fragments which have not been identified as competitive binders

for the 12 targets
b Please refer to ‘‘Methods’’ for the definition of Class 1, 2 and 3

Table 6 Cyclicity and aromaticity of the fragments

Compound set Cyclicitya Aromaticityb

VER_ref 0.58 0.45

All hits 0.61 0.55

Class_1c 0.63 0.57

Class_2_3c 0.59 0.50

Non-Hitsd 0.57 0.42

Kinase hits 0.64 0.58

PPI hits 0.64 0.57

a Cyclicity is defined as the ratio between the number of ring bonds

and total number of bonds between heavy atoms
b Aromaticity is the ratio between the number of aromatic bonds and

total number of bonds between heavy atoms
c Please refer to ‘‘Methods’’ for the definition of Class 1, 2 and 3
d Fragments which have not been identified as competitive binders

for the 12 targets
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from one target to another. Figure 8 plots the averaged

pharmacophore complexity of both the Hits and the Class

1 hits for each target. HSP70 appears to be the most

demanding target as it requires the most complex frag-

ments (20 and 27 triangles for all and Class 1 hits) among

all targets studied. This could in part explain why its hit

rate was among the lowest as fewer fragments have the

complexity required for HSP70 binding. The suggested

complexity from three kinase screens is roughly the same

(16–18 triangles), except for CDK2 Class 1 hits which

appear to be most complex among all three kinases. Two

of the PPIs are also on the high end of molecular com-

plexity which correlates with the bigger size observed for

the hits.
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Among all 12 targets, there are three kinases and their

hits were identified by different competitor ligands all

binding to the ATP binding site. Kinases are one of the

protein families which yielded the highest hit rate.

Although all three kinases share ‘high’ sequence identity

and close similarity of protein structure, there is surprising

selectivity in the fragment hits observed. About 11% of the

fragment hits are common to all three kinases (Fig. 9).

Between any pair of two kinases, the overlap of hits is

between 20 and 30%. This means at least 52% of the kinase

fragment hits are unique to one of these three kinases. The

number is 12% less than the overall uniqueness (64%)

observed for a fragment hit to any target. A good number

of the hits were crystallized with their respective targets

and all of them were found to bind to the ATP binding site

exhibiting the conventional hinge binding pharmacophore,

although sometimes with different binding modes [8]. It is

suspected that different steric and electrostatic properties

are exhibited around the hinge region for PDPK1, CDK2

and JNK3 even with subtle and conservative substitution of

amino acids. Some fragment hits seem to be able to

respond to subtle differences.

Conclusions

One of the biggest problems faced in designing drug

molecules is the vast chemical space [87, 88] to be

explored. Fragment-based approaches identify a subset of

chemical moieties responsible for key molecular recogni-

tions early on and this allows scientists to devote their time

in a much reduced and relevant chemical space. Part of the

efficiency of fragment-based screening depends on the

diversity and hit-likeness of the compounds in the screen-

ing library. In this study, we have described the design and

the evolution of Vernalis fragment library. The assessment

of the Vernalis library with respect to known drug mole-

cules suggests that it is possible to capture drug-like

chemical space by small fragments. Comparison of the

Vernalis library and benchmark scaffolds provides another

way to assess the coverage of chemical space by our

library. The results suggest that the pharmacophore diver-

sity approach applied during library enumeration has

yielded a combination of known and novel scaffolds in the

library.

The true test of the Vernalis library is the results from

screening against 12 diverse protein targets by NMR. The

averaged hit rate for Class 1 hits is 3.2% and this corre-

sponds to 34 unique competitive fragment hits constituting

29 chemical series. Not only have we demonstrated a

sufficiently high hit rate for a variety of targets, but also

truly diverse hits were obtained for each target without

tailoring the library specifically for a target. The analysis of

fragment hits has highlighted the significance of hydro-

phobicity in binding, as fragment hits were found to be

twice as lipophilic than non-hits. The enhanced SlogP

values revealed in the fragment hits also allowed us to

improve our library enumeration process by incorporating

a specific SlogP filter after the water solubility calculation.

Through the examination of chemical complexity and the

composition of rings, the effectiveness of fragment hits

seems to be a result of the right combination of pharma-

cophore features presented in an entropically favoured way

with enhanced aromaticity. Although all fragment hits
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share similar physicochemical properties, different patterns

were revealed for different protein families. For example,

the fragment hits for protein–protein interaction targets

appear to be heavier and more hydrophobic than other

fragment hits. Both features nicely complement the char-

acteristic of the binding sites from protein–protein inter-

action targets. This also implies that fragment hits are

discriminative and genuine binders. We have also noted

that fragment screening hit rates can indicate the level of

difficulty in progressing a target in terms of deriving high-

affinity compounds (druggability). The druggability score

(Dscore) calculated by SiteMap has allowed us to differ-

entiate targets of high and low hit rates. The character-

ization of the binding pockets also revealed the key

contributions of surface properties to distinguish druggable

from non-druggable binding sites.

A well-designed library needs to consider diversity,

drug/lead-like properties, solubility, synthetic accessibility,

maintenance and efficient data analysis. To make it truly

useful, it also has to incorporate the demands of the chosen

screening technique, medicinal chemists and compound

management teams. A library also has to be continuously

evolving to keep up to date with the demands of the dif-

ferent discovery projects and the changing nature of the

targets under study. Our retrospective analysis of the

Vernalis library and screening experiences has not only

confirmed that the library is fit for purpose. It has also

provided knowledge and directions for future library evo-

lution while maintaining its quality as a resource for ini-

tiating drug discovery against very different classes of

target. Finally, fragment library design is only a component

of the whole fragment based drug discovery process. To

capitalize on a sound design library requires a seamless

integration of structures, computational and medicinal

chemistry. Tools which make it easier for bench chemists

to assimilate information about fragment hits into com-

pound design are one of the next steps for the methods. We

also hope that the analysis presented in this study will

contribute to the development of new tools and future

improvement of the fragment based approach.
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