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Abstract A new optimization model of molecular docking

is proposed, and a fast flexible docking method based on an

improved adaptive genetic algorithm is developed in this

paper. The algorithm takes some advanced techniques, such as

multi-population genetic strategy, entropy-based searching

technique with self-adaptation and the quasi-exact penalty. A

new iteration scheme in conjunction with above techniques is

employed to speed up the optimization process and to ensure

very rapid and steady convergence. The docking accuracy and

efficiency of the method are evaluated by docking results from

GOLD test data set, which contains 134 protein–ligand

complexes. In over 66.2% of the complexes, the docked pose

was within 2.0 Å root-mean-square deviation (RMSD) of the

X-ray structure. Docking time is approximately in proportion

to the number of the rotatable bonds of ligands.

Keywords Genetic algorithms � Information entropy �
Molecular docking � Optimization design �
Penalty function � Self-adaptation

Introduction

Molecular docking problem is generally cast as a problem

of finding the low-energy binding modes of a ligand based

on the ‘‘lock and key mechanism’’ [1], within the active

site of a receptor, whose structure is known [2]. It plays an

important role in drug design, which is demonstrated by the

vast amount of literature [3–10] devoted to the optimiza-

tion methods for molecular docking design since the

pioneering work of Kuntz et al. [11]. Protein–ligand

docking (PLD) for drug molecular optimization design is

an ideal approach to virtual screening, i.e., to search large

sets of compounds for finding new lead structure. A fun-

damental problem for molecular docking is that the design

space is very large and grows combinatorially with the

number of degrees of freedom of the interacting molecules.

The computation of the ligand–receptor interaction energy

at all possible docking configurations cannot be completed

in a reasonable amount of computing time, for example, a

typical protein receptor might occupy a volume of some

60 Å-3, even with a moderate translational resolution of

1 Å, this leaves 216,000 translations to search. For a

rotational resolution of 20� in each axis and potential

ligand with 35 atoms and protein receptor with 3,500,

1.5 9 1014 pairwise nonbonding evaluations will be nee-

ded to scan the complete range of possible docking

configurations. Even if one can evict 99% of the points by

employing various assumptions, we will still require

1.5 9 1012 evaluations. If billions of compounds are to be

screened in this way, the required computational power

becomes a limiting feature. Therefore, simpler and more

efficient methods are continuously being researched into.

In this paper, an entropy-based optimization model is

constructed to obtain the narrowing coefficients of the sear-

ched space for multi-population evolution very easily. Then a
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new iteration scheme in conjunction with multi-population

genetic strategy and an entropy-based searching technique is

developed to search optimal molecular orientation and con-

formation. The elitist maintaining strategy and efficient

convergent rule are used to close the global solution, and the

contracted space is employed as convergence criterion instead

of the genetic generations used in the most of the genetic

algorithms, so that docking time is dramatically decreased.

Furthermore, a novel adaptive strategy is employed; the

probabilities of the crossover and mutation operators are

optimized as the added design variables in the evolution

process. These strategies can speed up the optimizing process

and ensure very rapid and steady convergence.

In order to evaluate the new docking method, we have

conducted a numerical experiment with 134 protein–ligand

complexes from the publicly available GOLD test set [12].

Comparisons with Glide [13], GOLD [12], FlexX [14], and

Surflex [15] indicate that docking accuracy of our method

is comparable to these methods. The computational effi-

ciency of the method has significantly improvement.

Docking time is approximately in proportion to the number

of rotatable bonds of ligands.

Methodology

Optimization design model of molecular docking

The optimization problem for molecular docking can be

written as follows

min f ðdÞ
s.t. gjðdÞ� 0; j ¼ 1; 2; . . .; q

ð1Þ

where d ¼ Tx; Ty;Tz;Rx;Ry;Rz; Tb1; . . .; Tbn

� �T
is a vector

of q(q = n ? 6) design variables, Tb1,…,Tbn are the torsion

angles of the rotatable bonds for flexible ligand docking,

Tx, Ty, Tz, Rx, Ry, Rz are the position coordinates and

rotational angles of the anchor for the matching-based

orientation search. The objective function f ðxÞ is

intermolecular interaction energy

f dð Þ ¼
Xnlig

i¼1

Xnrec

j¼1

Aij

ra
ij

� Bij

rb
ij

þ 332:0
qiqj

Drij

 !

ð2Þ

where each term is a double sum over the ligand atom i and

the receptor atom j, rij is the distance between atom i in

ligand and atom j in receptor, Aij, Bij are van der Waals

repulsion and attraction parameters, a, b are van der Waals

repulsion and attraction exponents, qi, qj are point charges

on atoms i and j, D is dielectric function, and 332.0 is a

factor for conversion of electrostatic energy into

kilocalories per mole. The constraints gðxÞ may be

represented as the size limits of the design variables, and

certain behavior constraints of the molecule exist, as are

shown below:

Tx�Tx�Tx

Ty�Ty�Ty ð3Þ
Tz�Tz�Tz

�p�angle�p; angle¼Rx;Ry;Rz;Tb1;���;Tbn

8
>>>><

>>>>:

In the protein–ligand docking process, the binding free

energy is a function of the Cartesian coordinates of the

ligand atoms only. The Cartesian coordinates of all ligand

atoms can be determined by solving the optimization

problem (1). This indicates that the optimal conformation

of a flexible ligand is determined by translational (Tx, Ty,

Tz), rotational (Rx, Ry, Rz) and torsional motions Tb1,

Tb2,…,Tbn (n is the number of torsion bonds) (Tbi, i = 1,

2,…, n, n is the number of torsion bonds). The former

variables, which account for the six degrees of freedom for

a rigid body, can also be interpreted as the orientation of

the ligand; Tbi is the angle of the ith flexible bond. Since

the movement of the ligand should be limited in a pocket

confined to the active site of the receptor the design sub-

space of (Tx, Ty, Tz) is defined as a cuboid circumscribed in

the pocket. (Tx, Ty, Tz) and ðTx; Ty; TzÞ are the minimum

and maximum Cartesian coordinates of the circumscribed

cuboid. The defined design subspace is larger than the

pocket, it not only ensures that the ligand can move freely

within the binding pocket, but also cuts down on compu-

tational costs by avoiding the complexity of resolving the

actual boundary. The remaining variables are allowed to

vary between -p and p rad.

Transformation of optimization model

As mentioned above, the problem (1) involves lots of

constraints, so it is difficult to solve it. In order to solve

problem (1) efficiently, first, we introduce some definitions

and theorems as follows.

Definition 1 If w is a positive real variable, and G ¼
gjðdÞ
� �

; j ¼ 1; . . .; q; is a set of constraint functions, then

EðGÞ ¼ ð1=wÞ ln
Xq

j¼1

expðwgjðdÞÞ ð4Þ

is a parametric constraint evaluation (PCE) function. The

optimization problem (1) is transformed into the following

model by means of PCE function:

min f ðdÞ
s:t: gwðdÞ ¼ ð1=wÞ ln

Pq

i¼1

expðwgiðdÞÞ� 0
ð5Þ

Definition 2 If, for any FðdÞ ¼ f1ðdÞ; f2ðdÞ; . . .; fqðdÞ
� �

;

and FðdÞ ¼ f 1ðdÞ; f 2ðdÞ; . . .; f qðdÞ
� �

; FðdÞ;FðdÞ 2 Eq
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with fjðdÞ� f jðdÞ; j ¼ 1; 2; . . .; q; and there exists at least

one j0; ð1� j0� qÞ; such that fj0ðdÞ\f j0ðdÞ; then FðdÞ
�FðdÞ or, simply F�F:

Definition 3 If, for any, F;F 2 Eq; with F�F;

EðFÞ\EðFÞ; then E(F) is a strictly monotone increasing

function of F.

Lemma The PCE function E(G) is a strictly monotone

increasing function of G, and if w?? then

ð1=wÞ ln
Xq

j¼1

expðwgjðdÞÞ ¼maxgjðdÞ j¼ 1;2; . . .;q ð6Þ

Proof Let

G ¼ gjðdÞ
� �

�G ¼ gjðdÞ
� �

; j ¼ 1; 2; . . .; q ð7Þ

By Definition 2

gjðdÞ� gjðdÞ; j ¼ 1; 2; . . .; q ð8Þ

and there exists at least one j0ð1� j0� qÞ such that

gj0ðdÞ\gj0ðdÞ ð9Þ

Then for w[ 0,

wgj0ðdÞ\wgj0ðdÞ ð10Þ

expðwgj0ðdÞÞ\ expðwgj0ðdÞÞ ð11Þ

Hence

Xq

j¼1

expðwgjðdÞÞ\
Xq

j¼1

expðwgjðdÞÞ ð12Þ

Taking logarithms on both sides and dividing byw

EðGÞ¼ð1=wÞln
Xq

j¼1

expðwgjðdÞÞ\ð1=wÞ ln
Xq

j¼1

expðwgjðdÞÞ

ð13Þ

i.e. E(F) is a strictly monotone increasing function of increasing

function of F. The w norm of the q-dimensional vector

EG ¼ eg1ðdÞ; eg2ðdÞ; . . .; egqðdÞ
n oT

ð14Þ

is given by

NwðEGÞ ¼
Xq

j¼1

ewgjðdÞ

 !ð1=wÞ
ð15Þ

The uniform norm, also called the maximum norm, is

defined by

N1ðEGÞ ¼ lim
w!1

Nw EGð Þ ð16Þ

Since egj dð Þ[ 0 by Jensen’s inequality, the norm is a

strictly monotone decreasing function of its order, i.e.

Ns\Nr for r\s ð17Þ

The importance of this inequality is that it holds also in

the limit as s??. Thus, Eq. 16 may be written as

N1 EGð Þ ¼ max egj dð Þ
� �

\Nr EGð Þ ð18Þ

Taking logarithms on both side of Eq. 18 and

substituting from Eqs. 15 and 16 gives

lim
w!1
ð1=wÞ ln

Xq

j¼1

expðwgjðdÞÞ ¼ maxðgjðdÞÞ ð19Þ

and the proof is completed.

The PCE function plays an important role in the pro-

posed method. By means of the PCE function, we can give

the following theorem and simplify the problem (1) with

multiconstraints as an optimization problem with a single

constraint only.

Theorem 1 If w??, then the optimization problem (1)

and

min f ðdÞ
s.t. gwðdÞ ¼ ð1=wÞ ln

Pq

k¼1

exp½wgkðdÞ�
� �

� 0

8
<

:
ð20Þ

have the same Kuhn–Tucker points.

Proof The Lagrange augmented function problem (20) is

Lðd; cÞ ¼ f ðdÞ þ ðc=wÞ ln
Xq

j¼1

expðwgjðdÞÞ ð21Þ

where c[ 0 is the Lagrange multiplier of corresponding

constraint. The Kuhn–Tucker condition for problem (20) is

given as

of ðdÞ=odi

þ ðc=wÞ
Xq

j¼1

expðwgjðdÞÞ � ogjðdÞ=odi

( )

=

Xq

j¼1

exp wgj dð Þ
� �

¼ 0

ð1=wÞ ln
Xq

j¼1

exp wgj dð Þ
	 


� 0 ð23Þ

ðc=wÞ ln
Xq

j¼1

exp wgj dð Þ
	 


¼ 0; c� 0 ð24Þ

By means of Lemma 1 and Eq. 23, if w ? ?, then

ð1=wÞ ln
Xq

j¼1

expðwgjðdÞÞ ¼ max gjðdÞ� 0;

j ¼ 1; 2; . . .; q

ð25Þ
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i.e.

gjðdÞ� 0 ð26Þ

Substituting

c ¼ w; lj ¼
exp wgjðdÞ
� �

Pq

j¼1

exp wgjðdÞ
� � ð27Þ

into Eq. 22 gives

of ðdÞ=odi þ
Xq

j¼1

lj

ogj dð Þ
odj

¼ 0 ð28Þ

Combining Eqs. 24 and 27, if w??, then

gjðdÞ ¼ 0 if lj [ 0

gjðdÞ\0 if lj ¼ 0

�
ð29Þ

Equations 26, 28 and 29 are identical the Kuhn–Tucker

condition of the problem (1). Hence the problems (20) and

(1) have the same Kuhn–Tucker points and vice versa. The

Theorem 1 is proved.

Kuhn–Tucker points are obtained by solving the Kuhn–

Tucker conditions, which are necessary condition for the

optimum solution of non-linear programming with equality

and inequality constraints [16]. Theorem 1 shows that to

solve problem (1) with multi constraints can be substituted

by solving a simple problem (20) with a single constraint

only.

In order to solve the problem (20) by using genetic

algorithm, we transfer it into the following unconstraint

optimization problem by using quasi-exact penalty

function:

minuwðdÞ¼ f ðdÞþ a=wð Þ ln 1þ
Xq

i¼1

expðwgiðdÞÞ
( )

ð30Þ

The parameter w can be chosen in the range 103–105 and

a is penalty factor, a[ 0.

Adaptive entropy-based genetic algorithm

The objective function of problem (30) is nonlinear and the

design space is non-convex, the sensitivity analysis is very

difficult. There is a critical need to study alternate strate-

gies for optimal design that are not susceptible to the

pitfalls of methods of nonlinear programming. Genetic

algorithms provide such a capability of their successful

adaptation and implementation in a series of optimal design

problems. But genetic search process is a time-consuming

work, so that hindered them from applied to molecular

docking optimization problem, especially to massively

among a virtual library of billions of small molecules for

compounds that can bind to known protein binding sites. In

such circumstances, a novel adaptive genetic algorithm

(GA) is here proposed, in which an entropy-based search-

ing technique with multi-population and the quasi-

exactness penalty function are developed to ensure rapid

and steady convergence.

By means of Eq. 30, the fitness function of genetic

algorithm may be written as:

max FðdÞ ¼ C � uwðdÞ ð31Þ

Problem (31) can be solved as an evolutionary design model,

in which F(d) is the fitness function, C is a large positive

number to ensure F [ 0. The quasi-exact penalty function

uwðdÞ is developed to solve nonlinear programming (NLP)

problems with equality and inequality constraints.

The traditional genetic algorithm involves five basic

operators. These include the coding of string, the fitness

function, reproduction, crossover and mutation. The prob-

abilities of the crossover and mutation operators pc and pm

must be provided in GA, and are generally provided as

initial data. However, these genetic parameters can make

the convergence of the algorithm slow and unsteady if they

are not appropriately defined. Here the probabilities pc and

pm are assigned to be the added design variables to over-

come the difficulty in confirming the genetic parameters.

The lower and upper limits of pc and pm can be defined in a

reasonable region (here 0:6� pc� 1:0; 0:0� pm� 0:1).

For multi-population genetic strategy, the genetic algo-

rithm begins from generating arbitrarily m populations with

all the same searching space, i.e. design space. If FjðdÞ ðj ¼
1; . . .;mÞ represent that the best value of the fitness func-

tion occurs in the jth population, then we need to maximum

FjðdÞ ðj ¼ 1; . . .;mÞ by means of a genetic operations, i.e.

to solve the following optimization problem:

min�FjðdÞ; j ¼ 1; 2; . . .;m ð32Þ

Problem (32) is a multi-objective optimization, which is

very difficult to solve completely. For the improved genetic

algorithm with narrowing of the search space, we need only

to know efficient narrowing coefficients for the searched

space.

Shannon’s theorem [17] has wide-ranging applications

in both communications and data storage applications. This

theorem is of foundational importance to the modern field

of information theory [18]. There are similarities between

the process of optimization and communication of infor-

mation theory. Information entropy or Shannon entropy H

of a discrete set of probabilities p1, …, pn is defined by

H ¼ �
P

pi ln pi

s.t.
P

pi ¼ 1; pi 2 ½0; 1�
ð33Þ

Shannon entropy can be used to measure the uncertainty

about the realization of a random variable. If pj is here
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defined as a probability that the optimal solution of the

problem (32) occurs in the population j, then Shannon

entropy will be decreased during optimization process of

problem (32) and an entropy-based optimization model can

be constructed as follows:

min �
Pm

j¼1

pjFjðdÞ

min H ¼ �
Pm

j¼1

pj lnðpjÞ

s.t.
Pm

j¼1

pj ¼ 1; pj 2 ½0; 1�

8
>>>>>>><

>>>>>>>:

ð34Þ

where H is the information entropy.

Theorem 2 The optimization problem (34) and (32) both

have the same optimal solution.

Proof Suppose that d� and p� ¼ p�1; p
�
2; � � �; p�m

� �
are the

optimal solution of problem (34), so that

min H� ¼ �
Xm

j¼1

p�j lnðp�j Þ ¼ p�l lnð1Þ ¼ 0 ð35Þ

where p�l ¼ 1; p�i ¼ 0 for i 6¼ l; i.e. the optimal solution of

the problem (34) occurs in the population l. Hence

min �
Xm

j¼1

pjFjðd�Þ ¼ min�Flðd�Þ ð36Þ

Obviously, d� are also the optimal solution of problem

(32). It can be similarly proved that the optimal solution of

problem (32) is also the optimal solution of problem (34),

and the proof is completed.

The solution pj of Eq. 34 can be obtained easily and

explicitly.

p�j ¼ expðmFjðdÞÞ=
Xm

j¼1

expðmFjðdÞÞ ð37Þ

in which

m ¼ ðb� 1Þ=b ð38Þ

m is called as the quasi-weight coefficient (here b = 0.5).

The (1 - pj) can be used as the coefficients of nar-

rowing searching space in the modified genetic algorithm.

When the optimal solution occurs in the lth population,

then (1 - pl
*) = 0, and its searching space is not narrow-

ing. Using multi-population genetic strategy with

narrowing down searching space, the M populations with N

members are generated in the given space.

Design space is defined as initial searching space D(0).

M populations with N members are generated in the given

space. After a new generation is independently evolved in

each population, the searching space of each population is

narrowed according to the following equation:

DjðKÞ ¼ ð1� pjÞDjðK � 1Þ
djiðKÞ ¼ max d�jiðKÞ � 0:5ð1� pjÞDjðKÞ

h i
; djið0Þ

n o

djiðKÞ ¼ max d�jiðKÞ þ 0:5ð1� pjÞDjðKÞ
h i

; djið0Þ
n o

ð39Þ

where Dj(K) is the searching space of the population j at

Kth iteration. dji(K) and djiðKÞ are the modified lower and

upper limits of ith design variable in the population j at Kth

iteration, respectively. dji
*(K)is the value of design variable

i of the best member in the population j.

Equation 39 is employed to control the narrowing of

searching space for each population. If (1 - pl
*) = 0, the

optimal solution occurs in the lth population, and its

searching space is not narrowing. Then the convergence

criterion of the proposed method can be defined as: when

the searching space in the best population has been reduced

to a very small area (a given tolerance), the global optimal

solution can be obtained approximately. Using narrowed

space as the convergence criterion could controls the

convergence of the algorithm effectively.

The algorithm consists of the following steps:

Step 1. Generate an initial population and implement the

duplicate operator.

Step 2. Perform crossover and mutation operators among

populations.

Step 3. Narrow down the design spaces of each

population and find the best individual; reserve accord-

ing to the elitist strategy, next, check the convergence to

ensure that the searching space in the best population has

been reduced to the given tolerance satisfied. If it has, go

to step 4; otherwise, return to step 2.

Step 4. Output the optimization results and stop the

process.

Results and discussion

Test data set

The GOLD test data set, originally proposed by Jones et al.

[12], was chosen for our studies. Each complex was sep-

arated into a probe molecule and a docking ligand

according to the biological interacting pairs. Each protein

molecule was obtained by excluding ligands, all structural

water molecules, cofactors, and metal ions from the

receptor pdb file. Next, a mol2 file was generated by adding

hydrogen atoms and Kallman charge using Sybyl6.8.

Residues around the bound ligand within a radius of 6.5 Å

were isolated from the protein to define as the active site.

The ligands were then prepared by adding hydrogen atoms

and Gasteiger-Marsili atomic charges adopted in Sybyl6.8.

The heavy atoms number of the ligands ranged from 6 to

J Comput Aided Mol Des (2009) 23:1–12 5
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55, with 83.6% of the ligands possessing fewer than 30

such atoms. Besides, The rotatable bonds of the ligands

ranged widely from 0 to 22, with greater than 88.8% of the

ligands possessing fewer than 15 such bonds.

Docking accuracy

Generally, the primary criteria for evaluating docking

methods are docking accuracy, scoring veracity, screening

efficiency, and computational speed [15]. Docking accu-

racy and speed are more important indexes than others.

Docking accuracy is based on the root-mean-square devi-

ation (RMSD) value of the locations of all heavy atoms in

the model from those of the crystal structure. In general,

the docking accuracy is acceptable if the RMSD value

between the docked pose and X-ray crystal structure is less

than 2.0 Å. Depending on the RMSD values, the results

was assigned to four categories. The first, excellent, was for

those predictions in which the top scoring pose was within

0.5 Å RMSD from experimental results. If the RMSD

values were between 0.5 and 2.0 Å, the results would be

assigned to the good category. A third category, close, was

used for those predictions that the RMSD values were

between 2.0 and 2.5 Å. And a fourth category, errors, was

used for those predictions that the RMSD values were

between 2.5 and 3.0 Å. Finally, the fifth category, wrong,

was used for completely incorrect predictions with RMSD

values larger than 3.0 Å. The energy of a conformer was

computed by Eq. 2 with the nonbonding 12-6 Lennard-

Jones and electrostatic energy terms. The docking accuracy

and speed of our program was evaluated by the docking

results on an SGI Fuel Workstation.

Table 1 summarizes the performance of our docking

method. As shown, the docking program yielded 30

docking solutions with a RMSD values below 0.5 Å.

Nearly 46% of the results were excellent results. If we

consider acceptable results to be contained in the excellent

and good categories, then our program achieved a 70%

prediction rate.

Figure 1 shows a representative example for excellent

docking; The three-dimensional structure of the complex of

1FKG with FKBP12 has been determined by X-ray crys-

tallography to a resolution of 2.0 Å [19]. Flexibility of

FKBP12 was described using 11 rotatable bonds. The

active site was determined by flooding-filling to a radius of

6.5 Å (roughly corresponding to all solvent-accessible

cavity atoms). And the movement of the ligand was limited

in a cuboid circumscribed in the active site. The defined

cuboid is around the bound ligand within a radius of 6.5 Å

shown in Fig. 1a. Only 61 genetic iterations were needed to

obtain the highest fitness score. All the atoms of the ligand

of 1FKG were correctly placed with RMSD of 0.27 Å (see

Fig. 1b). The algorithm run took 14.32 s.

Table 2 gives the relationship among RMSD values,

docking time and the flexibility of the ligands. RMSD

values and docking time increase with ligand flexibility,

and the docking time is approximately in proportion to the

number of rotatable bonds of ligands, i.e. the docking time

increases approximately 1 s per adding a rotatable bond

(see Fig. 2). Furthermore, with the increasing of ligand

size, docking accuracy and efficiency will also decrease

(see Table 3).

Table 4 provides comparisons with other programs

[12–15]. Their scoring results are insignificant because

these programs adopt the different score function, so

Table 4 contains only the RMSD values of the poses cor-

responding to the ligands optimized by using the docking

score. To avoid biases from different data sets, we only

compare the results within the subsets of the GOLD data

set, which contain 99 complexes, 120 complexes, 81

complexes, 122 complexes and 96 complexes for GOLD,

FlexX, Surflex, Glide and DOCK6, respectively. The

results show that our program has good docking accuracy.

The further comparisons of docking accuracy with above

programs are given in Tables 5–7.

Table 5 gives the comparison with GOLD; this paper

gives an average RMSD value of 2.12 Å, whereas it is

3.00 Å for GOLD. However, the successful results of GOLD

were slightly better than our program, the RMSD values of

66 solutions in Gold results are less than 2.0 Å, while it is 64

in our results. Tables 6 and 7 give comparison with FlexX

and Surflex, the average RMSD value of our program is quite

better than them. Table 8 gives comparisons with Glide for

RMSD values of the ligands with the different number of

rotatable bonds. The average RMSD value of our program is

1.99 Å, whereas Glide is 1.91 Å. However, this comparison

may not be completely fair to our program, because Glide

gives the RMSD values of the predicted poses to energy-

minimized ligand not to the native ligand [13].We also give

comparison with DOCK6 (the new version of DOCK). As

shown in Table 9, our program yielded the 66.7% success

rate with RMSD values less than 2 Å. In contrast, DOCK6

Table 1 Docking accuracy of the improved method

RMSD (Å) Number of

ligands

Ratio of the ligands

in the test data set (%)

0.0–0.49 30 22.4

0.5–0.99 31 23.1

1.0–1.49 17 12.7

1.5–1.99 10 7.5

2.0–2.49 15 11.2

2.5–2.99 3 2.2

3.0–3.49 4 3

C3.5 24 17.9

6 J Comput Aided Mol Des (2009) 23:1–12
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got a 60.4% successful rate. For these 96 complexes, most of

them have 0–9 rotatable bonds. The results show that our

program is superior for molecular docking at this level of

rotatable bonds.

Docking speed

An advantage of the method is its significant docking speed.

Current docking programs present a decreasing performance

with the increasing number of conformational degrees of

freedom considered [20]. Direct comparison of docking

speed is somewhat problematic because of differences in

hardware. However, we can still offer a comparison from

several recent works [12, 15, 21]. According to the reports of

these works, docking per molecule needs 50–100 s for

FlexX, DOCK and GOLD on an SGI Indigo2 R10 K pro-

cessor [15]. In this paper, the average time of docking a

ligand for above dataset is about 5.36 s, and the maximum

time is 42 s on a SGI Fuel Workstation.

Docking speed is a critical issue in the application of a

docking method, especially in virtual screening [15]. Using

the same data set, Fig. 2 gives a plot of mean docking time

of the 134 ligands from the data set versus number of

rotatable bonds. It shows that the docking time is approx-

imately in proportion to the number of rotatable bonds of

ligands. This indicates that our program is fast enough for

virtual screening on large-scale chemical databases.

Conclusions

This paper presents a rapid adaptive genetic algorithm for

flexible molecular docking. The testing results for the test

data set show that the docking time is approximately in

proportion to the number of rotatable bonds of ligands, and

can dock a ligand to protein target in a few seconds on SGI

Fuel Workstation. The proposed method is suitable to

Fig. 1 Example of docking.

1FKG (0.27 Å RMSD, 11

rotatable bonds). (a) The

defined cuboid around the

bound ligand within a radius of

6.5 Å, (b) Docked structure was

fitted to the protein-bound X-ray

structure merged into the

reference protein coordinates

Table 2 RMSD values and computational time for the ligands with different number of rotatable bonds

Nrot
a Ncomplexes

b min RMSD max RMSD avg RMSD min Time max Time avg Time

0–4 43 0.21 3.54 1.30 0.56 4.25 2.05

5–9 58 0.13 8.98 2.03 1.6 13.8 5.13

10–14 18 0.17 7.71 2.46 5.46 20.41 11.90

15–19 6 0.20 7.69 2.69 10.55 34.25 17.71

20–24 7 0.27 15.37 3.24 13.16 30.39 22.12

25–29 2 6.24 13.20 9.72 32.35 42 37.18

a Number of rotatable bonds in the ligands
b Number of the complexes

0 5 10 15 20 25

0

10

20

30

40

50

C
om

pu
ta

tio
na

l T
im

e(
s)

Number of Rotatable Bonds

Fig. 2 The relation between computational time and the number of

rotatable bonds of ligands
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Table 4 Comparisons with

Glide, GOLD, Surflex, FlexX

and DOCK6 for Docking

accuracy

PDB code This papera Glideb GOLDc Surflexd FlexXe DOCK6f

1AAQ 0.57 1.3 12.85 N/A 1.75 N/S

1ABE 0.24 0.17 0.86 0.27 1.16 0.15

1ACJ 0.37 0.28 4 3.89 0.49 0.26

1ACL 0.66 N/A N/A N/A N/A N/S

1ACK 1.09 N/A 4.99 1.18 N/A 0.47

1ACM 0.92 0.29 0.81 1.43 1.39 1.40

1ACO 0.71 1.02 0.86 3.39 0.96 5.25

1AEC 7.69 N/A N/A N/A N/A N/S

1AHA 0.29 0.11 0.51 0.37 0.56 0.21

1APT 0.81 0.58 1.62 N/A 1.89 N/S

1ASE 3.26 N/A 0.49 N/A N/A 2.34

1ATL 0.56 0.94 N/A 7.01 2.06 N/S

1AZM 0.57 1.87 2.52 N/A 2.37 1.00

1BAF 3.63 0.76 6.12 6.52 8.27 3.79

1BBP 0.87 4.96 N/A 1.07 3.75 N/S

1BLH 2.39 N/A 1.95 N/A N/A 2.82

1BMA 3.22 9.31 N/A 1 13.41 N/S

1BYB 0.70 10.49 N/A N/A 1.62 N/S

1CBS 1.09 1.96 N/A 1.77 1.68 N/S

1CBX 0.26 0.36 0.54 0.7 1.35 1.32

1CDG 0.97 3.98 N/A N/A 4.87 4.11

1CIL 1.95 3.82 N/A N/A 3.85 1.13

1COM 0.99 3.64 N/A 0.86 1.62 3.86

1COY 0.44 0.28 0.86 0.54 1.06 0.28

1CPS 0.32 3 0.84 N/A 0.99 0.43

1CTR 1.51 3.56 N/A N/A 2.82 1.72

1DBB 1.17 0.41 1.17 0.54 0.81 0.63

1DBJ 0.52 0.2 0.72 0.88 1.22 1.80

1DID 0.41 3.82 3.72 N/A 4.22 2.78

1DIE 2.20 0.79 1.03 N/A 4.71 2.08

1DR1 0.77 1.47 1.41 1.25 5.64 1.01

1DWD 0.17 1.32 1.71 1.68 1.66 N/S

1EAP 7.71 2.32 3 4.89 3.72 N/S

1EED 6.24 5.9 12.43 N/A 9.78 7.19

1EPB 1.87 1.78 2.08 2.87 2.77 N/S

1ETA 8.98 2.92 11.21 N/A 8.46 4.42

Table 3 RMSD values and docking time of the ligands with the different number of the heavy atoms

Nheavy
a Ncomplexes

b min RMSD max RMSD avg RMSD min Time max Time avg Time

1–10 19 0.13 3.52 1.177 0.56 2.85 1.67

11–20 55 0.26 6.15 1.49 0.69 23.87 4.11

21–30 38 0.27 8.98 2.40 1.94 17.87 6.73

31–40 12 0.17 15.37 4.17 1.73 24.88 14.66

41–50 7 0.20 6.24 1.93 9.84 32.35 22.91

51–60 3 0.34 13.20 5.73 13.8 42 30.02

a Number of heavy atoms in the ligands
b Number of the complexes
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Table 4 continued
PDB code This papera Glideb GOLDc Surflexd FlexXe DOCK6f

1ETR 6.34 1.48 4.23 4.05 7.24 5.13

1FEN 0.67 0.66 N/A 1.18 1.39 N/S

1FKG 0.27 1.25 1.81 1.81 7.59 5.37

1FKI 2.62 1.92 0.71 0.7 0.59 4.13

1FRP 0.57 0.27 N/A 0.75 1.89 0.95

1GHB 0.67 1.89 1.45 N/A 1.33 2.84

1GLP 1.35 0.29 1.35 N/A 6.43 0.85

1GLQ 3.60 0.29 1.35 5.68 6.43 N/S

1HDC 1.09 0.58 10.49 1.8 11.74 N/S

1HDY 1.53 1.74 0.94 0.66 N/A 1.65

1HEF 4.23 5.3 1.87 N/A 15.32 5.09

1HFC 6.63 2.24 N/A N/A 2.51 N/S

1HRI 0.34 1.59 14.01 1.98 10.23 N/S

1HSL 0.48 1.31 0.97 0.51 0.59 1.47

1HYT 0.44 0.28 1.1 0.55 1.62 3.99

1ICN 0.86 2.34 8.63 N/A 10.52 N/S

1IDA 0.34 11.88 12.12 N/A 11.95 N/S

1IGJ 3.65 1.3 9.42 N/A 7.17 N/S

1IMB 0.67 0.89 N/A N/A 4.71 N/S

1IVE 2.66 2.61 2.16 N/A 5.34 1.79

1LAH 0.21 0.13 N/A 0.3 0.28 0.14

1LCP 2.29 1.98 N/A 2.01 1.65 1.97

1LDM 1.42 0.3 1 0.44 0.74 1.79

1LIC 0.43 4.87 10.78 3.46 5.07 N/S

1LMO 5.75 0.93 N/A N/A 4.49 3.78

1LNA 6.15 0.95 N/A 0.88 5.4 3.00

1LPM 3.48 N/A N/A 1.87 N/A N/S

1LST 0.13 0.14 0.87 0.33 0.71 0.62

1MCR 2.16 4.33 6.23 N/A 10.04 1.95

1MDR 0.58 0.52 0.36 0.68 0.88 1.89

1MMQ 4.32 0.92 N/A N/A 0.52 N/S

1MRG 0.47 0.3 N/A 0.7 0.81 0.35

1MRK 0.69 1.2 1.01 0.85 3.55 1.61

1MUP 0.50 4.37 3.96 N/A 3.82 3.14

1NCO 0.31 6.99 N/A 8.26 5.85 1.11

1NIS 0.41 0.97 4.29 N/A 1.41 2.56

1PBD 3.52 0.21 0.57 N/A 0.33 0.79

1PHA 0.67 0.69 1.24 N/A N/A N/S

1PHD 3.51 1.22 0.85 N/A 0.65 N/S

1PHG 2.14 4.32 1.35 4.44 4.74 5.48

1POC 15.37 5.09 1.27 N/A 9.25 4.45

1RDS 2.14 3.75 4.78 9.83 4.89 N/S

1RNE 13.20 10.08 2 N/A 12.24 1.51

1ROB 1.48 1.85 3.75 0.82 7.7 0.88

1SLT 1.44 0.51 0.78 N/A 1.63 4.07

1SNC 0.87 1.91 N/A 4.92 7.48 N/S

1SRJ 3.40 0.58 0.42 0.39 2.36 2.04

1STP 5.66 0.59 0.69 0.51 0.65 0.32

1TDB 2.12 1.46 10.48 N/A 10.1 1.91
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Table 4 continued

a Best pose (Å) for energy

score, not the best result

corresponding to RMSD
b The results of Friesner and

co-workers [13]
c The results of Jones and

co-workers [12]
d The results of Jain [15]
e The results of Kramer and

co-workers [14]
f The results by running

DOCK6 with the default

parameter

N/A, no result in the published

papers

N/S, program running error or

no solutions

PDB code This papera Glideb GOLDc Surflexd FlexXe DOCK6f

1TKA 2.75 2.28 1.88 1.96 1.17 N/S

1TMN 7.02 2.8 1.68 1.3 0.86 N/S

1TNG 0.28 0.19 N/A 0.22 1.93 0.16

1TNI 1.17 2.18 N/A 2.97 2.71 1.20

1TNL 2.21 0.23 N/A 2.26 0.71 1.06

1TPH 1.12 0.2 N/A N/A 1.5 1.21

1TPP 2.10 1.12 0.43 N/A 1.11 2.38

1TRK 7.45 1.64 N/A 1.22 1.57 1.29

1TYL 3.54 1.06 N/A N/A 2.34 2.98

1UKZ 0.75 0.37 N/A 0.77 0.94 0.79

1ULB 1.80 0.28 0.32 0.77 3.37 0.36

1WAP 0.28 0.12 N/A 0.3 0.57 0.21

1XID 1.78 4.3 0.92 N/A 2.01 3.52

1XIE 2.32 3.86 0.69 N/A 1.94 3.11

2ADA 0.43 0.53 0.4 0.32 0.67 N/S

2AK3 2.13 0.71 5.08 0.6 0.91 2.54

2CGR 6.09 0.38 0.99 1.63 3.53 1.30

2CHT 1.97 0.42 0.59 0.42 4.58 1.14

2CMD 0.48 0.65 N/A 1.6 3.75 1.14

2CTC 0.40 1.61 0.32 0.38 1.97 1.12

2DBL 2.06 0.69 1.31 0.81 1.49 6.31

2GBP 0.35 0.15 N/A 0.63 0.92 0.51

2LGS 2.13 7.55 N/A 1.22 4.63 4.08

2MCP 1.28 1.3 4.37 N/A 2.07 1.18

2MTH 1.20 N/A 10.12 N/A N/A 3.58

2PHH 0.64 0.38 0.72 0.44 0.43 1.52

2PK4 1.31 0.86 1.34 N/A 1.66 0.99

2PLV 0.73 1.88 13.92 N/A 7.85 N/S

2R07 2.16 0.48 8.23 1.35 11.63 N/S

2SIM 0.86 0.92 0.92 1.1 1.99 0.99

2YHX 1.50 3.84 1.19 N/A 2.25 4.96

3AAH 0.46 N/A 0.42 0.68 N/A 5.53

3CLA 4.24 N/A 5.45 N/A N/A 4.29

3CPA 0.64 2.4 1.58 1.9 2.53 N/S

3GCH 1.99 N/A 2.64 N/A N/A 3.47

3HVT 0.84 0.77 1.12 1.64 10.26 0.69

3PTB 2.11 0.27 0.96 0.54 0.55 1.38

3TPI 0.41 0.49 0.8 0.52 1.07 0.35

4CTS 0.85 0.19 1.57 2.2 1.53 1.49

4DFR 1.09 1.12 1.44 1.6 1.4 N/S

4EST 6.61 N/A 1.38 N/A N/A N/S

4FAB 0.92 4.5 5.69 N/A 4.95 1.11

4PHV 0.20 0.38 1.11 N/A 1.12 0.83

5P2P 0.27 1.82 1.55 N/A 1 N/S

6ABP 0.33 0.4 1.08 0.28 1.12 0.26

6RNT 1.29 2.22 1.2 7.03 4.79 2.86

6RSA 1.07 N/A 4.42 0.78 N/A 0.84

7TIM 1.22 0.14 0.78 1.2 1.49 N/S

8GCH 1.51 0.3 0.86 4.51 8.91 3.29
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Table 5 Comparisons with

GOLD for RMSD values of the

ligands with the different

number of rotatable bonds

Nrot (Ncomplexes) Average RMSD (Å) Ncomplexes (B0.5 Å/B2 Å/B2.5 Å)

This paper GOLD This paper GOLD

0–4(32) 1.26 1.81 8/25/27 5/24/25

5–9(43) 1.91 3.13 9/26/35 3/27/28

10–14(10) 3.07 2.17 2/5/6 0/7/7

15–19(6) 2.69 5.86 3/4/4 0/3/3

20–24(6) 3.67 5.51 1/4/4 0/4/4

25–29(2) 9.72 7.22 0/0/0 0/1/1

Total (99) 2.12 3.00 22/64/76 8/66/68

Table 6 Comparisons with

FlexX for RMSD values of

the ligands with the different

number of rotatable bonds

Nrot (Ncomplexes) Average RMSD (Å) Ncomplexes (B0.5 Å/B2 Å/B2.5 Å)

This paper FlexX This paper FlexX

0–4(37) 1.28 2.07 11/27/32 4/25/27

5–9(53) 1.98 3.63 11/34/42 0/25/29

10–14(17) 2.57 4.60 3/10/11 0/5/6

15–19(4) 0.46 7.17 3/4/4 0/1/1

20–24(7) 3.24 5.53 0/5/5 0/4/4

25–29(2) 9.72 11.01 0/0/0 0/0/0

Total (120) 2.00 3.64 28/80/94 4/60/67

Table 7 Comparisons with

Surflex for RMSD values

and computational time of the

ligands with the different

number of rotatable bonds

Nrot (Ncomplexes) Average RMSD (Å) Ncomplexes (B0.5 Å/B2 Å/B2.5 Å)

This paper Surflex This paper Surflex

0–4(31) 1.05 1.07 12/30/30 10/28/28

5–9(36) 1.80 1.71 8/28/28 3/30/30

10–14(13) 2.63 3.79 3/8/8 0/7/7

15–19(1) 0.43 3.46 1/1/1 0/0/0

Total (81) 1.63 1.82 24/67/67 13/65/65

Table 8 Comparison with

Glide for RMSD values of

the ligands with the different

number of rotatable bonds

Nrot (Ncomplexes) Average RMSD (Å) Ncomplexes (B0.5 Å/B2 Å/B2.5 Å)

This paper Glide This paper Glide

0–4(38) 1.28 1.32 11/28/33 20/31/32

5–9(54) 1.96 1.43 11/35/43 12/41/45

10–14(17) 2.57 2.54 3/10/11 2/10/11

15–19(4) 0.46 4.87 3/4/4 1/2/2

20–24(7) 3.24 3.78 1/5/5 0/4/4

25–29(2) 9.72 7.99 0/0/0 0/0/0

Total (122) 1.99 1.91 29/82/96 35/87/94
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virtual screening. However, there are still several aspects

we should improve, such as developing better docking

strategies, improving score functions and considering the

flexibility of protein target, the further work is under doing.
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