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Abstract It has been generally observed in our work that

molecular descriptors derived from a molecular graph

theory or topological representation of structure play an

important and often key role in many QSAR and QSPR

models we have developed. These descriptors do not only

provide the means to generate a good fit to the observed

data used to train the models, but they also provide infor-

mation that is needed to generate a clear physical

interpretation of the underlying structure–activity or prop-

erty relationships. In addition, these descriptors provide a

conformation-independent method of measuring the key

features of molecular structure that affect the observed

properties of the molecules. These characteristics are

exemplified in a model developed to predict critical micelle

concentration (CMC). A model is described that exhibits

excellent predictive strength, is independent of conforma-

tion of the structures used, and that yields a great deal of

detail regarding the underlying structure–property rela-

tionship driving the observed CMC.
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Abbreviations

2D 2-Dimensional

3D 3-Dimensional

CMC Critical micelle concentration

LogCMC Base-10 logarithm of the CMC

CPSA Charged partial surface area

HAS Hydrophobic surface area

PLS Partial least squares, or projection of latent

structures

PRESS Predicted sum of squared (error)

QSAR Quantitative Structure–Activity Relationship

QSPR Quantitative Structure–Property Relationship

SIR Structure information representation

SPR Structure–property relationship

VIF Variance inflation factor

Introduction

The purpose of a molecular descriptor in a quantitative

structure–activity and, more broadly, a structure–property

relationship (QSAR and QSPR, respectively) application is

to provide a measure of a particular feature of the structure

of the compounds being studied. The goal is simply to

measure the feature in question as accurately and unam-

biguously as possible. Several different representations of

molecular structure are often used, each providing a unique

perspective on the nature of a molecule, in order to

assemble a diverse set of measures of molecular structure.

A subsequent statistical analysis is used to identify the

subset of descriptors that maximally explain the variance in

the observed property or reactivity of interest. The physical

interpretation of the model is arrived at by an examination

of the changes in key structural features identified by the

descriptors in the context of model training set [1]. As

such, there is no requirement that a descriptor has with it

any preexisting physical interpretation related to the

property being studied. This is why one particular
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descriptor can play very different roles in models for dif-

ferent properties. The term Structure Information

Representation (SIR) has been used to capture the notion

that the primary role of a molecular descriptor is to provide

information about the molecular structure, which is sub-

sequently interpreted in the context of the structures being

examined [2–4].

The value and utility of topological descriptors in QSAR

and QSPR applications has been criticized [5]. However,

our experience has been that topological descriptors are not

only useful in generating good fitting internally and

externally validated models, they often make the greatest

statistical contribution to the model and also provide a high

degree of detail with regard to how changes in the

molecular structure relate to differences in observed

activities or properties of the compounds being studied. An

additional important characteristic of topological descrip-

tors that is sometimes overlooked is their independence of

structural conformation. This conformational independence

is particularly important in the study of molecules that are

flexible and when the proper conformation of the mole-

cules is not well defined. As we consider the rebirth of

QSAR as a discipline (QSAR Reborn, a symposium hon-

oring Dr. Philip Magee, 234th Nation Meeting of the

American Chemical Society, Boston, MA. August 19–23,

2007), it seems appropriate to revisit the class of descrip-

tors that are derived from a molecular topological

representation of structure.

The work described here illustrates the importance of

topological descriptors for generating QSPR models that are

predictive and that provide clear and detailed information

regarding the underlying structure–property relationships

useful for molecular design purposes. The property of

interest here is the critical micelle concentration, or CMC, of

anionic surfactants. A micelle is a colloidal-sized cluster of

amphiphilic (surfactant) molecules in solution [6]. In the

case of aqueous solutions, surfactants form micelles with the

nonpolar hydrophobic portions of the molecule, or tail,

oriented toward the center of the cluster and the polar por-

tions, or head group, oriented toward the solvent. At low

concentrations, too few individual surfactant molecules are

available to achieve an effective elimination of the hydro-

carbon-water interface [7]. However, as the concentration of

the surfactant is increased, a point is reached where there are

sufficient numbers of surfactant molecules available to

begin forming micelles (see Fig. 1). The concentration at

which micelles begin to form defines the CMC. The CMC of

a surfactant is an important defining property of a surfactant

relating to its surface tension or interfacial tension reduction

and detergency. This particular property is well understood,

and the underlying structure–property relationship is clearly

defined as a balance of attractive and repulsive forces in a

solution of amphiphiles [7]. In aqueous solutions there is an

attractive force between the hydrophobic portions of the

amphiphile, a negative affect of the disruption of structure of

water by the tail groups, and in the case of ionic surfactants

there is the repulsive force between head groups of like

charge. Micelles form as a result to minimize the negative

and repulsive forces and maximize the attractive forces.

Structural features that affect the size and shape of a micelle

formed in aqueous solution are the volume occupied by the

hydrophobic group, the length of the hydrophobic group,

and cross-sectional area of the hydrophilic group. Thus,

CMC was selected as the subject for this study because it is a

relatively simple property with a well defined structure–

property relationship, and it allows for the clear illustration

of two important characteristics of topological descriptors:

their ability to provide a high degree of detail regarding the

structure–property relationship, and the importance of their

conformation independence.

Experimental

Data set

The data used in this study involving 175 anionic surfac-

tants is provided in Table 1 and was drawn from several

sources. The source of each entry is also provided in

Table 1. Since the main sources of data were compilations

from several primary sources, many of the observations

were verified in the original literature. The molecules

involved were all anionic surfactants for which sodium was

the counter ion. The CMC values used were observed at

40 �C in pure water, or were observed at 25 �C and

adjusted to 40 �C using the method described by Huibers,

et al. [11]. The logarithm (base 10) of the CMC (mol/L)

was as used as the dependent variable in all subsequent

modeling work.

Structure entry and preparation

Structures for all 175 surfactant molecules were first

assembled as 2D sketches using ChemDraw (version 9.0.1,

[Surfactant]

Fig. 1 A solution of surfactant below the critical micelle concentra-

tion contains only free surfactant (left). As the concentration of

surfactant is increased, the critical micelle concentration is reached

and micelles begin to form (right)
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Table 1 Identifiers and the observed and computed logCMC values for the 175 surfactants used in model development and testing

Structure

ID

Chemical namea Observed

log10(CMC)

Modeling

set

assignment

Computed

log10(CMC)

ADAPT model

Computed

log10(CMC)

Molconn model

Source

(Ref. #)

Surf_022 Decane-1-sulfonic acid -1.40 Training -1.46 -1.61 [8]

Surf_023 Dodecane-1-sulfonic acid -1.97 Training -2.00 -2.19 [8, 9]

Surf_024 Hexadecyl hydrogen sulfate -3.26 Training -3.20 -3.18 [8, 9, 10]

Surf_025 Hexadecan-4-yl hydrogen sulfate -2.77 Training -2.96 -2.90 [8, 9, 10]

Surf_026 Hexadecan-6-yl hydrogen sulfate -2.63 Training -2.81 -2.78 [8, 9, 10]

Surf_029 Tetradecyl hydrogen sulfate -2.64 Training -2.61 -2.55 [8, 10]

Surf_030 Decyl hydrogen sulfate -1.48 Training -1.53 -1.37 [8, 9]

Surf_031 2-Heptylnonyl hydrogen sulfate -2.52 Training -2.65 -2.44 [8]

Surf_033 Pentadecyl hydrogen sulfate -2.92 Training -2.90 -2.82 [8]

Surf_034 2-Hexyldecyl hydrogen sulfate -2.64 Training -2.64 -2.72 [8]

Surf_035 Octane-1-sulfonic acid -0.79 Training -0.96 -0.98 [8, 9]

Surf_036 Tetradecane-1-sulfonic acid -2.60 Ext. Pred. -2.57 -2.72 [8]

Surf_037 Dodecyl hydrogen sulfate -2.06 Training -2.05 -1.93 [8, 9, 10]

Surf_038 Octyl hydrogen sulfate -0.86 Training -1.06 -0.78 [8, 9, 10]

Surf_039 2-Ethyltetradecyl hydrogen sulfate -3.05 Training -2.90 -2.86 [8]

Surf_040 2-Butyldodecyl hydrogen sulfate -2.82 Training -2.70 -2.76 [8]

Surf_041 Tridecyl hydrogen sulfate -2.37 Training -2.33 -2.22 [8]

Surf_043 2-Propyltridecyl hydrogen sulfate -2.96 Training -2.72 -2.80 [8]

Surf_044 2-Methylpentadecyl hydrogen sulfate -3.10 Training -2.91 -2.91 [8]

Surf_045 2-Pentylundecyl hydrogen sulfate -2.70 Ext. Pred. -2.79 -2.74 [8]

Surf_055 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-

Pentadecafluorooctanoic acid

-2.01 Outlierb -0.86 -2.04 [9]

Surf_058 2-(2-(Dodecyloxy)ethoxy)ethyl hydrogen sulfate -2.55 Training -2.50 -2.51 [11]

Surf_060 Hexane-1-sulfonic acid -0.50 Training -0.53 -0.44 [11]

Surf_061 Hexadecane-1-sulfonic acid -3.13 Training -3.17 -3.37 [11]

Surf_062 (E)-Dodec-1-ene-1-sulfonic acid -1.89 Training -1.85 -1.91 [11]

Surf_063 (E)-Tetradec-1-ene-1-sulfonic acid -2.57 Training -2.41 -2.50 [11]

Surf_064 (E)-Hexadec-1-ene-1-sulfonic acid -3.22 Training -2.99 -3.10 [11]

Surf_065 (E)-Octadec-1-ene-1-sulfonic acid -3.75 Training -3.60 -3.70 [11]

Surf_066 Dodecane-3-sulfonic acid -1.73 Training -1.70 -1.86 [11]

Surf_067 Dodecane-4-sulfonic acid -1.64 Training -1.60 -1.58 [11]

Surf_068 Dodecane-5-sulfonic acid -1.55 Training -1.66 -1.53 [11]

Surf_070 Dodecane-6-sulfonic acid -1.44 Training -1.63 -1.42 [11]

Surf_072 4-Heptylbenzenesulfonic acid -1.58 Training -1.47 -1.35 [11]

Surf_073 4-Octylbenzenesulfonic acid -1.91 Training -1.73 -1.78 [11]

Surf_074 4-(Nonan-3-yl)benzenesulfonic acid -1.97 Training -1.86 -1.83 [11, 12]

Surf_075 4-(Decan-2-yl)benzenesulfonic acid -2.30 Ext. Pred. -2.18 -2.14 [11, 13]

Surf_076 4-(Decan-3-yl)benzenesulfonic acid -2.20 Training -2.15 -2.07 [11, 12, 13]

Surf_077 4-(Decan-5-yl)benzenesulfonic acid -2.05 Training -1.98 -2.07 [11, 13]

Surf_078 4-(Undecan-2-yl)benzenesulfonic acid -2.72 Training -2.48 -2.44 [11, 14]

Surf_080 4-(Dodecan-3-yl)benzenesulfonic acid -2.61 Training -2.77 -2.66 [11, 12]

Surf_082 4-(Dodecan-6-yl)benzenesulfonic acid -2.59 Training -2.43 -2.64 [11]

Surf_083 4-(Tridecan-2-yl)benzenesulfonic acid -3.21 Training -3.09 -3.03 [11, 14]

Surf_084 4-(Pentadecan-2-yl)benzenesulfonic acid -3.58 Training -3.72 -3.60 [11, 14]

Surf_085 Octadecyl hydrogen sulfate -3.79 Training -3.80 -3.72 [10, 11]

Surf_086 Tetradecan-3-yl hydrogen sulfate -2.37 Training -2.33 -2.34 [9, 10]

Surf_087 Tetradecan-4-yl hydrogen sulfate -2.29 Training -2.31 -2.28 [9, 10]
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Table 1 continued

Structure

ID

Chemical namea Observed

log10(CMC)

Modeling

set

assignment

Computed

log10(CMC)

ADAPT model

Computed

log10(CMC)

Molconn model

Source

(Ref. #)

Surf_088 Tetradecan-5-yl hydrogen sulfate -2.17 Training -2.19 -2.23 [10, 11]

Surf_090 Tetradecan-7-yl hydrogen sulfate -2.01 Ext. Pred. -1.90 -2.19 [10, 11]

Surf_091 Pentadecan-3-yl hydrogen sulfate -2.66 Training -2.64 -2.66 [10, 11]

Surf_097 Hexadecan-8-yl hydrogen sulfate -2.37 Training -2.56 -2.75 [10, 11]

Surf_101 Octadecan-4-yl hydrogen sulfate -3.35 Ext. Pred. -3.61 -3.46 [10, 11]

Surf_102 Octadecan-6-yl hydrogen sulfate -3.14 Training -3.52 -3.37 [10, 11]

Surf_103 Nonadecan-10-yl hydrogen sulfate -3.03 Training -3.59 -3.21 [10, 11]

Surf_104 Nonadecan-5-yl hydrogen sulfate -3.48 Training -3.90 -3.70 [10, 11]

Surf_105 Pentadecane-1-sulfonic acid -3.14 Training -2.87 -3.05 [11]

Surf_106 Heptadecane-1-sulfonic acid -3.63 Training -3.47 -3.65 [11]

Surf_107 Pentadecane-8-sulfonic acid -2.25 Training -2.56 -2.03 [15]

Surf_108 4-(Dodecan-2-yl)benzenesulfonic acid -2.64 Training -2.78 -2.61 [11, 16]

Surf_109 4-(Dodecan-4-yl)benzenesulfonic acid -2.72 Training -2.74 -2.63 [11, 17]

Surf_110 Undecyl hydrogen sulfate -1.79 Training -1.78 -1.66 [11]

Surf_112 2-(Dodecyloxy)ethyl hydrogen sulfate -2.39 Training -2.27 -2.25 [11]

Surf_113 3-Methoxydodecane-1-sulfonic acid -2.12 Training -1.99 -2.05 [11]

Surf_114 3-Ethoxydodecane-1-sulfonic acid -2.30 Training -2.12 -2.21 [11]

Surf_115 3-Propoxydodecane-1-sulfonic acid -2.42 Training -2.36 -2.44 [11]

Surf_116 3-Isopropoxydodecane-1-sulfonic acid -2.46 Ext. Pred. -2.21 -2.32 [11]

Surf_117 3-Butoxydodecane-1-sulfonic acid -2.82 Training -2.55 -2.65 [11]

Surf_118 3-(Hexyloxy)dodecane-1-sulfonic acid -3.19 Training -2.80 -3.23 [11]

Surf_119 3-(Octyloxy)dodecane-1-sulfonic acid -3.92 Outlierb -3.01 -3.80 [11]

Surf_120 3-(2-Ethylhexyloxy)dodecane-1-sulfonic acid -3.50 Training -3.24 -3.55 [11]

Surf_121 3-Phenoxydodecane-1-sulfonic acid -2.71 Training -2.54 -2.64 [11]

Surf_123 3-Oxododecane-1-sulfonic acid -1.54 Ext. Pred. -1.82 -1.71 [11]

Surf_124 3-Hydroxydodecane-1-sulfonic acid -1.61 Training -1.77 -1.83 [11]

Surf_125 3-Hydroxytetradecane-1-sulfonic acid -2.20 Training -2.32 -2.42 [11]

Surf_126 3-(2-Hydroxyethyl)tetradecane-1-sulfonic acid -3.45 Ext. Pred. -2.75 -2.83 [11]

Surf_127 3-(2-(2-Hydroxyethoxy)ethoxy)tetradecane-

1-sulfonic acid

-2.92 Training -2.54 -2.74 [11]

Surf_128 3-Phenoxytetradecane-1-sulfonic acid -3.64 Training -3.23 -3.25 [11]

Surf_129 3-(2,4,6-Trichlorophenoxy)tetradecane-1-sulfonic

acid

-4.79 Outlierc -4.29 -3.04 [11]

Surf_130 3-(Dimethylamino)tetradecane-1-sulfonic acid -2.97 Training -2.71 -3.21 [11]

Surf_131 3-(Propylamino)tetradecane-1-sulfonic acid -3.20 Ext. Pred. -3.15 -3.39 [11]

Surf_132 3-(Butylamino)tetradecane-1-sulfonic acid -3.71 Training -3.40 -3.68 [11]

Surf_133 3-(Morpholino)tetradecane-1-sulfonic acid -3.11 Ext. Pred. -2.90 -3.02 [11]

Surf_134 3-(Piperidino)tetradecane-1-sulfonic acid -3.31 Training -3.60 -3.56 [11]

Surf_135 3-Oxotetradecane-1-sulfonic acid -2.17 Training -2.35 -2.28 [11]

Surf_136 3-Hydroxyhexadecane-1-sulfonic acid -2.84 Training -2.90 -3.00 [11]

Surf_137 3-Methoxyhexadecane-1-sulfonic acid -3.47 Training -3.17 -3.24 [11]

Surf_138 3-Propoxyhexadecane-1-sulfonic acid -4.09 Training -3.64 -3.62 [11]

Surf_139 3-Butoxyhexadecane-1-sulfonic acid -4.46 Training -3.90 -3.87 [11]

Surf_140 3-Oxohexadecane-1-sulfonic acid -2.74 Training -2.93 -2.86 [11]

Surf_141 3-Hydroxyoctadecane-1-sulfonic acid -3.42 Training -3.50 -3.59 [11]

Surf_142 2-(Decyloxy)ethanesulfonic acid -1.79 Training -1.65 -1.88 [11]

Surf_143 1-Hydroxytetradecane-2-sulfonic acid -1.79 Training -2.17 -2.12 [11]
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Table 1 continued

Structure

ID

Chemical namea Observed

log10(CMC)

Modeling

set

assignment

Computed

log10(CMC)

ADAPT model

Computed

log10(CMC)

Molconn model

Source

(Ref. #)

Surf_144 1-Hydroxyhexadecane-2-sulfonic acid -2.43 Training -2.77 -2.71 [11]

Surf_145 2-(Hexyloxy)-2-oxoethanesulfonic acid -0.74 Training -0.69 -0.64 [11]

Surf_146 2-(Octyloxy)-2-oxoethanesulfonic acid -1.14 Training -1.14 -1.18 [11]

Surf_147 2-(Decyloxy)-2-oxoethanesulfonic acid -1.62 Training -1.64 -1.74 [11]

Surf_148 3-Oxo-3-(tetradecyloxy)propane-1-sulfonic acid -3.05 Training -3.01 -3.04 [11]

Surf_149 1-Methoxy-1-oxotridecane-2-sulfonic acid -1.99 Training -2.02 -2.20 [11]

Surf_150 1-Methoxy-1-oxopentadecane-2-sulfonic acid -2.58 Training -2.63 -2.78 [11]

Surf_151 1-Methoxy-1-oxoheptadecane-2-sulfonic acid -3.40 Training -3.25 -3.37 [11]

Surf_152 1-Ethoxy-1-oxoheptadecane-2-sulfonic acid -3.51 Training -3.45 -3.44 [11]

Surf_153 1-Oxo-1-propoxyheptadecane-2-sulfonic acid -3.97 Ext. Pred. -3.71 -3.61 [11]

Surf_154 1-Methoxy-1-oxononadecane-2-sulfonic acid -4.00 Training -3.87 -3.97 [11]

Surf_155 1-Ethoxy-1-oxononadecane-2-sulfonic acid -4.11 Training -4.10 -4.03 [11]

Surf_156 1-Oxo-1-propoxynonadecane-2-sulfonic acid -4.90 Training -4.37 -4.20 [11]

Surf_157 1-Isopropoxy-1-oxononadecane-2-sulfonic acid -4.57 Ext. Pred. -4.29 -4.23 [11]

Surf_158 1,4-Bis(2-ethylhexyloxy)-1,4-dioxobutane-

2-sulfonic acid

-2.57 Training -2.49 -2.49 [11]

Surf_159 1,4-Dibutoxy-1,4-dioxobutane-2-sulfonic acid -0.66 Training -0.88 -0.87 [11]

Surf_160 1,4-Dioxo-1,4-bis(pentyloxy)butane-2-sulfonic acid -1.24 Training -1.30 -1.33 [11]

Surf_161 1,4-Bis(hexyloxy)-1,4-dioxobutane-2-sulfonic acid -1.82 Training -1.77 -1.82 [11]

Surf_162 1,4-Bis(octyloxy)-1,4-dioxobutane-2-sulfonic acid -3.13 Training -2.96 -2.87 [11]

Surf_163 Tetradecan-2-yl hydrogen sulfate -2.48 Training -2.38 -2.48 [9, 10, 18]

Surf_164 Pentadecan-2-yl hydrogen sulfate -2.77 Training -2.69 -2.78 [10, 18]

Surf_165 Pentadecan-5-yl hydrogen sulfate -2.47 Training -2.59 -2.52 [9, 10, 18]

Surf_166 Pentadecan-8-yl hydrogen sulfate -2.18 Training -2.56 -2.16 [9, 10,18]

Surf_167 Heptadecan-2-yl hydrogen sulfate -3.31 Training -3.31 -3.38 [10, 18]

Surf_168 Heptadecan-9-yl hydrogen sulfate -2.63 Training -3.22 -2.68 [10,18]

Surf_169 Octanoic acid -0.43 Training -0.11 -0.21 [9]

Surf_170 Octan-2-yl hydrogen sulfate -0.74 Training -0.66 -0.76 [9, 10]

Surf_171 Decan-2-yl hydrogen sulfate -1.31 Training -1.22 -1.32 [10]

Surf_172 Undecan-3-yl hydrogen sulfate -1.54 Training -1.34 -1.50 [9, 10]

Surf_173 Undecan-6-yl hydrogen sulfate -1.08 Training -1.28 -1.16 [9, 10]

Surf_174 Tridecan-2-yl hydrogen sulfate -2.19 Ext. Pred. -2.09 -2.19 [9, 10]

Surf_175 Tridecan-7-yl hydrogen sulfate -1.71 Ext. Pred. -1.90 -1.65 [9, 10]

Surf_176 Dodecane-2-sulfonic acid -1.83 Training -1.81 -1.71 [11]

Surf_177 Heptadecan-2-yl hydrogen sulfate -3.31 Training -3.31 -3.39 [10, 11]

Surf_178 Octadecan-2-yl hydrogen sulfate -3.59 Training -3.62 -3.68 [10, 11]

Surf_179 Nonacosan-15-yl hydrogen sulfate -4.10 Outlierb,c -7.01 -5.93 [10]

Surf_253 Hexyl hydrogen sulfate -0.36 Training -0.64 -0.25 [19]

Surf_254 Heptyl hydrogen sulfate -0.65 Ext. Pred. -0.84 -0.51 [19]

Surf_255 Nonyl hydrogen sulfate -1.21 Ext. Pred. -1.28 -1.07 [19]

Surf_256 4-Decylbenzenesulfonic acid -2.51 Training -2.30 -2.34 [19]

Surf_257 4-Dodecylbenzenesulfonic acid -2.92 Training -2.90 -2.97 [19]

Surf_258 4-(Undecan-3-yl)benzenesulfonic acid -2.50 Training -2.46 -2.42 [19]

Surf_259 4-(Undecan-4-yl)benzenesulfonic acid -2.40 Training -2.41 -2.37 [19]

Surf_260 4-(Undecan-5-yl)benzenesulfonic acid -2.30 Training -2.31 -2.36 [19]

Surf_261 4-(Undecan-6-yl)benzenesulfonic acid -2.25 Training -2.05 -2.13 [19]

Surf_262 4-(Dodecan-5-yl)benzenesulfonic acid -2.57 Training -2.66 -2.65 [19]
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Table 1 continued

Structure

ID

Chemical namea Observed

log10(CMC)

Modeling

set

assignment

Computed

log10(CMC)

ADAPT model

Computed

log10(CMC)

Molconn model

Source

(Ref. #)

Surf_263 4-(Tridecan-3-yl)benzenesulfonic acid -3.00 Ext. Pred. -3.08 -2.99 [19]

Surf_264 4-(Tridecan-4-yl)benzenesulfonic acid -2.90 Training -3.06 -2.96 [19]

Surf_265 4-(Tridecan-5-yl)benzenesulfonic acid -2.78 Training -3.01 -2.94 [19]

Surf_266 4-(Tridecan-6-yl)benzenesulfonic acid -2.70 Training -2.82 -2.93 [19]

Surf_267 4-(Tridecan-7-yl)benzenesulfonic acid -2.60 Training -2.47 -2.67 [19]

Surf_268 4-(Tetradecan-2-yl)benzenesulfonic acid -3.39 Training -3.41 -3.33 [19]

Surf_269 4-(Tetradecan-3-yl)benzenesulfonic acid -3.28 Training -3.40 -3.25 [19]

Surf_270 4-(Tetradecan-4-yl)benzenesulfonic acid -3.15 Training -3.39 -3.26 [19]

Surf_271 4-(Tetradecan-5-yl)benzenesulfonic acid -3.05 Training -3.36 -3.24 [19]

Surf_272 4-(Tetradecan-6-yl)benzenesulfonic acid -2.90 Training -3.21 -3.23 [19]

Surf_273 4-(Tetradecan-7-yl)benzenesulfonic acid -2.80 Training -2.93 -3.22 [19]

Surf_274 2-(2-(Decyloxy)ethoxy)ethyl hydrogen sulfate -1.93 Training -1.92 -1.91 [19]

Surf_275 3,6,9,12-Tetraoxatetracosyl hydrogen sulfate -2.79 Training -2.98 -2.97 [19]

Surf_276 2-(Tetradecyloxy)ethyl hydrogen sulfate -2.87 Ext. Pred. -2.85 -2.85 [19]

Surf_277 2-(2-(Tetradecyloxy)ethoxy)ethyl hydrogen sulfate -3.09 Training -3.09 -3.10 [19]

Surf_278 3,6,9,12-Tetraoxahexacosyl hydrogen sulfate -3.18 Training -3.59 -3.57 [19]

Surf_279 2-(2-(Hexadecyloxy)ethoxy)ethyl hydrogen sulfate -3.64 Ext. Pred. -3.70 -3.71 [19]

Surf_280 3-(Octyloxy)-3-oxopropane-1-sulfonic acid -1.31 Training -1.38 -1.28 [19]

Surf_281 3-(Decyloxy)-3-oxopropane-1-sulfonic acid -1.89 Ext. Pred. -1.89 -1.87 [19]

Surf_282 3-(Dodecyloxy)-3-oxopropane-1-sulfonic acid -2.52 Ext. Pred. -2.44 -2.45 [19]

Surf_283 7,7,8,8,9,9,10,10,10-Nonafluorodecan-4-yl hydrogen

sulfate

-1.70 Training -1.65 -1.68 [19]

Surf_284 7,7,8,8,9,9,10,10,11,11,12,12,12-

Tridecafluorododecan-4-yl hydrogen sulfate

-2.50 Training -2.46 -2.64 [19]

Surf_285 7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-

Heptadecafluorotetradecan-4-yl hydrogen sulfate

-3.42 Training -3.28 -3.69 [19]

Surf_286 9,9,10,10,11,11,12,12,12-Nonafluorododecan-6-yl

hydrogen sulfate

-2.14 Training -2.14 -1.95 [19]

Surf_287 9,9,10,10,11,11,12,12,13,13,14,14,14-

Tridecafluorotetradecan-6-yl hydrogen sulfate

-3.02 Training -3.04 -2.89 [19]

Surf_288 9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-

Heptadecafluorohexadecan-6-yl hydrogen sulfate

-3.90 Training -3.90 -3.89 [19]

Surf_289 1,1,1,2,2,3,3,4,4-Nonafluorotetradecan-7-yl

hydrogen sulfate

-2.49 Training -2.68 -2.35 [19]

Surf_290 11,11,12,12,13,13,14,14,15,15,16,16,16-

Tridecafluorohexadecan-8-yl hydrogen sulfate

-3.40 Training -3.59 -3.25 [19]

Surf_291 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,18-

Heptadecafluorooctadecan-8-yl hydrogen sulfate

-4.25 Training -4.48 -4.23 [19]

Surf_292 (5-(Heptylamino)-3,4-dihydroxy-6-

methoxytetrahydro-

2H-pyran-2-yl)methyl hydrogen sulfate

-1.60 Training -1.64 -1.63 [19]

Surf_293 (3,4-Dihydroxy-6-methoxy-5-

(undecylamino)tetrahydro-

2H-pyran-2-yl)methyl hydrogen sulfate

-2.77 Ext. Pred. -2.76 -2.76 [19]

Surf_294 (3,4-Dihydroxy-6-methoxy-5-(pentadecylamino)

tetrahydro-2H-pyran-2-yl)methyl hydrogen sulfate

-3.92 Training -3.95 -3.93 [19]

Surf_295 (S)-2-(3-Benzyl-4-oxo-4-(pentyloxy)butanoyl)

benzenesulfonic acid

-1.82 Training -1.84 -2.12 [19]

Surf_296 (S)-2-(3-Benzyl-4-(octyloxy)-4-oxobutanoyl)

benzenesulfonic acid

-2.82 Training -2.76 -2.91 [19]
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CambridgeSoft), and ChemFinder (version 9.0.1, Cam-

bridgeSoft). Since the CMC for all the surfactants were

experimentally determined using the sodium salt of the acid,

it was not necessary to include the head-group charge as part

of modeling step, since it does not change to a significant

degree. Thus, all the structures were entered and used as the

neutral form of the acid. The structures were saved as a 2D

MACCS SDF file. The SDF file was imported into Sybyl

(version 7.2, Tripos Associates). Initial 3D conformations

were generated using Concord, followed by strain-energy

optimization using the Tripos force field including electro-

static terms and a water dielectric. The partial atomic charges

needed for the force field calculations were computed using

the Gasteiger-Huckel [20] method in Sybyl. The structures

were then exported in the form of a Sybyl MOL file for

subsequent descriptor calculations.

Descriptor calculations

Two separate sets of descriptors were computed for all 175

structures, each set was used in a separate model-develop-

ment exercise. One set included 233 topological descriptors

computed using MolconnZ (Ver 3.50, Hall Associates) and

using the 2D structures from the SDF file. This will be

referred to as the Molconn set in subsequent work. A second

diverse set of 175 descriptors was computed using ADAPT

[21, 22]. These descriptors were chosen to capture broad

range of topological, geometric, and electronic structural

features. The topological descriptors [23] were included to

capture detailed information concerning molecular shape

and complexity and have the added advantage of being

independent of conformation. Additional conformation-

independent information was expressed as counts of spe-

cific structural fragments (i.e., counts of carbon and

heteroatoms, counts of single, double, triple, and aromatic

bonds, etc.). Geometric descriptors provide measures of

conformation-dependent shape characteristics of structure,

such as surface area and volume [24], molecular length,

width, and thickness [25, 26] whereas electronic descriptors

provide information concerning the distribution of charge in

the molecule [27]. Additionally, some descriptors employ

structural representations that capture two or more of these

structural feature types (e.g., surface area and partial atomic

charge). This class of descriptors is represented by the

CPSA descriptors [28, 29] and the related hydrophobic

surface area (HSA) descriptors [30] that have been shown to

be useful in past studies. The partial charges used in the

calculation of the CPSA and related descriptors were those

obtained using the Gasteiger-Huckel method during the

strain-energy optimization step in Sybyl. These descriptors

will be referred to as the ADAPT set in subsequent work.

Model development and validation

Models for both descriptor sets were generated using the

same methods. Model development began with the selec-

tion of a subset of the structures to be used as an external

prediction set for both descriptor set models. The subset was

selected to mimic the distribution of CMC values of the

whole data set. This was done by first sorting all 175

observations in order of increasing logCMC. Each of the

sorted observations was assigned an integer value sequen-

tially in the range of 1–8. The data set was again sorted in

increasing order based on the assigned integers. The set of

22 observations assigned the value 4 were arbitrarily

selected to act as the external prediction (test) set. The

remaining 153 observations were assigned to the model

training set. The descriptors were analyzed in a process

Table 1 continued

Structure

ID

Chemical namea Observed

log10(CMC)

Modeling

set

assignment

Computed

log10(CMC)

ADAPT model

Computed

log10(CMC)

Molconn model

Source

(Ref. #)

Surf_297 (S)-2-(3-Benzyl-4-(decyloxy)-4-oxobutanoyl)

benzenesulfonic acid

-3.45 Training -3.48 -3.48 [19]

Surf_298 (S)-2-(3-Benzyl-4-(dodecyloxy)-4-oxobutanoyl)

benzenesulfonic acid

-4.16 Training -4.19 -4.06 [19]

Surf_299 (S)-2-(3-Benzyl-4-oxo-4-(tetradecyloxy)butanoyl)

benzenesulfonic acid

-4.76 Training -4.90 -4.64 [19]

Surf_300 (S)-2-(4-(Dodecyloxy)-3-methyl-4-oxobutanoyl)

benzenesulfonic acid

-3.35 Training -3.43 -3.33 [19]

Computed values for training set members are the fitted values obtained from the regression analysis. Computed values for the external

prediction set members (Ext. Pred.) and the modeling outliers represent the predicted values obtained using the corresponding model. The source

of the observed CMC data is also provided
a Name generated using ChemFinder, ver-9.0, CambridgeSoft
b Outlier from ADAPT data set model development
c Outlier from Molconn data set model development
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termed objective feature selection [31], where descriptors

showing little variation (\10% identical values) were set

aside. Additionally, remaining descriptors yielding large

pair-wise correlation values (Pearson correlation coeffi-

cient C 0.93) were also identified, and one descriptor of the

pair was set aside. A record of the descriptors set aside by

the correlation test was maintained, and these descriptors

were reexamined by exchanging correlated descriptors in

the models to determine if any of the descriptors held out

were more useful. Following descriptor analysis, models

were developed using both simulated annealing [32] and

genetic algorithm [33] methods. The results of both meth-

ods were examined, and models yielding the smallest root

mean squared (RMS) error were considered for subsequent

analysis. Internal validation statistics used to evaluate

models include the overall-F test [34], the partial-F test

[35], variance inflation factor or VIF [36], and PLS PRESS

test [37]. The fit and residual plots were also visually

examined for any evidence of outlying observations or bias

in the model. Lastly, the model was subjected an external

validation test by predicting the logCMC values for the 22

observations in the external prediction set.

Conformation analysis of selected surfactants

Conformational analysis for selected surfactant structures

was carried out using Spartan ‘04 (Build 124int9e) for

Linux. A conformational search was performed using the

Monte Carlo method and used the MMFF forcefield with

aqueous correction. A limit of 100 unique conformers was

obtained for each structure with a strain energy within

10 kcal/mol of the minimum found for each structure. All

conformers were exported to Sybyl in order to compute the

Gasteiger-Huckel partial atomic charges needed for sub-

sequent use in ADAPT.

Results and discussion

ADAPT descriptor set model

A good quality model was obtained for 150 of the original

153 observations. The other 3 observations were detected

as statistical outliers and are discussed separately. The final

model used 5 terms, and yielded a very good fit to the

observed logCMC values with R2 = 0.951 and s = 0.201.

The details of the model are provided in Table 2. The

model performed well with respect to all the internal val-

idation statistics. In addition, the model also performed

very well in prediction of the logCMC values for the 22

external prediction set structures. The correlation of the

predicted and observed logCMC values for the external

prediction set is shown in Fig. 2 (Pearson correlation

coefficient (r) = 0.974). The computed values for both the

training and external prediction set structures obtained

using the model are provided in Table 1.

An examination of the model shows that it incorporates a

diverse set of descriptors. The RSAM descriptor [38]

measures the solvent-accessible surface area of hydrogen-

bond acceptor groups in the structure. The MOMH-4

descriptor is geometric descriptor and measures the ratio of

the first and the second major moments of inertia of the

Table 2 Details of the model

developed using the ADAPT

descriptor set

R2 = 0.951, QLOO
2 = 0.947,

s = 0.201, F-value = 562.17,

N = 150

Descriptor Regression

coefficient

Standard error

of coefficient

T-value Variance inflation

factor

RSAM -6.65 0.916 -7.27 3.67

V6P -0.798 0.0968 -8.25 3.74

MOMH-4 1.60 0.208 7.67 1.45

2SP3 -0.0839 0.00831 -10.1 2.31

FPHS-2 -0.513 0.0224 -22.9 3.58

Y-Intercept 1.40 0.380 3.69 N/A

Observed logCMC
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External Prediction Set

Fig. 2 Results of the prediction of the logCMC for the 22-observa-

tion external prediction set based on the ADAPT descriptor set model

(r = 0.974). The results for the training set are show as reference
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structure [26]. The FPHS-2 descriptor is one of the set of

HSA descriptors [30]. This particular variant is the type-2

positive hydrophobic surface area descriptor which mea-

sures the amount of positive (hydrophobic) solvent-

accessible surface area of the structure weighted by the sum

of the positive contributions to logP (positive Crippen

hydrophobicity fragment constants [39]). The 2SP3

descriptor is a simple count of the occurrences of a sp3-

hybridized carbon atom bonded to two other carbon atoms

(i.e., a methylene group). Lastly, the V6P descriptor is the

valence-corrected 6th-order path molecular connectivity

index [40, 41] which measures characteristics of the struc-

tures related to substructure of 6 contiguous bonds. The first

three are all conformation-dependent descriptors while the

last two are conformation-independent descriptors. As is

typically observed, topological descriptors are present in the

model and they are found to play a major role in providing

measures of the changes in structural features that corre-

lated to differences in the observed property (the structure–

property relationship). Results of the analysis of the model

using PLS [1] indicates that 82.0% of the variance in the

observed logCMC values is accounted for by the first PLS

component, and that the V6P descriptor makes the second-

largest contribution of information in that component

(27.2%) (data not shown). If the two conformation-inde-

pendent descriptors are considered together, they account

for 47.3% of component-1. These descriptors are providing

measures of structure related to the length and branching

characteristics of the hydrophobic portion of the surfactant

molecules that form the core of the micelle, and as previ-

ously noted, the length and shape of the hydrophobic group

are two of the factors that affect micelle size and shape.

The characteristics of this model provided an opportu-

nity for improvement. As already noted, three of the five

descriptors in the model (RSAM, MOMH-4, and FPHS-2)

are sensitive to differences in molecular shape. This raises

the question of what an appropriate conformation for a

surfactant molecule might be. The method employed to

generate 3D atomic coordinates in the present case

involved using Concord to compute the initial conforma-

tion followed by minimization of the strain-energy using

molecular mechanics. This generally results in an extended

or all-trans configuration for the hydrocarbon chains of the

surfactant. While this is certainly a low-energy conforma-

tion, it is not clear if such a conformation is relevant for

modeling this property. While a micelle is often repre-

sented in cartoon form with all the surfactant molecules in

an extended conformation as shown Fig. 1, the hydropho-

bic chains forming the core of the micelle are considered to

be disordered with the arrangements of molecules resem-

bling what would be found in bulk hydrocarbon liquid [42].

The shapes of surfactant molecules in a micelle is more

clearly illustrated in Fig. 3 which shows the results of a

molecular dynamics simulation of a micelle of sodium

dodecyl sulfate (SDS) in water (K. Anderson, personal

communication, August 13, 2007). Several individual sur-

factant monomers extracted from the simulated micelle

show the variety of conformations that are achieved by the

surfactants in the cluster. While some are nearly fully

extended, others are highly kinked. Because of the variety

of conformations observed in this simulation, it was of

interest to determine the degree of sensitivity of the present

model to changes in the conformation of different types of

surfactants.

Fig. 3 Image of a micelle

formed by sodium dodecyl

sulfate in water (water

molecules not shown for clarity)

based on atomistic molecular

dynamics. Several isolated

surfactant monomer structures

were extracted from the

simulated micelle to illustrate

the degree of conformation

flexibility observed
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Surfactant conformation analysis

Four surfactant structures were selected for a conformation

analysis. Two linear surfactants (Surf_037 and Surf_257)

and two branched surfactants (Surf_070 and Surf_082)

were selected that also sampled aromatic and aliphatic

head-group types. The conformational search was per-

formed as previously described.

The ADAPT descriptor set model was used to compute

the logCMC for all 100 conformers obtained from the

conformation search conducted using each of the four test

structures. The results of the calculations are shown in

Fig. 4. In each case, the computed logCMC values cover a

range of at least one order of magnitude. In general, the

extended conformers exhibit the lowest strain energy and

also yield the lowest computed logCMC values, and the

computed values of logCMC increase as the structure

becomes more kinked. The results obtained for the con-

formations of these structures that were used to build the

model are also indicated for each test structure in Fig. 4.

For three of the four structures the lower energy confor-

mations yield the most accurate computed logCMC values.

However, the results for Surf_082 shows that the lowest

energy conformers yield a computed logCMC that are

about 0.5 log units less accurate than the one used to

develop the model. This is a little over twice the magnitude

of the standard deviation of regression for the model,

making it a significant difference.

While the present model was found to be statistically

valid, yielding very good results in external prediction and

is based on descriptors that provide an explanation of the

underlying structure–property relationship that is consistent

with empirical observations, the results of the conformation

analysis experiment show that this model can produce a

wide range of logCMC values if the method used to gen-

erate the 3D atomic coordinates differs from that used to

develop the model. In addition to the uncertainty this adds

to the predicted logCMC values, it also decreases the

confidence of future users of the model who can obtain

different computed values for the same structure. Thus, an

alternative model was sought that would be independent of

the conformation structures involved.

Molconn descriptor set model

Using the same variable selection and model development

methods already described, a new model consisting entirely

of molecular topology-based, conformation-independent

descriptors was developed using the same training and

external prediction set selections used to develop the

ADAPT set model. A new 7-term model was obtained that

yielded similarly good fit to the observed logCMC values

(R2 = 0.963, s = 0.173). The final training set for the
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Fig. 4 Bar graphs indicating the range of computed logCMC values

obtained using the conformation-sensitive ADAPT descriptor set

model for 100 strain energy-optimized conformers for 4 example

surfactants: Surf_037, Surf_070, Surf_082, and Surf_257. The

vertical dashed line indicates the logCMC value obtained for the

conformation of each surfactant used to develop the ADAPT model

450 J Comput Aided Mol Des (2008) 22:441–460

123



model included 151 of the 153 structures originally

assigned to the set. The remaining 2 observations were set

aside as statistical outliers and are discussed separately.

The details of the model are provided in Table 3. The

model performed well with respect to all but one of the

internal validation statistics. The VIF, a measure of mul-

ticollinearity, yielded a value of is 22.2 for descriptor dx0.

This is high compared to the general rule of thumb that

suggests VIF values should be 10.0 or less. However, our

experience has been that if the training set is large

(N [ 100), VIF values in excess of 10.0 can be tolerated

without having an adverse effect on either the predictive

strength or physical interpretation of the model. This is

certainly true for the new model, which performed very

well in external prediction. The correlation of the predicted

and observed logCMC values for the model is shown in

Fig. 5. The computed values of logCMC for the training

and prediction set structures are provided in Table 1.

A comparison of the fitted logCMC values for the

training set obtained using both models indicates that the

two models yield very similar results (Pearson correlation

coefficient (r) = 0.980). A similar comparison was made

of the external prediction results for the two models which

also showed a high degree of correlation of the results

(Pearson correlation coefficient (r) = 0.986). The com-

parisons suggest that the descriptors in the models are

equally good at measuring the key changes in molecular

structure that are responsible for the differences in the

observed logCMC values, and that conformation informa-

tion is not required to do so.

Physical interpretation of the Molconn model

The definitions for the seven topological descriptors used

in the Molconn descriptor set model are provided in

Table 4. Physical interpretation of the model was

accomplished using the PLS method described previously.

The overall results of the PLS analysis are shown in

Table 5. While PLS shows that 7 components are vali-

dated, 94.1% of the variance in the observed logCMC

values is explained in the first 4 components. Thus,

interpretation of the model will focus on each of these 4

components in turn. Values of the descriptor weights for

each of the first 4 components are provided in Table 6.

The squared x-weight values (Table 6b) provide a mea-

sure of the contribution of a given descriptor to a

component, and the original x-weight values (Table 6a)

provide the sign of the weight indicating the direction of

the relationship between the descriptor and the dependent

property for that component. In order to accomplish the

interpretation, it is necessary to examine the PLS score

plots and examine the structures of molecules that are the

focus of each component with respect to the descriptors

that are highly weighted in each component. This pro-

vides the details of the structure–property relationships

that are captured in the model.

Table 3 Details of the model

developed using the Molconn

descriptor set

R2 = 0.963, QLOO
2 = 0.953,

s = 0.173, F-value = 538.59,

N = 151

Descriptor Regression

coefficient

Standard error

of coefficient

T-value Variance inflation

factor

xvc4 -7.71 1.28 -6.02 6.18

dx0 -1.44 0.105 -13.7 22.2

SssCH2 -0.177 0.00543 -32.6 4.56

SaaCH -0.123 0.00764 -16.1 3.96

knotpv -0.103 0.0137 -7.50 7.49

nclass -0.0436 0.00579 -7.54 3.74

O-Count 0.0864 0.0149 5.80 1.70

Y-Intercept 1.33 0.0898 14.8 N/A
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Fig. 5 Results of the prediction of the logCMC for the 22-observa-

tion external prediction set based on the Molconn descriptor set model

(r = 0.978). The results for the training set are show as reference
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Table 4 Definitions of the

descriptors used in the Molconn

descriptor set model

a See Reference [43]
b See References [40, 41]
c See Reference [44]
d See Reference [45]

Descriptor label Definition

dx0 0th Order difference molecular connectivity indexa

xvc4 Valence-corrected 4th-order cluster molecular connectivity indexb

knotpv Topological complexity index defined as the difference of xvc3

(valence corrected 3rd-order cluster molecular connectivity index)

and xvpc4 (valence-corrected 4th-order path-cluster molecular

connectivity index)c

SssCH2 Sum of electrotopological state indices for methylene carbonsd

SaaCH Sum of electrotopological state indices for unsubstituted aromaticd carbons

nclass Count of the number of types of connectivity classes identified in a structure

O-count Count of oxygen atoms

Table 5 Summary of the

results of the partial least

squares (PLS) analysis of the

Molconn descriptor set model

PLS validates all 7 components
a Cumulative fraction of X-

variance used to explain Y
b Computed using a leave-one-

out (LOO) cross-validation

procedure

Components X Variancea Error sum

of squares

Cumulative R2 PRESS Cumulative

cross-validated

R2 (Q2)b

1 0.189 25.6 0.781 29.7 0.746

2 0.424 13.7 0.883 13.8 0.882

3 0.792 11.2 0.904 13.4 0.885

4 0.817 6.86 0.941 9.84 0.916

5 0.963 6.45 0.945 9.22 0.921

6 0.975 4.45 0.962 4.91 0.958

7 1.00 4.27 0.963 4.76 0.959

Table 6 Details from the PLS analysis of the Molconn data set model. (a) PLS x-weight values for the first 4 components of the Molconn

descriptor set model; (b) Squared PLS x-weight values for the first 4 components of the Molconn descriptor set model

Descriptor label x-Weight component-1 x-Weight component-2 x-Weight component-3 x-Weight component-4

(a) PLS x-weight values

xvc4 -0.179 -0.015 -0.617 -0.257

dx0 -0.129 0.062 -0.596 -0.213

SssCH2 -0.530 -0.577 0.180 -0.440

SaaCH -0.185 0.217 0.110 -0.384

knotpv 0.096 -0.115 0.417 -0.360

nclass -0.790 0.273 0.132 0.461

O-Count -0.046 0.727 0.165 -0.453

Descriptor Label Squared

x-weight component-1

Squared

x-weight component-2

Squared

x-weight component-3

Squared

x-weight component-4

(b) Squared PLS x-weight values

xvc4 0.032 0.000 0.381 0.066

dx0 0.017 0.004 0.356 0.045

SssCH2 0.281 0.333 0.033 0.194

SaaCH 0.034 0.047 0.012 0.148

knotpv 0.009 0.013 0.174 0.129

nclass 0.624 0.075 0.017 0.213

O-Count 0.002 0.528 0.027 0.205
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Component-1

Component-1 explains 78.1% of the variance in the model

and represents by far the most important structure–property

trend in the model. Two descriptors are highly weighted in

this component. The nclass descriptor contributes 62.4% of

the information in this component and takes a negative

weight indicating that increases in the value of this

descriptor are correlated with a decrease in logCMC. The

other important descriptor in this component is SssCH2,

which provides an additional 28.1% of the information in

this component (90.5% cumulative) and also takes a neg-

ative weight indicating an increase in this descriptor value

is also correlated with a decrease in logCMC. The nclass

descriptor acts in this instance as a measure of the com-

plexity of the structure. Each type of topological

substructure is considered a class. For example, a first-

order path, a second-order path, and a third-order path are

each considered a separate topological class. So, the nclass

descriptor is simply a count of the number of types of

topological classes identified in each structure. As the size

and complexity of the structure increases, the value of

nclass increases. The SssCH2 descriptor is one of the

electrotopological state descriptors [45] designed specifi-

cally to provide a measure of the number of occurrences

and environment of methylene (–CH2–) groups. The role of

these two descriptors is to show that the length and com-

plexity of the hydrophobic tail groups are the primary

structural features that determine the CMC for a molecule.

This is illustrated in the score plot for component-1 (plot-

A) shown in Fig. 6. Points representing structures that are

the focus of this component fall generally on the diagonal

of the plot, and are identified as cluster-a. The descriptor

values for structures at the upper end of the diagonal have

low values for both nclass and SssCH because the struc-

tures are shorter and simpler, as shown in Fig. 7a. These

compounds have high logCMC values because they disrupt

the structure of bulk water less, so higher concentrations

are needed before micelles form. Structures represented by

points at the lower end of the diagonal have high values for

both nclass and SssCH2 because they are much longer and

more complex (see Fig. 7b), resulting in lower logCMC

values. The length and nature of the hydrophobic tail

groups for these molecules cause them to disrupt the sol-

vent structure much more so that association with other

surfactant molecules is thermodynamically favored result-

ing in a much lower critical micelle concentration.

The PLS Y-score for a given structure tends toward zero

once the observed property for that observation mathe-

matically explained. The structure–property trend

described for component-1 explains the observed property

for 93 (61.6%) of the 151 structures in the training set,

which form the cluster of points with X and Y-scores

tending toward zero in components 2 through 4 as observed

in Fig. 6. This means that there are aspects of molecular

structure that are not accounted for in component-1 for the

remaining 58 structures that need to be explained. The

model accomplishes this in the subsequent components.

Component-2

Component-2 explains an additional 10.2% of the variance

in observed logCMC (88.3% cumulative). Two descriptors

are highly weighted in this component. Once again,

SssCH2 plays an important role, providing 33.3% of the

information in the component. However, the primary

descriptor is O-count, a simple count of oxygen atoms,

which accounts for 52.8% of the information in compo-

nent-2 (86.1% cumulative). O-count takes a positive

weight in this component indicating that increasing values

of this descriptor correlate with increases in observed

logCMC. The SssCH2 descriptor takes a negative weight

indicating, as before, that increasing values of this

descriptor are correlated with decreasing values of

observed logCMC. The purpose of this trend is to correct

for differences in the polar head groups of the surfactants,

and the model uses a count of oxygen atoms to measure

these differences. The SssCH2 descriptor continues to play

the role of accounting for differences in hydrophobic chain
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Fig. 6 Score plots for PLS components 1–4 (plots a–d, respec-

tively). Points representing the structures that are the focus of the

structure–property relationships (SPRs) grouped in clusters a–g
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length, which remains the key factor explaining differences

in observed logCMC for a given class of surfactants. The

structure–property trend is clearly visible in the score plot

for component-2, which is broken down by surfactant type

for clarity. The score plot for component-2 (Fig. 6, plot B)

shows a cluster of 16 surfactants (cluster-b) representing

structures with slightly higher logCMC values than are

accounted for by component-1. The structure–property

relationship for these materials is parallel to that for the

materials explained by component-1, but one aspect of the

structure is underdetermined by that trend. The model

identifies the difference as being the composition of the

polar head group. Structures of some example materials

from this cluster are shown in Fig. 8. The polar head

groups are much larger and more complex, which pack less

well at the surface of the micelle, resulting in a higher

observed logCMC. Another set of 9 materials with even

larger and more complex polar head groups forms another

cluster (cluster-c) in the component-2 score plot. Examples

of the structures of these materials are shown in Fig. 9. The

polar head groups for these surfactants are very large and

sometimes occupy a central position in the molecule, both

features lead to an increase in the observed logCMC due to

poorer packing of the head groups and to shorter effective

length of the hydrophobic tail. The role of the hydrophobic

tail group remains the same, once again in parallel with the

trend observed in component-1. Another cluster is

observed in component-2 (cluster-d) with logCMC values

that are at the lower end of the scale. This cluster of points

represents 8 structures with very simple and compact polar
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which exhibit higher logCMC
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head groups. Examples of these structures are shown in

Fig. 10. This allows greater packing of surfactant mole-

cules in a micelle, resulting in the reduction of the observed

logCMC. The role of the length of the hydrophobic tail

group parallels the trend observed in component-1. Thus, it

is clear that the role of component-2 is to allow the model

to account for differences in the nature of the polar head

groups for these materials.

Component-3

Component-3 accounts for an additional 2.1% of the var-

iance in the observed logCMC values (90.4% cumulative).

While this is a small amount, the model is accounting for

an important aspect of the structures of some particular

surfactants. Three descriptors provide most of the infor-

mation for this component. The xvc4 descriptor provides

38.1% of the information, the dx0 descriptor provides an

additional 35.6%, and knotpv descriptor provides 17.4%

more (91.1% cumulative). The knotpv descriptor takes a

positive weight in the component, while the other two take

negative PLS weights. In this component, the model is

taking into account some unusual features in some of the

surfactant structures that have a large affect on observed

logCMC. The xvc4 descriptor plays a key role in capturing

a difference in the hydrophobic tail groups for one partic-

ular set of surfactants. These materials form a cluster of 9

points (cluster-e) that is visible in the component-2 score

plot below the diagonal, indicating that the component is

over-estimating the logCMC for these materials. This over-

estimation is corrected in component-3 indicated by the

movement of cluster-e points to the lower left quadrant of

the component-3 score plot (Fig. 6, plot C). This correction

toward lower logCMC values is primarily due to infor-

mation provided by the xvc4 descriptor. This descriptor

measures the number and environment of an atom that is

bonded to four other non-hydrogen atoms, called a

4th-order cluster. This particular version of the descriptor

includes a valence correction, indicating the descriptor can

discriminate between atom types. An examination of the

example structures representing these materials shown in

Fig. 11 clearly indicates the key structural feature the
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model is accounting for. All of the surfactants in question

contain floromethylene groups in the hydrophobic tail. The

topological treatment of molecular structure uses hydro-

gen-suppressed graphs, so hydrogen atoms are not

considered when the counting of attached atoms. Thus the

carbon of a methylene group has only two attached atoms,

where a fluoromethylene group has four. The xvc4

descriptor is directly indicating the key structural features

of the molecule that model needs to account for in cap-

turing this part of the structure–property relationship. A

floromethylene group is more hydrophobic than a corre-

sponding methylene group [46]. As a result, the CMC of a

perfluormethyl surfactant is similar to that of an ordinary

surfactant with a tail group length of 1.5 times the length of

that for the perfluoromethyl surfactant [47]. The xcv4

descriptor allows the model to account for this difference in

the 9 fluorocarbon surfactants in the presence of the 142

other non-fluorocarbon surfactants in the training set. The

model also makes additional corrections for two other

types of surfactants in this component. The knotpv and dx0

descriptors measure the special structural features of the

polar head groups of several surfactants. These materials

are represented in the cluster of 9 points (cluster-c) in the

component-3 score plot. Example structures for this cluster

are shown in Fig. 12. In one set, the head group is com-

posed of a compact sulfate group and a linear

polyoxyethylene chain. The methylene groups in the

polyoxyethylene chain do not provide the same degree of

hydrophobicity as those in a typical hydrophobic tail group

because of the presence of the polar oxygen atoms. This

results in an increase in the observed logCMC for surfac-

tants of similar length but containing only non-polar

groups. The model uses the dx0 descriptor to help detect

and measure this difference. The other set of structures are

materials that were a focus of component-2 on the basis of

the count of oxygen atoms. That structure–property rela-

tionship accounted for the increase in the size and

complexity of the polar head group related to oxygen

atoms. However, these materials also incorporate a benzyl
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group in close proximity to the charged head group which

increases the steric bulk of the head group resulting in

poorer head group packing and an increased logCMC. The

knotpv descriptor provides the measure of this feature and

allows the model to account for the difference, in addition

to the correction made previously for the size of the head

group measured using a count of oxygen atoms observed in

component-2.

Component-4

This component accounts for an additional 3.7% of the

variance in observed logCMC, for a total of 94.1%. As was

the case with component-3, the overall contribution to the

model is small, but this component captures important

information about features of the molecular structure of

particular surfactants that have not yet been accounted for.

In this case, three descriptors provide the bulk of the

information needed. The nclass descriptor provides the

largest contribution (21.3%), followed by the O-count

descriptor (20.5%), and the SssCH2 descriptor (19.4%). A

particularly interesting observation is that the weights for

both the nclass and O-count descriptors take opposite signs

in component-4 compared to prior components in which

they were highly weighted. This type of observation is a

unique outcome provided by the use to the PLS analysis

that a simple examination of the model regression coeffi-

cients could not provide. In this component, the nclass

descriptor takes a positive weight which indicates that for

this component increasing values of nclass correlate with

increasing values of logCMC. The O-count descriptor takes

a negative weight in component-4, indicating that

increased values on O-count are correlated with decreasing

logCMC values. The SssCH2 descriptor also takes a neg-

ative weight and performs similarly. Points representing

the key surfactants are highlighted in the scope plot for

component-4 (Fig. 6, plot D). An addition slight correction

is provided by this component for a set of 10 branched

surfactants (cluster-f) that have longer hydrophobic tail

groups, leading to lower logCMC values than other simi-

larly branched but shorter surfactants (see Fig. 13).

Component-4 also provides a correction for the composi-

tion of the polar head groups of two unique surfactants that

incorporate a pyranose ring. These two materials are

identified as cluster-g in the score plot for component-4.

The structures of these two materials are provided in

Fig. 14. The correction is provided primarily by the nclass

descriptor which can account for the large size and com-

plexity of the head group, leading to an increase in the

observed logCMC. It is interesting to note that only three

examples of this class of surfactant were included in this

study. The two shown in Fig. 14 (Surf_292 and Surf_294)

were included in the training set for the model, while the

third had been set aside as part of the external prediction

set. The third example (Surf_293) has a hydrophobic chain

length of 11 carbon atoms, where the two training set

materials had chains containing 7 and 15 carbons atoms.

Even though there are only the two examples of this sur-

factant class in the training set, the model based on the

topological descriptors captures so much detail regarding

the role of the hydrophobic tail and the polar head group

that the prediction error for Surf_293 is only very small

with a value of -0.0128 log units.

Examination of the outliers

A small number of observations were detected as statistical

outliers during development of both the ADAPT and

Molconn models. These observations are identified in

Table 1. Identification of the outliers was accomplished

either by a simple examination of the residual plots for

the models, or using robust regression analysis [48]. A set

of 3 outliers were detected during development of the

ADAPT descriptor set model, and 2 were detected during
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development of the Molconn model. Only one observation,

Surf_179, was found to be an outlier in both analyses. The

observed CMC for this surfactant was verified in the ori-

ginal literature and was found in agreement to the reported

value. The leverage value [49] for this observation is large

in both models, suggesting that this particular observation

is significantly different from the other materials in the data

set. It is the largest of any of the branched alkyl sulfate

surfactants included in this study, with each branch being

14-carbon atoms in length. Since this observation is an

outlier in both models and the leverage for this observation

is large for both analyses, it is reasonable to conclude that

there is some aspect of this structure that is not sufficiently

represented if the data set as a whole preventing proper

measurement of that feature. Another possibility is that the

aqueous solubility of the compound is limited and is

interfering with an accurate measurement of the CMC.

Two other outliers were detected during the develop-

ment of the ADAPT model. One was Surf_055. This

surfactant has a high leverage in the model, indicating it is

unique compared to the rest of the data set. This particular

material is only one of two carboxylic acid surfactants in

the data set, and it is the only perfloro example. The other

ADAPT data set outlier is Surf_119. This observation also

has a large leverage value, suggesting that it is unique in

some fashion that the model is unable to account for. This

particular material is a branched sulfonic acid surfactant

that contains an ether oxygen in one of the branches. The

proximity of this oxygen to the head group may be inter-

preted by the model as making the head group larger, since

the computed logCMC is higher than the observed value.

This particular observation has a low leverage in the

Molconn model, suggesting that the topological descriptors

are performing better at capturing information regarding

this feature.

There is only one other outlier that is unique to the

Molconn model, Surf_129. This material is the only chlo-

rine-containing surfactant in the data set, and it has a high

leverage for this model. Thus, in the context of the

descriptors in the Molconn model, this material appears to

be unique. However, it is not an outlier with respect to the

ADAPT model, suggesting the impact of the chlorine atoms

on the CMC of this material is appropriately accounted for

by the ADAPT model.

Conclusions

This work has clearly illustrated two of the most important

characteristics of the general class of topological molecular

descriptors in a QSPR application: their independence of

the conformation of molecular structure, and the high

degree of detail they provide regarding the underlying

structure–property relationship. The model based on the

topological descriptors has been shown to be as accurate in

prediction of logCMC values as the model that included the

conformation-dependent descriptors, indicating that the

topological descriptors are correctly capturing the important

information regarding molecular size and shape of these

very flexible molecules. This means that the conventional

step of generating 3D atomic coordinates can be eliminated

without loss of utility of the model. It also eliminates the

need to define which conformation is most important, with

the result that the model yields exactly the same logCMC

prediction regardless of the way the structure is entered into

the computer or how the conformation is optimized.

However, the most important aspect of the topological

descriptor-based model is the high degree of structure–

property relationship detail it provides. The role of the size

and nature of the hydrophobic tail is clearly the dominant

factor in determining the CMC. The model shows that

CMC is essentially linearly related to chain length over the

range examined by this training set, an outcome that is

consistent with current knowledge. Long unbranched tail

groups yield decreased CMCs, and short chains yield

increased CMCs. Structural modifications such as branch-

ing of the hydrophobic tail and the addition of fluorine are

clearly accounted for. The size and nature of the polar head

group is also accurately captured. Smaller and more com-

pact head groups yield decreased CMCs, larger and more

complex head groups yield increased CMCs.
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Fig. 14 Example structures representing the surfactants from cluster-g

in the score plot for component-4
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A practical way of determining if the structure–property

relationship (SPR) derived from a model is correct is to

design new structures based on that SPR, and then deter-

mine if these new structures behave as predicted. The

external prediction set results show the predictive strength

of the model. However, it seems clear that one could use

the SPR information to successfully modify existing sur-

factants in such a way that will move the CMC in the

desired direction. It is also likely that new classes of sur-

factants could be designed to have CMC values in a desired

range.

These observations regarding the SPR have all been

made previously by others, which was the reason that the

CMC was selected for this study in the first place. The goal

was to show that the topological descriptors do provide

proper physically interpretable measures of molecular

structure (a SIR) that are useful for molecular design. By

using a property that was already generally understood, it

was possible to show how the topological descriptors

work to capture the key structural information needed to

reproduce the same structure–property relationship inter-

pretation. The results also show that a preexisting physical

meaning is not required for a descriptor to be useful in a

structure–property relationship modeling or molecular

design application. We have observed similar results for

many other physical and biological properties as well.

Thus, this work suggests that as interest in QSAR and

QSPR methods is rekindled, special attention should be

paid to the inclusion of topological descriptors in such

studies.
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