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Abstract Quantitative Structure-Activity Relationships

(QSAR) are being used since decades for prediction of

biological activity, lead optimization, classification, identi-

fication and explanation of the mechanisms of drug action,

and prediction of novel structural leads in drug discovery.

Though the technique has lived up to its expectations in many

aspects, much work still needs to be done in relation to

problems related to the rational design of peptides. Peptides

are the drugs of choice in many situations, however,

designing them rationally is a complicated task and the

complexity increases with the length of their sequence. In

order to deal with the problem of peptide optimization, one of

our recently developed QSAR formalisms CoRIA (Com-

parative Residue Interaction Analysis) is being expanded

and modified as: reverse-CoRIA (rCoRIA) and mixed-

CoRIA (mCoRIA) approaches. In these methodologies, the

peptide is fragmented into individual units and the interac-

tion energies (van der Waals, Coulombic and hydrophobic)

of each amino acid in the peptide with the receptor as a whole

(rCoRIA) and with individual active site residues in the

receptor (mCoRIA) are calculated, which along with other

thermodynamic descriptors, are used as independent vari-

ables that are correlated to the biological activity by

chemometric methods. As a test case, the three CoRIA

methodologies have been validated on a dataset of diverse

nonamer peptides that bind to the Class I major histocom-

patibility complex molecule HLA-A*0201, and for which

some structure activity relationships have already been

reported. The different models developed, and validated both

internally as well as externally, were found to be robust with

statistically significant values of r2 (correlation coefficient)

and r2
pred (predictive r2). These models were able to identify

all the structure activity relationships known for this class of

peptides, as well uncover some new relationships. This

means that these methodologies will perform well for other

peptide datasets too. The major advantage of these approa-

ches is that they explicitly utilize the 3D structures of small

molecules or peptides as well as their macromolecular tar-

gets, to extract position-specific information about important

interactions between the ligand and receptor, which can

assist the medicinal and computational chemists in designing

new molecules, and biologists in studying the influence of

mutations in the target receptor on ligand binding.

Keywords CoRIA � r CoRIA � m CoRIA �
G/PLS � 3D-QSAR

Introduction

Quantitative Structure-Activity Relationships builds atom-

istic or virtual models to establish a correlation between

structural features of potential drug candidates and their

binding affinity/biological activity/toxicity towards a known

or hypothetical macromolecular target. Since its establish-

ment by Hansch [1–4], the technique has undergone over the

years significant modifications in almost all of its aspects.

The various QSAR approaches are often categorized

according to their dimensionality as 2D, 3D and so on, which

refers to the structural representation or the way by which the

descriptor values are derived. Because ligand–receptor

interactions are inherently 3D properties, there has been

much effort in developing QSAR methods that explicitly

take into consideration the 3D geometries of molecules. Of
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particular interest for the biomedical sciences are the 3D-

QSAR techniques, a majority of which are based on the

calculation of ligand–receptor interactions (usually van der

Waals and Coulombic interaction energies) indirectly using

probes positioned at intersections of a lattice (grid or box)

straddling a three dimensional region resembling a binding

site surrogate. Comparative Molecular Field Analysis

(CoMFA) [5], Molecular Shape Analysis (MSA) [6],

Molecular Similarity Matrices (for e.g., CoMSIA) [7], Dis-

tance Geometry [8], the Hypothetical Active Site Lattice

method (HASL) [9], Genetically Evolved Receptor Models

(GERM) [10], CoMPASS [11] etc. are the 3D-QSAR

methods developed on this concept and are exclusively based

on ligand information without taking into account the 3D

structure of the macromolecular target. Hopfinger and

workers [12] for the first time incorporated information on

the receptor in a QSAR analysis to devise the 4D-QSAR

methodology. Similarly, Vedani et al. have developed

methods beyond the third dimension by accounting for the

effect of different conformations as the fourth dimension

[13], the induced-fit mechanism as the fifth dimension [14],

and assessment of different solvation models as the sixth

dimension [15], additionally incorporating contributions

from the solvent and entropy factors into the analysis.

Significant advances have been made in recent years in

realizing the rational computations of ligand–receptor

binding thermodynamics [16]. Several endeavors in

QSARs have attempted to use the wealth of valuable

information contained in the ligand–receptor complexes, in

the last few years. The imperative landmarks in receptor-

ligand based QSAR methods are COMBINE (Comparative

Binding Energy) [17], AFMoC (Adaptation of Fields for

Molecular Comparison; a reverse variant of CoMFA) [18],

and CoRIA (Comparative Residue Interaction Analysis)

[19]. Our newly developed CoRIA methodology, based on

the descriptors that completely describe the thermody-

namic events involved in ligand binding, is able to explore

both the qualitative as well as the quantitative aspects of

the ligand–receptor recognition process. The concept has

already been validated on small organic molecules [19, 20].

In this paper we describe an extension of the CoRIA

approach, meant to deal with the problems of peptide

QSAR. In the new methodology, the ligand (peptide) is

fragmented into individual units i.e. at the level of amino

acid residues. The non-bonded (van der Waals and Cou-

lombic) and hydrophobic interaction energies of each

residue in the peptide with the receptor as a whole (termed

as reverse-CoRIA or rCoRIA approach) and with individ-

ual residues in the active site of the receptor (called the

mixed-CoRIA or mCoRIA method) are calculated and used

as independent variables along with other thermodynamic

descriptors, in statistical analysis. The advantage of this

formalism is that it makes explicit use of the structures of

ligand–receptor complexes to provide deeper insights into

important interactions at the level of both the receptor and

the ligand, which can directly be utilized in the design of

new molecules and receptors. The methodology can be

employed to forecast modifications in both the ligand as

well as the receptor, provided structures of some ligand–

receptor complexes are available.

Peptides and proteins are the essential elements in all

living systems. Peptides are preferred as drugs of choice due

to their high potency (low dose), specificity and selectivity

(reduced side effects). Rational de novo design of a peptide is

still a difficult task and their optimization is an awkward

process, since the complications increase with the length of

the peptide sequence. The experimental methods of opti-

mizing a peptide include a systematic scan of the peptide by

incorporation of a particular amino acid at a single position

one at a time, and then comparing the effect against the wild

type [21]. Several in silico approaches including 3D-QSAR

and simulation methods have also been used to complement

the experimental techniques in peptide optimization [22, 23].

The QSAR methods are singularly useful in solving prob-

lems related to the design of peptide ligands. Furthermore,

peptides are ideal candidates for the rCoRIA and mCoRIA

approaches, since it is relatively easier to fragment a peptide

rather than a small organic molecule.

The ideal method of optimizing a peptide lead structure

would be to examine the contribution of every possible

amino acid type at every possible position in the peptide,

towards the overall activity of the molecule. It is compar-

atively a straightforward exercise to optimize the activity

of peptides through a description of the nature and location

of every amino acid in the peptide sequence in the QSAR

formalism, since fragmenting the peptide into individual

residues is an intrinsic property of peptides. Various such

attempts have been made to design more potent peptides

using descriptor-based QSAR approaches. Sneath corre-

lated the chemical structure and biological activity of

peptides using the qualitative (interval) data of amino acids

as descriptors [24]. Kidera et al. described the natural

amino acids through 10 orthogonal vectors derived from

Principal Component Analysis (PCA) of 188 reported

properties [25]. Later, in a similar kind of work, Hellberg

et al. generated the principal properties, the so called z-

scores, by performing PCA on various descriptors of each

of the 20 natural amino acids and then applied them to

study the effect of variation in amino acid sequence on a

set of ACE dipeptide inhibitors [26]. Collantes et al.

studied the application of isotropic surface area (ISA) and

electronic charge index (ECI) of the side-chains of amino

acids as descriptors in a QSAR study of three peptide

sets—ACE dipeptide inhibitors, bradykinin potentiating

peptides and the bitter tasting dipeptides [27]. Often

researchers have also used various descriptors such as
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t-scores [27], MS WHIM scores [28] etc in peptide QSAR.

Recently, we reported a descriptor-based QSAR approach

for the optimization of peptides, assuming that each amino

acid residue makes an autonomous contribution to the

overall activity and that the total activity is the sum of the

constituent units [29]. The location and nature of every

amino acid residue in the peptide sequence was encoded in

the QSAR formalism using the ideology of the Hansch

(descriptor QSAR) and the Free–Wilson (binary QSAR)

methodologies to deduce the most favorable sequence of

amino acids in the nonamer peptides that bind to the Class I

MHC (Major Histocompatibility Complex) molecule HLA-

A*0201. All the above mentioned techniques of peptide

optimization are limited by the scope of ligand-based

QSAR methods. CoRIA and its variants which are founded

on the thermodynamics of ligand–receptor interactions are

better optimization tools since their implementation is not

restricted only to content derived from the ligand but also

incorporate receptor-rich information.

Methodology

Biological Data

The peptides that form stable complexes with Class I MHC

proteins such as HLA-A*0201 help in the activation of T-

cells which in turn allows the T-cell-mediated immune

system to distinguish body cells from invading antigens.

The prediction of peptide binding affinity to MHC mole-

cules is an important obligation for epitope prediction and

enables the identification of highly immunogenic proteins

which may function as valuable putative vaccines. Several

QSAR studies have investigated the binding of antigenic

peptides with MHC Class I molecules, and various key

interactions are now well understood [30–38]. This study

uses this peptide dataset therefore to demonstrate the

potential of the CoRIA approaches in substantiating what

has already been recognized.

The dataset used as a test bed in this study to validate the

three CoRIA formalisms (CoRIA, rCoRIA and m CoRIA)

includes eighty nonapeptides with affinity for the HLA-

A*0201 molecule, taken from the dataset compiled by

Doytchinova and Flower [22]. This dataset was simply

chosen because it has all the qualities necessary for the

successful development of a good QSAR model, like a

large number of molecules with good structural diversity

and a modest span of activity values, besides high quality

biological data. The binding affinities reported as IC50

values are based on a quantitative assay which determines

the inhibition of binding of a radiolabeled standard peptide

(FLPSDYFPSV) to detergent-solubilized MHC molecules

[39, 40]. The IC50 values were converted to the negative

logarithmic values (pIC50), which cover more than 3 log

orders. Table 1 lists the sequences and experimental pIC50

values of the peptides used in this study. The peptides were

divided into a training set consisting of 55 molecules and a

Table 1 Nonapeptides used in the QSAR study along with their

experimental pIC50 values

Mol. ID Peptide pIC50 Mol. ID Peptide pIC50

Training set (N = 55)

T1 GTLVALVGL 5.34 T29 ILHNGAYSL 7.13

T2 GIGILTVIL 6.00 T30 HLYSHPIIL 7.13

T3 AIAKAAAAV 6.18 T31 VVMGTLVAL 7.17

T4 ALAKAAAAI 6.21 T32 GLSRYVARL 7.25

T5 LLSSNLSWL 6.34 T33 YMLDLQPET 7.31

T6 GLACHQLCA 6.38 T34 YLEPGPVTV 7.34

T7 LIGNESFAL 6.42 T35 YLSPGPVTA 7.38

T8 ALAKAAAAV 6.42 T36 YMNGTMSQV 7.40

T9 MLLAVLYCL 6.48 T37 SVYDFFVWL 7.44

T10 KLPQLCTEL 6.48 T38 ITWQVPFSV 7.46

T11 ALAKAAAAL 6.51 T39 ITYQVPFSV 7.48

T12 AAGIGILTV 6.58 T40 YLSPGPVTV 7.64

T13 FLGGTPVCL 6.62 T41 VLIQRNPQL 7.64

T14 ILDEAYVMA 6.62 T42 SLYADSPSV 7.66

T15 NLSWLSLDV 6.64 T43 RLLQETELV 7.68

T16 VLQAGFFLL 6.68 T44 ILSQVPFSV 7.70

T17 VILGVLLLI 6.79 T45 QLFEDNYAL 7.76

T18 VTWHRYHLL 6.79 T46 YAIDLPVSV 7.80

T19 TLGIVCPIC 6.82 T47 FVWLHYYSV 7.82

T20 HLYQGCQVV 6.83 T48 YLMPGPVTV 7.93

T21 FAFRDLCIV 6.89 T49 WLDQVPFSV 7.94

T22 FLEPGPVTA 6.90 T50 YLYPGPVTV 8.05

T23 ITDQVPFSV 6.95 T51 YLFPGPVTV 8.24

T24 YVITTQHWL 6.98 T52 ILYQVPFSV 8.31

T25 LLCLIFLLV 7.00 T53 YLFPGPVTA 8.50

T26 HLAVIGALL 7.00 T54 YLWPGPVTA 8.50

T27 YLEPGPVTL 7.06 T55 ILWQVPFSV 8.77

T28 YTDQVPFSV 7.07

Test set (N = 25)

S1 LLSCLGCKI 5.45 S14 VLLDYQGML 7.33

S2 DPKVKQWPL 6.18 S15 ILSPFMPLL 7.35

S3 GLGQVPLIV 6.30 S16 IIDQVPFSV 7.40

S4 LLAVGATKV 6.48 S17 KIFGSLAFL 7.48

S5 IISCTCPTV 6.58 S18 LLLCLIFLL 7.59

S6 ALIHHNTHL 6.62 S19 ALMDKSLHV 7.77

S7 YMIMVKCWM 6.66 S20 YLYPGPVTA 7.77

S8 TLDSQVMSL 6.79 S21 LLFGYPVYV 7.89

S9 CLTSTVQLV 6.83 S22 ILKEPVHGV 7.92

S10 FLCKQYLNL 6.88 S23 FLLSLGIHL 8.05

S11 ALCRWGLLL 7.00 S24 YLWPGPVTV 8.13

S12 SIISAVVGI 7.16 S25 ILFQVPFSV 8.70

S13 YLEPGPVTI 7.19
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test set of 25 molecules based on the Tanimoto coefficient

using the ‘select diverse’ utility in Cerius2 (v 4.6; Accelrys

Inc., USA) [41].

Molecular modeling

Almost all the molecular modeling calculations were car-

ried out with InsightII (v 2005L, Accelrys Inc., USA) [42]

running on a Pentium IV computer with the Linux Red Hat

Enterprise 2.1 OS. Among the various X-ray crystal

structures of HLA-A*0201 in the Protein Data Bank [43],

the highest resolution complex of HLA Class I histocom-

patibility antigen with beta-2-microglobulin and the alpha

and beta chains of T-cell receptor bound to the nonameric

viral peptide GILGFVFTL (PDB id 1OGA) was selected

for docking the various peptides by superimposition. The

crystal structures of eight HLA receptor-nonapeptide

complexes (PDB ids 1AKJ, 1DUZ, 1HHG, 1HHJ, 1OGA,

1QEW, 1QSE, 1QSF) were used as templates to build

starting conformations of the 80 nonapeptides described in

Table 1. The choice of the template was governed by the

mutation matrix score of the sequence similarity between

the target (peptides in Table 1) and the template sequences

(the 8 PDB structures quoted above). The conformations of

the peptides were then built by replacing the original amino

acids in the eight template sequences with the appropriate

residues. For example, the test set molecule S21

(LLFGYPVYV) in Table 1 was generated by replacing Ala

at the eighth position in the template structure 1QSF

(LLFGYPVAV) with Tyr. The side chain conformations

were optimized using the ‘Rotamer Search’ option in In-

sightII so as to minimize any possible steric clashes

between them. Hydrogens were added to the molecules

corresponding to a pH of 7.3, keeping in line with the

conditions under which the binding assay was carried out.

The geometries of the nonapeptides were optimized within

the receptor complexes by subjecting them to an energy

minimization protocol with the CFF91 [44] force field,

using steepest descents and conjugate gradient methods, till

a gradient of 0.001 kcal/mol/Å was reached.

Descriptors

The thermodynamics of ligand–receptor binding involves

many events like interaction, solvation and entropy chan-

ges, all of which are taken into consideration in the CoRIA

approaches and are described below.

Interaction energies

The primary input to the CoRIA methodologies comes

from the specific non-bonded interactions between the

ligand and receptor as a consequence of their proximity. It

is an entirely enthalpic contribution and is equal to the total

energy of the complex minus the energy of the free protein

and free ligand. The major factors constituting the non-

bonded interaction energy are van der Waals (Evdw) and

electrostatic (Eele) interactions between the ligand and the

receptor, which are functionally calculated as follows:

Evdw =
Aij

r12
ij

� Bij

r6
ij

Eele ¼
qiqj

erij

where Aij and Bij are the repulsive and attractive term

coefficients between atoms i and j respectively, rij is the

interatomic distance between atoms i and j, qi and qj are the

atomic charges of interacting atoms i and j respectively,

and e is the dielectric constant. The non-bonded (van der

Waals and Coulombic) interaction energies were computed

using the CFF91 force field [44] in the ‘‘Discover’’ module

of the program InsightII.

Another major parameter contributing to the thermo-

dynamics of ligand–receptor binding is the hydrophobic

interaction between the ligand and receptor. It is a

complex process resulting primarily from entropic effects

related to the change in the orientation of solvent mol-

ecules in the solvation shell wrapping the solute

molecules, and also from the bulk form of solvent

molecules. The quantified values for the hydrophobic

interactions between the ligand and receptor were

obtained in the form of HINT scores [45] through the

‘‘HINT’’ module incorporated in the Sybyl program

(v 7.1, Tripos Inc., USA) [46]. The hydrophobicity cal-

culation in this program is based on the fact that

solubility data can be regarded as just another physical

property capable of mirroring the molecular interactions

between solute and solvent molecules. HINT calculates

the hydrophobic interactions between all atom pairs in a

molecule using the following equation:

B ¼
X

i

X

j

bij

where, bij = aiaj SiSj Rij Tij

bij = micro-interaction constant representing the attrac-

tion/interaction between atoms i and j

ai = the hydrophobic atom constant for atom i

Si = the solvent accessible surface area for atom i

Rij = the functional distance behavior for the interaction

between atoms i and j

Tij = a discriminant function designed to keep the signs

of interactions consistent with the HINT convention that

favorable interactions are positive and unfavorable

interactions are negative.
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All the interaction energies (van der Waals, Coulombic

and hydrophobic) between the nonameric peptides and the

receptor were computed separately for each of the three

formalisms CoRIA, rCoRIA and mCoRIA as shown sche-

matically in Fig. 1. The rectangular bar in the center

represents the nonapeptide segmented into individual

amino acids marked as P1, P2,…, P9. The nonapeptide is

surrounded by the active site residues (R1, R2,…, Rn) of

the receptor. The arrows indicate the interaction between

the respective residues of the peptide and the receptor.

The interacting residues in the CoRIA approach include

a total of 80 residues in the receptor within a radius of 10 Å

from the peptide. The interaction energies of each nona-

meric peptide (as a whole, not partitioned) with these

active site residues (R1, R2,…, Rn) of the receptor were

calculated (Fig. 1a). Thus for each peptide, there were 80

entries (i.e. columns) in the QSAR table, each for the van

der Waals, Coulombic and hydrophobic interactions. On

the other hand in the rCoRIA approach, the interaction

energies of each individual amino acid of the nonapeptide

(P1, P2,…, P9) with the receptor as a whole were calcu-

lated (Fig. 1b), which makes a total of 9 entries each for the

van der Waals, Coulombic and hydrophobic interactions.

Finally for the mCoRIA approach, nine subsets each con-

sisting of receptor residues lying within a 5 Å
´

radius from

the Ca atom of each of the nine residues of the peptide were

constructed (Fig. 1c) and the interaction energies of each

member of the subset with the respective residue in each of

the 9 positions of the peptide were computed (P1 $ R1,

R2,…, Rm, P2 $ R3, R4,…, Rn and so on). The total

number of entries for the interaction energies (van der

Waals, Coulombic and hydrophobic) in the mCoRIA

approach is 726.

Solvation free energy

Prior to binding, both the ligand as well as the receptor are

solvated, but as the interactions with water compete with

protein–ligand interactions, the solvent molecules reorga-

nize. The free energy of solvation of the ligand at

physiological conditions is the hydration free energy, which

is the difference between the free (e.g. cellular) and the

bound state. It corresponds to the energy required to strip the

solvent molecules off the ligand when changing from an

aqueous environment to a hydrophobic receptor cavity.

Since in many complexes, the conformation of the receptor

does not change much from the uncomplexed structure, the

net solvation free energy for the receptor (free and bound) is

negligible as compared to that of the ligand [47]. The elec-

trostatic contribution to the solvation free energy of the

peptides was calculated using the ‘‘Prepare’’ module in the

program QUASAR [48] which is based on the method

developed and validated by Still et al. [49].

Strain energy

Another important descriptor in the CoRIA approaches is the

contribution from changes in the conformation of the ligand

Fig. 1 Schematic

representation of the strategies

adopted for calculation of

interaction energy fields for (a)

CoRIA, (b) rCoRIA and (c)

mCoRIA approaches
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upon binding with the receptor. The conformational change

in the ligand upon binding to the receptor is much more

significant compared to that for the receptor and can be

estimated by the strain energy upon binding. The ligand

conformational energy can be calculated with a molecular

mechanics potential function as the energy associated with

changes in bond lengths, angles, torsions and non-bonded

interactions. The peptides extracted from their complexes

were minimized using a combination of 5,000 steps of

steepest descents followed by 50,000 steps of conjugate

gradients, to a maximum energy derivative of 0.001 kcal/

mol/Å. The difference in the energy of the ligands in their

docked conformations and the conformations minimized in

vacuo was taken as the energy due to conformational strain.

Entropy loss

The term ‘entropy loss’ accounts for the loss of torsional,

vibrational, rotational and translational free energies upon

binding. When two molecules bind, there is a loss of three

rotational and three translational degrees of freedom. The

loss of entropy due to reduced conformational flexibility

upon receptor binding was estimated using the ‘‘Prepare’’

module in the program QUASAR [48] following the phi-

losophy of Searle and Williams [50] by assigning an

amount of 0.7 kcal/mol to every freely rotatable (i.e. sin-

gle) bond, excluding the terminal –CH3 groups.

Solvent accessible surface area

Solvent accessible surface area (SASA) is used to define a

static or dynamic solvent-accessible region as a correction

factor for situations where the ligands expose a different

fraction of their surface to a solvent accessible part of the

binding site. In other words, the residual surface of the

ligand that is still accessible to the solvent after it has

bound to the receptor, is a measure of the depth of the

binding in the pocket. It correlates with the tightness and

more or less with the strength and number of binding

interactions with the pocket. SASA was also calculated

using the ‘‘Prepare’’ module in the program QUASAR [48].

Statistical analysis

All QSAR equations were generated with the G/PLS method

as implemented in the Cerius2 program (v 4.6) [41], which

combines the best features of the Genetic Function

Approximation (GFA) [51] and the Partial Least Squares

(PLS) [52] methodologies. Since interaction energies are not

perfectly orthogonal, pretreatment based on correlation

matrix was avoided. All descriptors in the dataset were

scaled according to their mean and standard deviations,

where each value in a given column is subtracted from the

column mean and then divided by the standard deviation of

that column, such that all the scaled descriptors have a mean

of zero and a standard deviation of unity. This scaling or

standardization assigns equal weight to all the descriptors

and puts them on the same platform for a meaningful sta-

tistical analysis. The models were developed with linear

terms and the optimal number of components was selected

as four for rCoRIA and six for CoRIA and mCoRIA

approaches, for which the crossvalidated r2 (i.e. q2) was

found to be the highest. To assure simple interpretation and

ease of use of the equations in designing new ligands, the

length of the equations was set to six terms; with a

smoothness value of 1.0 (the smoothness function controls

the bias in the scoring factor between equations with dif-

ferent number of terms). The number of generations was

limited to 10,000 and population size to 500. Crossover and

mutation probabilities of 50% (default settings) were used.

The models developed with a training set of 55 molecules

were validated internally using randomization at 99% con-

fidence interval, Leave-One-Out (LOO), Leave-Group-Out

(LGO, group of 5) and by boot-strapping procedures [53].

Externally, the models were evaluated for their predictive

power on a test set of 25 molecules.

Results and discussion

The QSAR equations and statistical analysis of the best

models developed for the three different approaches are

reported in Tables 2 and 3 respectively. The models con-

structed by all three QSAR approaches were found to be

statistically significant with correlation coefficients (r2) of

more than 0.8. After randomization of the activity data, the

r2 values decrease to smaller numbers, negating the pos-

sibility of a chance correlation. Cross-validation by leave-

one out and leave-five-out procedures returned statistically

significant q2 values. The boot-strapping results further

advocated the robustness of the models. The predictive r2

of all the models on the test set was also found to be more

than 0.6, indicating a good predictive power of the models

for molecules outside the training set.

The plots of experimental vs predicted pIC50 values of

the peptides in the training and test sets for the best CoRIA,

rCoRIA and mCoRIA models are shown in Fig. 2. All 500

equations of each model were analyzed for the frequency

with which a particular descriptor appears in the population

of equations. The plots of the most frequently occurring

descriptors for different models are shown in Fig. 3. The

frequency of occurrence of different descriptors is shown

on the X-axis as a percentage, whereas the signs of the
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terms in the equations are shown on the Y-axis. Descriptors

with positive coefficients in the equations are shown as

positive frequency values, whereas those with negative

coefficients appear with negative frequencies. A detailed

analysis of the models obtained by the three CoRIA

approaches is described below. However, while analyzing

the results of the CoRIA methodologies one should bear in

mind that more negative the value of the non-bonded (i.e.

van der Waals and Coulombic) interaction energies,

stronger is the interaction between the ligand and the

receptor. Similarly positive values of these interaction

energies imply weaker interaction between the respective

groups of the ligand and the receptor. However in the case

of the hydrophobicity, favorable interactions have positive

values and unfavorable interactions are negative.

CoRIA analysis

In the CoRIA approach, besides other descriptors, the

central elements are the interaction energies of the entire

ligand (nonameric peptide) with individual residues in the

active site of the receptor (Fig. 1a). An analysis of all

the equations reveals that hydrophobic and van der Waals

interactions are the major forces driving the binding of the

peptides with the receptor. The HINT scores of receptor

residues Gly26, Glu58 and Lys66 have positive coefficients

in the QSAR equations (Fig. 3a), suggesting that enhancing

the hydrophobic interaction of the peptides through these

residues may significantly improve their binding with the

receptor. On the other hand, the van der Waals interaction

energies of the receptor residues Leu160 and Arg169 with

the peptides appear as negative coefficients in the equations

(Fig. 3a). This indicates that an increase in the biological

activity can be gained by strengthening the van der Waals

interactions of the peptides with these residues.

r CoRIA analysis

The rCoRIA formalism, in contrast to CoRIA, involves the

calculation of the interaction of the individual amino acids

of the nonameric peptides with the receptor (active site

residues) as a single unit (Fig. 1b). An examination of the

QSAR equations and the frequency plots (Fig. 3b) of the

rCoRIA models shows that residues at positions 1, 2, 3 and

8 in the peptides have a greater influence on the biological

activity than others. Residues at remaining positions in the

peptides show relatively smaller contributions towards

binding. The results indicate that the N-terminal residues 1,

2 and 3 and the C-terminal residue 8 in the peptides act as

anchors imparting high-affinity for binding to MHC class-I

molecules, which is in line with earlier studies [39, 54–57].

The Coulombic interaction of the receptor with the residue

at position 2 in the peptide has positive coefficient in the

pool of equations (Fig. 3b), suggesting that an overall

positive value of the Coulombic interaction energy of the

receptor with the amino acid at position 2 will favor

Table 2 Best models developed by the three CoRIA approaches

Model Best QSAR equation

CoRIA pIC50 = 7.07-0.28 (V_L160) + 0.19 (H_E58)-0.46 (V_R169) + 0.32 (H_G26) + 0.20 (V_D77)

r CoRIA pIC50 = 7.10-0.37 (C_P8)-0.34 (V_P3) + 0.01 (C_P2)-0.29 (V_P1) + 0.08 (H_P7)

m CoRIA pIC50 = 7.15-0.19 (C_P2_G100) + 0.22 (H_P8_A69)-0.23 (H_P2_R97)-0.35 (V_P3_L160)-0.38 (V_P1_G162)

C, V and H—Coulombic, van der Waals and Hydrophobic interactions respectively

P1, P2, P3 etc—Residue at positions 1, 2 and 3 respectively in the peptide

V_L160—van der Waals interaction of the receptor residue Leu160 with the peptide

C_P8—Coulombic interaction of the residue at position 8 in the peptide with the receptor

H_P2_R97—Hydrophobic interaction of the residue at position 2 in the peptide with the receptor residue Arg97

Table 3 Statistical analysis of the QSAR models for the three approaches

Model r2 r2 (BS) SD (BS) PRESS r2 (random) q2 (LOO) q2 (LGO) rpred
2 p2

CoRIA 0.820 0.796 0.013 6.85 0.340 0.759 0.750 0.610 0.609

r CoRIA 0.817 0.804 0.005 6.72 0.324 0.778 0.778 0.602 0.601

m CoRIA 0.844 0.835 0.003 5.33 0.305 0.789 0.737 0.619 0.618

Number of molecules in training and test sets are 55 and 25 respectively; r2: correlation coefficient; r2 (BS) and SD (BS): mean values of r2 and

standard deviation respectively from Boot-strap analysis; PRESS: Predictive Residual Sum of Squares; r2 (random): mean value of r2 after

randomization at 99% confidence interval; q2 by LOO and LGO: cross-validation correlation coefficient by Leave-One-Out and Leave-Group-

Out (group of 5) respectively; rpred
2 : predictive correlation coefficient of test set; p2: predictive correlation coefficient of test set as defined by

Vedani et al. [13–15]

J Comput Aided Mol Des (2008) 22:91–104 97

123



binding. On the hydrophobic front, owing to the positive

coefficient of the HINT score of the residue at position 2 in

the peptide with the receptor (Fig. 3b), increasing the

hydrophobic character of the amino acid at this position

will favor binding. Concerning position 8 in the peptide,

strengthening the Coulombic interaction while simulta-

neously reducing the hydrophobic interaction is predicted

to amplify binding, as suggested from the negative signs of

the coefficients for the Coulombic and HINT terms for this

residue in the population of equations. The HINT score of

the residue at position 1 in the peptide with the receptor has

a positive coefficient in the equations (Fig. 3b), recom-

mending an increase in the hydrophobic interaction of this

position in the peptide with the receptor to favor binding as

discussed earlier. In tandem, an increase in the van der

Waals interaction of the residue at position 1 in the peptide

with the receptor is suggested to improve binding, as

shown by the negative coefficient of this interaction in the

equations (Fig. 3b). The rCoRIA analysis also indicates

that the hydrophobic interaction of the residues at position

7 in the peptide with the receptor should be improved to

enhance binding, owing to the positive coefficients of this

interaction in the equations (Fig. 3b). Similarly, the van der

Waals interaction of the amino acids at positions 3 in the

peptides with the receptor should be strengthened to ensure

tighter binding, due to the negative coefficients of this

interaction in the equations (Fig. 3b).

A careful examination of the models shows that hydro-

phobic amino acid residues with bulky extended side chains

like Trp, Phe, Tyr, Leu and Ile are ideal at positions 1 and 3 in

the peptides. Neutral or hydrophobic amino acids like Val,

Leu, Ile, Met and Pro are recommended at positions 2 and 7,

whereas charged residues like Arg, Lys, His, Glu, and Asp

are favored at position 8 in the peptide. Most of these pref-

erences for ligand residues are consistent with the previous

studies [22, 29, 35–38] except for position 8 where

Fig. 2 Plots of experimental vs predicted pIC50 values of the peptides in the training and test sets for the best CoRIA, rCoRIA and mCoRIA

models

98 J Comput Aided Mol Des (2008) 22:91–104

123



hydrophilic short chain amino acids have been suggested,

instead of the charged ones gleaned from this study. Based on

the rCoRIA results, a hydrophilic charged residue at position

8 in the peptide will be most suitable.

mCoRIA analysis

The major drive behind the mCoRIA formalism is the fact

that a greater detail of the thermodynamics of binding can

be uncovered when both the receptor and the ligand are

broken down into small units and the thermodynamic

properties evaluated for each of these individual units

(Fig. 1c). This fragmented receptor-ligand approach gives

explicit information of the crucial interactions of amino

acids in the peptide with specific residues of the receptor

within the binding cavity. The frequency analysis of the

descriptors appearing in the QSAR equations (Fig. 3c)

highlights various interactions that rule the binding of

amino acids at particular positions in the peptide, with

specific residues in the receptor. Like the rCoRIA results,

the mCoRIA models also suggest that the interaction of the

receptor with the amino acids at positions 1, 2 and 3 in the

peptides dictates the overall strength of binding. For

example according to the mCoRIA analysis, the strength of

the Coulombic interaction between the amino acid at

position 2 in the peptides and the receptor residue Tyr27

needs to be reduced for tighter ligand binding, due to the

positive coefficients of this interaction in the equations

(Fig. 3c). This observation is partly supported by the

rCoRIA equations which show a positive coefficient for the

Coulombic interaction of the receptor with the residue at

position 2 in the peptides (Fig. 3b). As highlighted by the

models, the HINT scores of the interactions between the

amino acid at position 2 in the peptides with the receptor

residues Phe8 and Arg97 have negative coefficients in the

equations (Fig. 3c), indicating that reducing these hydro-

phobic interactions will favor the binding process. In

conjunction with the rCoRIA results, to improve the pep-

tide-receptor binding it is necessary to enhance the

hydrophobic interaction of the residue at position 2 in the

peptide with the receptor as a whole (Fig. 3b), but the

interaction is required to be abridged specifically with the

receptor residues Phe8 and Arg97.

The van der Waals interactions of the residue at position 1

in the peptide with receptor residues Gly162 and Arg169

have negative coefficients in the QSAR equations (Fig. 3c),

indicating that binding can be enhanced by increasing the

strength of these interactions. This observation is justified

partly by the rCoRIA results which suggest that van der

Waals interaction between the receptor and the ligand resi-

due at position 1 should be improved (vide supra), and also

partly by the CoRIA results which recommends an increase

in the van der Waals interaction between the peptide and the

receptor residue Arg169 (vide supra). Similarly in order to

improve binding according to the mCoRIA analysis, the van

der Waals interaction of the residue at position 3 in the

peptide with receptor residues His114 and Leu160 should be

strengthened, due to the negative coefficients of these

interactions in the equations (Fig. 3c). This observation is

validated partly by the rCoRIA results which display a

negative coefficient for van der Waals interaction between

the receptor and the residue at position 3 in the peptide

(Fig. 3b), and partly by the CoRIA results which show a

negative coefficient for the van der Waals interaction of the

peptide with the receptor residue Leu160 (Fig. 3a).

It is worth mentioning that descriptors like free energy of

solvation, strain energy, entropy etc also appear in the QSAR

models derived for the three CoRIA approaches, but their

Fig. 3 Frequency plots of descriptors appearing in the equations of

the (a) CoRIA, (b) r CoRIA and (c) mCoRIA models. C, V and H—

Coulombic, van der Waals and hydrophobic interactions respectively.

P1, P2, P3 etc—Residue at positions 1, 2 and 3 respectively in the

peptide. H_G26—Hydrophobic interaction of the receptor residue

Gly26 with the peptide. C_P2—Coulombic interaction of the residue

at position 2 in the peptide with the receptor. V_P1_G162—van der

Waals interaction of the residue at position 1 in the peptide with the

receptor residue Gly162
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frequency of occurrence is too low to be considered signifi-

cant for peptide optimization. One explanation for the lack of

appearance of these terms in the final equations could be due

to the fact that for the present dataset of peptides with similar

length and character, the free energy of solvation may not be

a major determinant in the overall binding of these peptides

to the MHC molecules. Another possibility is that some more

in-depth theory or advanced methodology needs to be

incorporated in the calculation of these properties, so that

they can be picked up quickly and more frequently by a

statistical tool, to be considered as important as other inter-

action terms in designing new compounds. Also, there is

ample scope for improvement in the CoRIA methodologies

by taking into consideration solvation of the entire ligand–

receptor complexes followed by extensive sampling of

configurations using molecular dynamics or Monte Carlo

simulations prior to evaluation of the thermodynamic

descriptors, and inclusion of the ligand–receptor intermo-

lecular hydrogen-bonding terms preferably at the level of

individual unit of the receptor and the ligand.

Combined analysis of QSAR models

The important descriptors that appear in the CoRIA,

rCoRIA and mCoRIA models are presented in Table 4a–c

Table 4 Important (a) CoRIA, (b) rCoRIA, (c) mCoRIA, descriptors and their values for some selected molecules

(a) CoRIA

Mol pIC50 H_G26 (+)@ H_E58 (+) H_K66 (+) V_L160 (-) V_R169 (-)

T55 8.770 -0.552 -0.386 -0.205 -1.892 -2.099

T39 7.480 -2.209 -0.252 -1.597 -1.537 -2.099

T31 7.174 -0.850 0.468 -0.813 0.082 0.161

T23 6.947 -1.529 0.468 -1.143 0.663 -0.969

T18 6.793 -0.850 -0.252 -1.061 -0.160 0.839

T2 6.000 -0.170 0.468 0.252 0.844 1.743

T1 5.342 -1.529 0.468 0.355 0.364 1.743

(b) rCoRIA

Mol pIC50 C_P2 (+) C_P8 (-) H_P1 (+) H_P2 (+) H_P7 (+) H_P8 (-) V_P1 (-) V_P3 (-)

T55 8.770 -0.396 -0.568 -0.786 0.897 -0.066 -0.626 -0.315 -2.741

T39 7.480 -2.552 -0.584 -2.225 -1.046 -0.331 -0.701 -0.941 -1.817

T31 7.174 0.440 0.329 -0.805 -0.514 0.510 -0.236 0.121 -0.136

T23 6.947 -2.029 -0.528 -0.283 0.091 1.285 -0.424 -0.372 1.443

T18 6.793 -3.352 0.559 0.032 -1.674 0.909 0.455 0.258 -1.487

T2 6.000 0.527 0.430 -0.037 -0.489 -0.131 0.211 1.919 1.123

T1 5.342 -2.772 0.226 0.139 -1.038 0.627 1.344 1.894 0.011

mCoRIA

Mol pIC50 C_P2_Y27 (+) H_P2_F8 (-) H_P2_R97 (-) V_P1_G162 (-) V_P1_R169 (-) V_P3_H114 (-) V_P3_L160 (-)

T55 8.770 0.005 -1.122 -2.107 -0.489 -0.861 -1.746 -1.991

T39 7.480 -0.965 0.735 0.775 -0.489 -1.125 -2.069 -1.607

T31 7.174 1.260 0.735 0.775 -0.032 -0.069 0.709 -0.016

T23 6.947 -0.337 1.354 1.063 -0.945 -0.861 0.106 0.801

T18 6.793 -3.417 1.354 -1.243 0.728 0.723 -1.617 -0.081

T2 6.000 0.803 0.735 0.775 1.945 2.043 1.290 0.910

T1 5.342 -4.786 1.354 1.063 1.489 1.515 0.569 0.125

@ Signs within the parenthesis refer to the signs of the coefficients of the respective descriptor in the QSAR equations

C, V and H—Coulombic, van der Waals and hydrophobic interactions respectively

P1, P2, P3 etc—Residue at positions 1, 2 and 3 respectively in the peptide

H_G26—Hydrophobic interaction of the receptor residue Gly26 with the peptide

C_P2—Coulombic interaction of the residue at position 2 in the peptide with the receptor

V_P1_G162—van der Waals interaction of the residue at position 1 in the peptide with the receptor residue Gly162
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respectively, along with their values for some selected

molecules. In this section, we look at how the values of

these descriptors for some molecules are a reflection of

their activity.

Molecule T55, the most active in the set has been taken

as the reference for a comparison of the descriptors with

other molecules, to understand the effect of the descriptors

on the biological activity. According to the CoRIA model

(Table 4a), the lower activity of molecule T39 compared to

molecule T55 is the result of its reduced (more negative/

less positive) hydrophobic interaction with the receptor

residues Gly26 and Lys66 as well as due to its abridged

(less negative/more positive) van der Waals interaction

with the receptor residue Leu160.

According to the rCoRIA model, the lower activity of

molecule T39 is partly due to strong (more negative/less

positive) Coulombic interaction energy of its residue at

position 2, reduced (more negative/less positive) hydro-

phobic interaction of its residues at positions 1, 2 and 7, as

well as decreased (less negative/more positive) van der

Waals interaction of its residue at position 3 with the

receptor.

As explained by the mCoRIA model, molecule T39 is

less active than molecule T55, partly because of stronger

[increased (less positive/more negative)] Coulombic inter-

action of its residue at position 2 with the receptor residue

Tyr27. The decrease in its activity also ensues from the

increased (more positive/less negative) hydrophobic inter-

action of its residue at position 2 with the receptor residues

Phe8 and Arg97. Weaker [reduced (less negative/more

positive)] van der Waals interaction of its residue at posi-

tion 3 with the receptor residue Leu160 is also responsible

to a certain extent for the lower activity of molecule T39

compared to molecule T55. Figure 4 shows a stereo view

of molecule T55 surrounded by important active site resi-

dues reflected in the mCoRIA equations. The interactions

between specific residues of the ligand and the receptor,

that are required to be strengthened and weakened

according to the mCoRIA model, are shown by green and

red arrows respectively. Interestingly, many of the elec-

trostatic (and some of the van der Waals) interactions

shown to be imperative by the CoRIA approaches are

distant from the peptide molecule (up to 10 Å). This

indicates that along with the direct interactions, indirect

long-range interactions also significantly contribute

towards the stability of the ligand–receptor complexes.

Such observations have also been described in the literature

[34, 58–60].

Likewise, the activity of the remaining molecules can be

rationalized on the basis of the CoRIA equations (i.e. as a

result of weak hydrophobic interaction with the receptor

residues Gly26, Glu58 and Lys66, and/or weak van der

Waals interaction with receptor residues Leu160 and

Arg169) or as explained by the rCoRIA and mCoRIA

models.

Application of CoRIA approaches in peptide

optimization

In an attempt to demonstrate the usefulness of different

CoRIA methodologies in designing new peptides with

improved binding affinity for Class I MHC molecule HLA-

A*0201, the most active peptide in the dataset T55 (with

sequence ILWQVPFSV and pIC50 8.770) was structurally

modified based on the results of CoRIA, rCoRIA and

mCoRIA approaches. For example, the residue (Ile) at

position 1 in molecule T55 was replaced with the bulkier

amino acid Phe, in order to strengthen its hydrophobic and

van der Waals interaction with the receptor as a whole (as

suggested by rCoRIA, Fig. 3b) and more precisely with the

receptor residues Gly162 and Arg169 (as recommended

partly by CoRIA as well as mCoRIA models, Fig. 3a and c

respectively). Both single as well as double amino acid

substitutions were made to generate new HLA binding

peptides as shown in Table 5. After structural modifica-

tions, the peptide-receptor complexes were subjected to a

thorough minimization procedure as discussed in the

Fig. 4 A stereoview of the

active site of HLA-A*0201

showing molecule T55 (green

color, backbone atoms drawn)

with important receptor residues

(blue color, heavy atoms only)

appearing in the mCoRIA

equations. Green and red arrows

indicate the interactions

between specific residues of the

ligand and the receptor, that are

required to be increased and

decreased respectively as per

the mCoRIA model
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methodology section, and the non-bonded (van der Waals

and Coulombic) and hydrophobic (in terms of HINT

scores) interaction energies calculated separately for each

of the three methodologies CoRIA, rCoRIA and mCoRIA.

The activities of the newly designed peptides were then

predicted by substituting the interaction energies into the

best QSAR equations of the three models (Table 2). For

comparison, the activities of the new peptides were also

predicted from various available online servers like

SVMHC [61], PREDEP [62], MHCPRED [33, 63, 64],

MULTIPRED [65], MHCBPS [66] and NETMHC [67],

specifically for their binding affinity towards Class I MHC

molecule HLA-A*0201. Since the prediction end points (as

shown in Table 5) corresponding to the activities/binding

affinities of the peptides are different in case of some of

these servers, a direct comparison may not be possible

between different approaches (inter-methodology compar-

ison), but the activities of the new peptides can certainly be

compared within an approach/methodology (intra-meth-

odology comparison) with the predicted values of the most

active molecule, T55 (highlighted as italic). The predicted

activity values by all the approaches for molecule T55 and

the newly designed peptides are listed in Table 5, with the

substituted amino acids highlighted as bold. Interestingly,

with the exception of peptide 1 (FLWQVPFSV) which is

predicted to be better than molecule T55, by nearly all the

online servers, almost none of the other singly substituted

peptides are predicted by the online servers to be as active

as predicted by the three CoRIA methodologies. However,

the new peptides generated by dual amino acid substitution

are predicted to be much more active than molecule T55 by

practically all the servers. It is apparent from this table that

new peptides designed in line with the suggestions of the

three CoRIA approaches by modifying more than one

amino acid has improved binding affinity for Class I MHC

molecule HLA-A*0201 compared to those designed on the

basis of single amino acid substitutions.

Conclusions

In the present work, the recently developed QSAR for-

malism CoRIA [19], has been explored and extended

further as two related methodologies—the reverse-CoRIA

(rCoRIA) and mixed-CoRIA (mCoRIA) approaches. In the

rCoRIA technique, the ligand is fragmented into its con-

stituent units and the interaction of each individual unit is

calculated with the receptor as a whole. In the mCoRIA

approach, both the ligand as well as the receptor are

fragmented into smaller units or residues, and the interac-

tion of each unit of the ligand is calculated with individual

active site residues of the receptor. The efficiency of the

three approaches (CoRIA, rCoRIA and mCoRIA) has been

tested on a standard dataset of diverse nonamer peptides

that bind to the Class I major histocompatibility complex

molecule HLA-A*0201. The QSAR models developed

from the three approaches yield statistically significant

results and throw deep insight into the factors that govern

ligand–receptor binding. The methodologies have been

able to reveal all structure activity relationships reported

for this class of molecules as well uncover some that were

hitherto unknown. Thus, the approach can confidently be

used on other datasets for which nothing or very little SAR

is known.

The CoRIA, rCoRIA and mCoRIA approaches work in

tandem to successfully dig out all crucial interactions that

modulate the binding of the nonameric antigens to the HLA

receptor for which some information was available from

earlier studies. The equations derived by the three

approaches have also uncovered various other aspects that

have not yet been explored and may have a hidden role in

ligand–receptor recognition process. The methodologies

can be used to extract position-specific information about

the type of residues or the nature of interactions that are

important for binding and can also serve as a guide for

conducting mutation studies directed towards understand-

ing ligand–receptor thermodynamics and for optimizing

lead molecules. The rCoRIA and mCoRIA methodologies

involve fragmentation of the ligand (in addition to the

receptor) into smaller units, and in this study was illus-

trated for the peptide class, as peptides can very logically

be broken down into individual units. Application of these

techniques to small organic molecules is underway. In

conclusion, the present QSAR techniques draw out all the

major thermodynamic events that govern ligand–receptor

binding and can be used as a powerful tool to support the

drug design process.
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