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Abstract Within the last few years a considerable

amount of evaluative studies has been published that

investigate the performance of 3D virtual screening

approaches. Thereby, in particular assessments of protein–

ligand docking are facing remarkable interest in the sci-

entific community. However, comparing virtual screening

approaches is a non-trivial task. Several publications,

especially in the field of molecular docking, suffer from

shortcomings that are likely to affect the significance of

the results considerably. These quality issues often arise

from poor study design, biasing, by using improper or

inexpressive enrichment descriptors, and from errors in

interpretation of the data output. In this review we analyze

recent literature evaluating 3D virtual screening methods,

with focus on molecular docking. We highlight problem-

atic issues and provide guidelines on how to improve the

quality of computational studies. Since 3D virtual screen-

ing protocols are in general assessed by their ability to

discriminate between active and inactive compounds, we

summarize the impact of the composition and preparation

of test sets on the outcome of evaluations. Moreover, we

investigate the significance of both classic enrichment

parameters and advanced descriptors for the performance

of 3D virtual screening methods. Furthermore, we review

the significance and suitability of RMSD as a measure for

the accuracy of protein–ligand docking algorithms and of

conformational space sub sampling algorithms.
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Introduction

Virtual screening (VS) techniques are well established tools

in the modern drug discovery process and an almost

unmanageable number of different 3D VS techniques are

available today [1, 2]. Along with that, a plentitude of

comparative performance assessments has been published

in recent years in order to support computational chemists

in finding the best software, particularly in the field of

protein–ligand docking. However, the individual needs and

aims of VS campaigns differ considerably [3], and so do the

fields of application of different algorithmic approaches.

Therefore, comparing different VS algorithms is challeng-

ing, particularly in case of protein–ligand docking [4].

A large part of the comparative studies suffers from

shortcomings that are likely to decrease the significance of

the results. Chen and co-workers state that it appears to be a

general observation that ‘only very rarely are independent

workers able to match the docking success rates achieved

and published by the vendors of docking programs.’ [3].

Similar issues are also reported by Kontoyianni et al. [5].

Cole et al. [4] have provided an overview of some of the
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issues responsible for these difficulties, focusing on com-

parative studies and data analysis of docking campaigns. In

this review, we want to highlight and discuss issues that

emerge during the evaluation of 3D VS tools. We provide

guidelines on how to evaluate 3D VS techniques—from

study design to data analysis.

The review is organized according to the general

workflow of an assessment of VS methods: We start with

the build up of a representative test set and discuss the

preparation of compounds for VS. Subsequently, we sum-

marize issues that should be considered during protein

target selection, and preparation. The review continues

with the correct setup and setup definition of VS runs and

general considerations. Next, we focus on data elaboration,

assessment methods, and different benchmarks for the

performance of VS techniques. Finally we provide con-

clusions and recommendations for high quality evaluations.

Library design for the assessment of virtual screening

approaches

The performance of VS approaches is mostly measured in

terms of their ability to discriminate between active and

inactive compounds. Actives and inactives are thereby

injected to the VS workflow either as one mixed library or

as two dedicated collections. In the latter case, the resulting

hit lists are combined before the actual analysis of the

results. The collection and preparation of these compounds

at the very beginning of an investigation represents the

Achilles’ heel of any evaluation of VS protocols. Shortages

within this early stage of the VS workflow are considerably

severe, but fortunately these issues can be excluded rather

easily by considering some caveats discussed below.

Collection of active compounds

Profound conclusions on the performance of a certain VS

protocol request a comprehensive set of active compounds.

Of course the exhaustive collection of all known active

compounds will meet this prerequisite in the best way.

However, as described below, actives and inactives have to

be in a reasonable quantitative relationship and therefore it

may be better to consider only a certain amount of char-

acteristic representatives for each relevant chemotype. Test

sets should aim at diversity, which might be a challenge if

there is only little knowledge on a target available.

Therefore, authors of evaluative studies tend to use well-

established targets where a fair amount of known actives

and knowledge is available.

Another aspect crucial during the selection of actives for

certain VS approaches is a common mechanism of binding

of the ligand to the protein. Since, e.g., pharmacophore

models in general are able to represent only one specific

binding mode, in this case one has to make sure that either

all compounds of the active set are sharing this binding

mode or that all different binding modes are considered by

dedicated pharmacophores in a parallel screening [6–8]

approach. Aiming at maximum diversity may be in conflict

with the consideration of compounds that show a common

binding mode. Sometimes the binding mode is unknown or

not confirmed by experimental structural data. In this case

it is recommended to switch to another, more established

target (if possible, of the same protein family).

Evaluations considering quantitative data (e.g., perfor-

mance assessments of scoring functions and their ability to

predict the protein–ligand affinity) require reliable activity

data. All information should be obtained from the same

bioassay and preferably also from the same laboratory. 3D

approaches require that data gained in the laboratory be

based on the pure compound, with defined stereochemistry.

Assertions based on mixtures are in general ineligible, even

if there is a vast surplus of a certain stereochemical config-

uration. In this case it cannot be excluded that the activity

measured experimentally is caused by a highly active

enantiomer that is present at a low concentration level. This

problem is particularly evident in the case of CoMFA/

CoMSIA studies [9]. Furthermore, quantitative evaluations

require actives that cover a broad range of activity. For

example, the quantitative pharmacophore model generation

algorithm HypoGen [10], as implied to the software package

Catalyst [11], requires an activity range of at least four orders

of magnitude. Predictions based on training sets consisting

of less than 16 actives cannot be considered reliable [10].

Collection of inactive compounds

Retrospective studies on the ability of VS approaches to

separate active compounds from inactive ones are of course

most reliable if based on a test set comprising known active

and verified inactive compounds. In this case, a large pool

of experimentally confirmed inactive compounds is nee-

ded, besides the collection of known actives. In particular

academic research suffers from lacking data since inactive

molecules are in general not available in the public domain,

at least not in the required amount, and even in industrial

research the generation of these data may be challenging

and expensive. Therefore, it is common practice [12] to

collect so-called decoys (i.e. molecules presumably inac-

tive against the examined target) from structural pools or to

create them with a virtual combinatorial library [13] gen-

erator like, e.g., ilib:diverse [14] and SmiLib [15].

It has been confirmed by several studies that the char-

acteristics of the known inactives or decoys chosen for VS
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assessments have significant impact on the enrichment of VS

approaches [12, 16, 17]. Both known inactives and decoys

are required to meet some essential prerequisites in order to

achieve meaningful results. The most important need for

decoys is the comparability of their physicochemical prop-

erties to the actives set. Probably one of the best examples for

the hidden impact of decoy characteristics on the enrichment

of VS techniques is the direct dependence of docking scores

on the molecular weight of the ligands [3]. Verdonk et al.

[12] investigate this issue by structure-based VS against

neuraminidase, PTP1B, CDK2 and the estrogen receptor

(ER) using GOLD [18, 19]. They demonstrate that docking

campaigns conducted against smaller decoys than actives

achieve significantly higher enrichment compared to larger

decoys. Decoys of high molecular weight achieve higher

docking scores on average and are therefore likely to obtain

higher ranks than their smaller active counterparts. In fact,

these docking results merely reflect the difference in 1D

molecule properties and not the performance of the 3D VS

approach [12]. This bias in lower dimensions is of course not

only due to different molecular weight. If a scoring function

for example considers hydroxy groups and their hydrogen

bonding ability as a positive contribution to protein–ligand

binding compounds containing more of these features will be

promoted and considered in the hit list on a higher rank. In

turn, inactives containing several hydroxy groups would be

preferred over active compounds that contain less of these

moieties. They provide evidence that it is not sufficient to just

use a random library (e.g., subsets of public databases) for

performance assessments, but it is essential to build up a so-

called focused library that reflects the physicochemical

properties of the actives set. Verdonk and co-workers

therefore propose a simple and very efficient method for the

selection of meaningful decoys based on only three basic 1D

properties that assess the distance (D) between two mole-

cules (i, j): (i) the number of hydrogen-bond donors (ND);

(ii) the number of hydrogen-bond acceptors (NA); (iii) the

number of nonpolar atoms (NNP).

For each active compound the distance to the nearest

other active compound is assessed using Eq. 1. Subse-

quently, the minimum distances are averaged over all

active compounds (Dmin). Now, for each active compound

of the test set a certain number of compounds is randomly

chosen from a pool of inactive compounds. These com-

pounds must not exceed the maximum average distance

Dmin. This procedure allows efficient collecting of high

quality decoy sets for the evaluation of VS methods.

The largest public available database of decoys that con-

siders comparable 1D properties is the Directory of Useful

Decoys (DUD) [16], available from http://dud.docking.org/.

The DUD is a collection of 36 decoys for each of the 2,950

collected actives of 40 different targets (95,316 in total, after

duplicate removal). The compounds represent a subset of the

ZINC database with physical properties (e.g., molecular

weight, calculated LogP) [20].

Decoys should be topologically dissimilar with respect to

the active compounds. Else it is likely that a number of decoys

might be identified as actives, which they actually could be.

This would lead to a significant amount of false positive hits,

an unwanted bias. The DUD also meets this requirement.

In concordance with the actives set also the inactive

compounds should be based on diverse scaffolds in order to

allow conclusions on the overall reliability of a VS method.

Last but not least, an adequate ratio of actives and decoys is

necessary for both statistical reasons and in order to satisfy

comparability to real-life application scenarios [21]. Only

evaluations using a ‘high-quality haystack’ allow profound

conclusions on the performance of VS methods.

Besides the considerations mentioned above, there are

some further needs to be met for the evaluation of VS pro-

grams. Current studies show a clear tendency toward using

high affinity actives for performance assessment. This does

not reflect the scenario of a realistic VS campaign, where we

are looking for new hits that can be transformed later on into

leads [3]. These structures are in general considerably smaller

than high affinity drug molecules and may therefore achieve

different (i.e. most of the time inferior) enrichment rates

during VS. In the last few years the trend toward screening for

smaller lead structures has been even intensified.

Preparing compounds for virtual screening

Once a test set suitable for VS evaluations is available, the

molecular library has to be conditioned to meet the indi-

vidual needs of the investigated VS approach. There are

several pitfalls to consider during compound preparation in

order to avoid artificial enrichment and bias.

File formats, import/export issues, and hybridization

states

Everyday experience with computational tools, regardless

if published recently or if being well established or

D i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ND ið Þ � ND jð Þð Þ2 þ NA ið Þ � NA jð Þð Þ2 þ NNP ið Þ � NNP jð Þð Þ2
q

ð1Þ
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commercial, teaches computational chemists to be aware of

file formats. Every read in or read out of structural data,

every file conversion is a possible risk for information loss

or data misinterpretation. Special care should be taken on

less conspicuous issues like, e.g., stereochemistry. File

formats may have different flavors that are not correctly

interpreted by all software tools. Depending on the soft-

ware settings, the stereochemical information may be

derived from the 3D input geometry and the chirality flags

might be ignored or vice versa. Also the representation and

handling of aromatic moieties differs and some programs

(e.g., feature-based pharmacophore modeling programs)

may have difficulties if the input data does not include

appropriate aromatic annotations.

Furthermore, great care should be taken especially on

ligand structures gained from the PDB [22]. The PDB

file format does not contain hybridization states of the

ligands and bond types. Therefore, the correct structure

is derived from the atom coordinates during data

import. However, inaccuracies in experimental data

complicate the interpretation of the molecular structure.

Advanced algorithms for the automated identification

are available, yet these tools need manual validation of

the ligand structures. LigandScout [23] is a pharmaco-

phore model generator based on a sophisticated and

customizable ligand-macromolecule complex interpre-

tation algorithm. The software extracts and interprets

ligands from PDB structural data and automatically

generates structure-based pharmacophore models for VS

in several different screening platforms. Besides correct

connectivity, the correct placement of hydrogen atoms

may be required in order to define the hybridization

state (e.g., for protein–ligand docking with GOLD).

Hydrogen atoms added in 2D space may thereby affect

the 3D conformation [24].

Ionization states

The accurate representation of the ionization states of

ligands and the target are of extraordinary importance for

VS, especially for docking applications, since the vast

majority of docking programs shows considerably high

impact of ionization states on the results. Thereby, the

correct ionization state may be fairly difficult to assign,

since it heavily depends on the microenvironment within the

binding site. Thus, it may be more efficient to systematically

enumerate all relevant ionization states [25]. Pharmaco-

phore modeling programs require correct assignment of

ionization states only in part: MOE [26] pharmacophore

screening is depending on charges; Catalyst does not rely on

charges and allows to treat relevant scaffolds as being

ionizable.

Tautomerism

Tautomerism is most of the time a still underestimated

issue that may heavily affect VS campaigns [27, 28]. It

influences molecular descriptors (e.g., CLOGP; especially

fragment-based methods, which depend on the way frag-

ments are produced, their number, size, and the training

sets) and similarity searches [29, 30] (e.g., divergent

Tanimoto similarity indices of different tautomeric forms).

Moreover, tautomerism is likely to affect substructure

search and molecular alignment. While most issues listed

above do have impact primarily on data examination in the

case of VS evaluations (e.g., analyses on the diversity of hit

lists) there are even more important issues to consider

during the actual VS screening process.

Protein–ligand binding interactions heavily depend on

the tautomeric form of both the small organic molecule and

the protein target. Thereby, the tautomeric form of the

ligand bound to the protein may differ from the favorable

tautomer observed in the aqueous phase. In particular

hydrogen bonding between protein and ligand may be

possible only for certain tautomers. Prominent examples

are available, e.g., for barbiturate-based matrix metallo-

proteinase (MMP-8) inhibitors [31] and for pterin-based

inhibitors of the Ricin Toxin A-chain (RTA) [32].

Tautomerism is a serious problem, e.g., for histamines; on

the protein side, the correct interpretation of the histidine

side chains is particularly important [33].

Both molecular docking and pharmacophore modeling

[28] heavily rely on the correct tautomerization of the ligand

and the protein. However, the calculation of the accurate

tautomeric form is very time consuming. In general it is

therefore better efficient to sample all relevant tautomeric

forms and to consider all as individual molecules during

VS. Taking into account all relevant tautomers during

VS enlarges the number of degrees of freedom as well as the

chemical space covered by molecular collections. Thereby,

enriching databases with tautomers raises the chance for

detecting a hit [27]. Popular software tools for tautomer

enumeration are, e.g., TAUTOMER [34] and AGENT [35].

Seed structures and conformational space sub-sampling

3D VS approaches heavily rely on the accurate represen-

tation of the bioactive conformation. Most well-known 3D

pharmacophore modeling tools use pre-calculated dat-

abases for screening that include 3D conformational

models of all ligands. Today there are highly efficient

conformational model generators available (e.g., CAESAR

[36], Catalyst FAST/BEST [37, 38], and Omega [38]) that

are able to represent the bioactive conformation in a quality

that is suitable for VS most of the time. Other screening
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tools perform on-the-fly conformation calculation. How-

ever, pre-calculating conformational databases is likely to

be the most efficient way for handling molecular flexibility

since the CPU power demanding calculation step is only

executed once.

Most protein–ligand docking programs start from a

single 3D seed structure. During the docking process only

the torsion angles of this structure are alternated; the bond

angles and bond lengths are in general kept rigid. Therefore

it is crucial to provide an energetically favorable seed

structure to the docking protocol.

Regardless of the dimensions of data input, the ligand seed

structure presented to conformational space sub-sampling

and docking algorithms [39] significantly affects the out-

come of VS campaigns. Furthermore, the number of

conformers and docking poses calculated, as well as using

different system platforms and different random seeds that

are fed to the programs affect screening results considerably.

A frequently used workflow to overcome this seed

structure bias is to derive the canonical SMILES code of a

compound (i.e. a unique identifier based on a simplistic

connection table w/o any 3D structural information), gen-

erate a primary 3D structure using a 3D structure generator

like CORINA [40], and minimize this structure before

injection to the VS process [3]. Alternatively, ligands

represented in SMILES code may be directly injected

to the docking process. However, it is important to use a

well-defined (reproducible) canonical SMILES flavor, as

Knox et al. [25] and Carta et al. [41] demonstrated that

SMILES code permutations are likely to significantly bias

the VS process. This bias can even be used in order to

explore conformational space more efficiently and more

exhaustively.

Protein target selection and preparation

It is a common observation that the performance of dock-

ing algorithms is highly depending on the target [42–46].

This experience goes along with the fact that docking

algorithms are usually calibrated and validated using small

protein–ligand data sets [47]. For meaningful comparative

assessments it is therefore crucial to investigate a large

number of target structures of high diversity. Only the

investigation of a representative sample of targets from

different protein families assures valuable, global conclu-

sions on the performance of a specific docking algorithm

[3, 5]. Warren et al. [46] have published the most com-

prehensive investigation of docking techniques based on a

variegated target set and provide so far the most profound

insight to the performance of state-of-the-art approaches.

There are several issues to be considered for the struc-

tural data input. Firstly, structural data itself contains

experimental errors and uncertainties. There is a trend

toward increased docking accuracy with higher resolution

of the protein complexes, which suggests that to a certain

extend inferior docking results may be caused by issues of

the structural data input [48]. This indicates that discarding

low quality protein–ligand complexes might be advanta-

geous for the evaluation of docking algorithms [49].

However, this may not reflect the application scenario of a

VS screening campaign [3, 5]. Especially for novel targets

there may be only low quality structures available. Yet in

this early period of drug discovery molecular docking is of

particular interest in order to discover new lead structure

candidates. Thus, analyzing the performance of docking

algorithms with structural data from low-resolution com-

plexes is also of certain interest. There is still only little

awareness about conformational changes of the binding

site caused by crystal packing [48]. This quite common

issue is usually caused by ligands and protein chains that

are found in the vicinity of the binding site [4, 48]. Some

docking approaches are highly sensitive on fine details of

the X-ray structure; marginal changes of the target struc-

ture may change the outcome considerably. Special

account should be taken on correct protonation and tauto-

meric states of the amino acids. Refinements of the protein

may be needed in order to balance structural shortcomings

and to meet the individual requirements of a docking

algorithm.

Evaluations of structure-based VS approaches should

take into account different active site topologies and cover

large, voluminous binding sites and tight pockets, as well

as surface exposed sites [3]. Authors would do the scien-

tific community a great favor if they use crystal structure

data that are available in the public domain for evaluative

studies in order to make results traceable [3]. This is of

course also true for the protein and the ligand test set

structures. The re-use of public available test sets [16, 19,

48] allows to compare the outcome of different studies.

Metals show very specific binding characteristics and

are usually handled with dedicated features by VS tools.

The accurate prediction of metal binding interactions is of

high importance during VS and should be considered for

comprehensive assessments [5].

Virtual screening setup

Reproducibility should be the highest maxim of any scien-

tific publication and particularly of evaluative studies. Only

a precisely defined software setup allows following up

investigations. However, publications frequently suffer from

insufficiently described parameters and scoring functions.

Hitherto, there are only very few publications available

aiming to overcome these issues. Kirstam et al. [50] provide

J Comput Aided Mol Des (2008) 22:213–228 217

123



an extensive guide for the description of the Catalyst

software setup; Cole et al. [4] provide an overview on the

difficulties of protein–ligand docking. The problem of how

to define the steps of a VS study concerns all parts of an

investigation. A lot of VS publications relate the results

obtained from screening to the flexibility of the investi-

gated ligands. The number of rotatable bonds reflects

flexibility, however, there are different definitions of

rotatable bonds and therefore different software tools may

obtain different results. In cases where the accurate defi-

nitions are not available at least the software used for

calculations should be precisely defined. Results obtained

from adapted scoring functions are not traceable without

the source code [4].

The correct handling of water molecules is crucial for

the performance of docking programs. Usually, water

molecules are removed from the active site, except for such

molecules that are known to bind very tightly to the protein

or are known to be essential for drug action [3]. Re-docking

of ligands to the binding site with depleted waters is likely

to obtain inferior accuracy. The ligand may thereby be

placed at positions that are occupied by water molecules.

This is also true in the case of co-factors. If a co-factor is

present in the vicinity of the protein–ligand site it will

significantly affect the docking results and it may be crucial

for obtaining an accurate ligand pose.

Most established docking programs provide individual

tools to define the parts of a protein relevant for docking

[3]. For the sake of direct comparability of different

docking algorithms, the definition of the protein–ligand

binding site of all investigated protocols should be identi-

cal. It is insufficient to describe the active site as the

entirety of all amino acids (waters and cofactors) in a

certain distance (usually 5–12 Å [3, 5, 39, 47, 51]) around

the ligand: Some tools cut precisely at the borderline; some

tools include moieties that have at least one atom within

this area. Again other tools define the binding site with a

certain radius around the centroid of the ligand and others

by a certain distance from every ligand atom. If one con-

siders e.g., small, circular flavonoids versus long fatty acids

one would obtain absolutely different binding site

definitions.

The definition of the hardware setup used for screening

should at least consider the processor architecture and

memory resources, the definition of the software setup the

operating system version and the software versions used for

the assessment. Especially for time measurements a more

precise definition of the computing environment is usually

required.

But even if all these data are provided to the community,

results may still be not entirely comprehensible. Several

VS algorithms use a random number during screening and

therefore the results may not be accurately reproducible.

Onodera and co-workers have recently published an

investigation on this issue [39].

Comparing different approaches—general

considerations

In contrast to rapid VS methods like pharmacophore mod-

eling, the performance of docking methods is always a

trade-off between computational demands and accuracy.

This explains that there is a plentitude of docking approa-

ches available that aim at different fields of application:

Incremental construction approaches (e.g., FlexX [52]),

shape-based algorithms (e.g., DOCK [53, 54]), genetic

algorithms (e.g., GOLD [19]), systematic search (e.g., Glide

[55, 56]), Monte Carlo simulations (e.g. LigandFit [57]),

and surface-based molecular similarity methods (e.g., Sur-

flex [58]). Most exhaustive algorithms focus on the accurate

prediction of a binding pose, more efficient algorithms on

the docking of small ligand databases within reasonable

time, and rapid algorithms on the virtual high-throughput

screening of millions of compounds. Today, however, CPU

power is usually no longer a limiting factor for protein–

ligand docking due to recent technologic advances and

dropping hardware costs.

There is a strong affinity to using default settings for the

evaluation of VS screening programs [39]. Nevertheless,

different requirements of these docking techniques make

direct comparisons difficult [47], since it is obviously

problematic to directly relate the accuracy of GOLD using

program defaults (i.e. the most exhaustive settings) with

e.g., FRED. Besides the other field of applications these

methods are based on completely different algorithmic

approaches. While GOLD represents a genetic algorithm,

FRED [59] is based on rapid shape complementarily and

pharmacophoric feature mapping. The other way round, it is

questionable whether more CPU time demanding approa-

ches are necessary to obtain a certain degree of accuracy or

if equivalent results are also achieved by a more efficient

software setup. In fact, we have recently shown that in the

exact opposite is the case for pharmacophore modeling,

where fastest settings for both conformational model gen-

eration as well as screening—overall—achieve highest

enrichment rates [60]. We think that—where possible—it is

worth to investigate setups that require similar CPU power

for direct performance comparison, or—at least—to con-

sider and clearly point out the possible impact of different

settings on VS speed and data accuracy.

The direct comparison of protein–ligand docking con-

sidering target flexibility [61] (e.g., FlexE [62]) to docking

approaches that keep the target structure rigidly (e.g.,

FlexX [52]) is problematic. By consideration of protein

flexibility the number of degrees of freedom increases.
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Our personal experience is that this may lead to inferior

enrichment during VS in certain cases. It seems that—

statistically speaking—active compounds fit into the pro-

tein binding site even if the receptor is kept rigid, while

probability that there is a receptor conformation present

that is able to house inactive compounds increases with

target flexibility. Moreover, a time problem arises and

docking algorithms are forced to make further approxi-

mations about the docking process, which is also likely to

lead to inferior docking accuracy.

As already mentioned above, the disclosure of the data

material used for publication is of great value for the com-

munity. Thereby it may not be sufficient to provide IDs of

public available compounds and protein structures; it is

absolutely favorable to provide the definitive structures used

for the VS assessment. The preparation of docking studies

offers virtually indefinite options that cannot be knocked

down into a simple process description. For example, the

often-read statement, that the ligand structures used for VS

have been charged at pH 7, leaves a lot of questions open. If the

data cannot be made available for public an offer to work with

the data within the author’s research facilities may be an

alternative to overcome this bottleneck. The use of propriety

data for VS evaluations should require direct reasons.

There is consensus in the scientific community that VS

methods need experts on both the biological system and the

program in order to achieve maximum performance,

especially protein–ligand docking [46]. For obvious rea-

sons it is quite improbable that even mid sized research

groups are in the lucky situation to have experts for ten

different docking programs on twenty protein targets.

Hitherto, the statistical relevance of comparative dock-

ing studies has been considered in only a few cases. The

problem is that VS assessments are highly expensive in

terms of manpower and therefore most of the time ends up

in a trade-off between significance and budget situation.

Moreover, under normal conditions it is tedious to obtain

software licenses for a lot of very promising VS tools. This

implies that studies published are biased toward availabil-

ity and focused on new methods.

Assessment modes and methods

Protein–ligand docking mainly consists of two separate

parts: Pose prediction and the estimation of affinity (scor-

ing). While it seems that today’s docking algorithms are

promising tools for the prediction of the correct ligand

binding pose, the usefulness of state-of-the-art scoring

functions is controversial [46]. There are four ways to

analyze the outcome of a docking campaign: (i) The

accuracy of the binding pose prediction, (ii) the accuracy of

the affinity prediction, (iii) the enrichment rates obtained

by virtual screening, (iv) the diversity of the hit list. A

comprehensive reference collection on this topic is pro-

vided by Kellenberger et al. [47]. Here we summarize

major modes of performance assessment; the merits of VS

descriptors are discussed in the consecutive section.

Assessing the success of pose prediction

(protein–ligand docking)

The accuracy of pose prediction is usually determined by re-

docking of a ligand into the binding site. This evaluation

method itself suffers from a significant bias since it neglects the

changes in protein conformations during ligand binding [4].

However, it is currently the most applicable approach avail-

able. The bias has been proven and examined by, e.g., Murray

and co-workers, who achieved inferior—in part considerably

lower—enrichment rates using a cross-docking approach [63].

Usually, the accuracy of docking poses is quantified by

calculation of the RMSD between the experimentally

determined ligand structure (as it is bound to the protein)

and the pose calculated by the docking algorithm. What-

ever measure is selected, there are at least three approaches

to consider docking poses for the assessment: (i) Consid-

ering the number one ranked docking pose, (ii) considering

each docking pose, (iii) considering all plausible docking

poses. Approach (iii) is to a certain extend subjective and

therefore problematic. More detail on benchmarks is pro-

vided in the next section.

Assessing the success of affinity prediction

(protein–ligand docking)

The accuracy of affinity prediction is in general measured by

analyzing the correlation of the experimentally determined

affinity and the docking score. It presumes that experimental

affinity data are available, measured for the binding as

observed by X-ray crystallography or NMR spectroscopy.

The correlation can be examined for a single scoring function

or several combined scoring functions (consensus scoring)

[12, 43, 44, 64, 65]. The discussion about the usefulness

of state-of-the-art scoring functions currently divides the

scientific community and there are data available that dem-

onstrate no strong correlations of a multitude of scoring

functions on several protein targets [46]. The consensus

scoring approach is thought as a tool to reduce the number of

false positives and to decrease the errors in scores. However,

this issue is again discussed controversially and examples

show that in some cases the performance of a single scoring

function is superior [42, 66]. Results based on consensus

scoring are usually quantified in rank-by-number (average

score after normalizing), rank-by-rank (hit list based on the
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average score), or rank-by-vote (compounds are considered

in the final hit list if within top x% of the ranked lists of each

of the individual scoring functions) mode. For more infor-

mation the reader is referred to [12, 64].

Rescoring docking results with alternative scoring

functions may be a suitable approach for improving the

outcomes, however, it implies further pose preparation for

the individual needs of the scoring function. Some authors

state that this represents an additional complicating step

and a further challenge for the VS assessment and therefore

avoid this technique [3].

Assessing the enrichment of VS runs

Enrichment is usually considered the key benchmark for

the success of VS. It quantifies the number of active

compounds found in the hit list, with respect to the fraction

of inactives. The success of VS is correlated with its ability

to rank active compounds at high positions of the hit list,

since only the first fraction of a hit list will be screened

experimentally. We will discuss this problem in detail

below, together with the plethora of descriptors available to

characterize the success of a VS approach.

Assessing the diversity of hits lists obtained

from VS experiments

In our opinion the diversity of hit lists obtained by VS is—

so far—underestimated. VS methods should not be char-

acterized exclusively by their ability to rank as many active

compounds as possible at high positions; diversity of the

obtained hit list is of similar importance for lead identifi-

cation. It is favorable to find a few valuable representatives

per scaffold instead of a large amount of actives based on

only a few compounds. Methods that allow identifying

diverse scaffolds are much more useful than those which

achieve high enrichment for the sake of plurality. The

diversity of hits can be quantified, e.g., by calculation of

the Tanimoto index and clustering by scaffold similarity.

Descriptors for the performance of virtual screening

protocols

Descriptors for the accuracy of binding mode prediction

(protein–ligand docking)

RMSD as a benchmark for the accuracy of docking poses

Currently, the RMSD between a generated docking pose

and the experimental ligand conformation represents the

most established benchmark for the ability of docking

algorithms to predict the protein-bound ligand confor-

mation. In the vast majority of publications only heavy

atoms are considered during RMSD assessment. Sym-

metry detection is needed, e.g., for carboxylates and

phosphates in order to allow adequate consideration of

symmetric moieties [47, 67]. There are two modes of

application available for RMSD: The absolute RMSD and

the relative RMSD. The absolute RMSD measures the

distance between corresponding atom pairs of two con-

formers without coordinate translation or rotation. This

measure is primarily used for docking evaluations. The

relative RMSD implies an additional alignment step of the

molecules before the actual RMSD calculation. This mode

of RMSD assessment is especially useful for the investi-

gation of the accuracy of conformational model generators

[37, 38]. The characteristics of RMSD that make it the

current standard approach for the definition of the docking

accuracy is objectivity, high responsiveness, and its easy

automated calculation [68]. Nevertheless, RMSD suffers

from serious problems. First of all, it implies no infor-

mation on the quality of representation of the complex

interactions of a ligand with the protein. Furthermore,

differences in the force fields applied during docking

variations in the predicted pose may result in relatively

large RMSD values without changing the principal inter-

actions of the ligand with the protein. Molecules may

comprise flexible side chains that are not important for

binding at all. Even if the core structures of such ligands

were placed accurately, high RMSD levels would suggest

an inaccurate pose prediction. Moreover, large, almost

symmetric molecules may be swapped in the binding site

during docking. In this case the binding mode may be

predicted correctly, if the essential interaction features are

detected, however, RMSD would be at a very high level

and would suggest wrong placement [68]. RMSD is

depending on the molecular weight of compounds. Small

compounds can easily achieve low RMSDs even when

placed randomly. Cole and co-workers found that in the

case of arabinose random rotation about the center of

gravity obtains RMSD \ 2 Å in 10–15% of all place-

ments [4]. Even more, some very high RMSD levels may

dominate the average accuracy; a total failure with

RMSD, e.g., around 8 Å may push conclusions into a

wrong direction. It is highly questionable whether a

docking algorithm achieving RMSD 5 Å is twice as

accurate as a competitor achieving a RMSD value of

10 Å; a statement, that both algorithms are wrong implies

more information on their accuracy [4]. A rather unknown

benchmark related to the RMSD is the RDE (Relative

Displacement Error) [69]. RDE helps to soften the impact

of large discrepancies on the average benchmark value but

it still suffers from the other insufficiencies mentioned
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above. Therefore, Kroemer et al. [68] proposed a new

benchmark for the quality of docking poses based on

visual inspection, as discussed below.

Classification based on visual inspection

of the ligand poses

Assigning docking poses to bins according to their

accuracy in terms of representing the protein-bound

ligand conformation is not a new approach. Eleven years

ago it was used by Jones and co-workers for the validation

of their genetic docking algorithm [19]. Visual inspection

for the classification of docking poses was also, e.g., used

by Kontoyianni et al. [5]. Kroemer et al., however, were

the first that systematically investigated the usefulness

and merits of visual inspection and introduced their

Interactions-Based Accuracy Classification (IBAC) [68].

IBAC is not a standardized protocol for the accuracy

assessment; the criteria for this benchmark are depending

on the protein–ligand binding mode to be inspected. In

order to define IBAC criteria for a certain binding mode,

Kroemer and co-workers analyze the experimentally

determined protein–ligand complex. Thereby, the ligand

is divided into two major areas: A core comprising

essential features for binding to the protein, and the

peripheral area of lower priority for binding. Correctly

docked ligands show both correct core and peripheral

interactions with the protein. If the core interactions are

represented accurately but the peripheral interactions

differ moderately, the docking pose is considered ‘nearly

correct’. This is the overall IBAC idea, however, as

already mentioned above, Kroemer and co-workers ana-

lyze different classification protocols with different

criteria. During data analysis they found a fairly good

correlation between RMSD and IBAC, however, in a

significant number of cases both benchmarks obtained

differing results. They were able to identify poses of low

RMSD that do not represent the key interactions with the

protein. The study demonstrates that RMSD is obviously

not a universally applicable benchmark for the assessment

of docking poses and may lead to wrong conclusions on

the accuracy of docking algorithms. So far there is no

automation for IBAC available, which is a severe disad-

vantage compared to RMSD. In order to overcome this

problem, an automated protocol for the detection of core

interactions would be necessary.

Considering the severe bottlenecks of RMSD, there is

strong need for the development of a more reliable

benchmark for the accuracy of docking poses. It is

highly recommended to support the data assessment

based on RMSD by information gained from IBAC-like

inspections.

Descriptors for enrichment

The general aim of VS methods is to retrieve a significant

larger fraction of true positives from a molecular database

than a random compound selection. If a VS method selects

n molecules from a database with N entries, the selected hit

list comprises active compounds (true positive compounds,

TP) and decoys (false positive compounds, FP). Active

molecules that are not retrieved by the VS method are

defined false negatives (FN), whereas the unselected

database decoys represent the true negatives (TN) (Fig. 1)

[70].

Descriptors that assess the enrichment of active mole-

cules from a database containing active molecules and

decoys seem to be a rational approach to evaluate the VS

performance. Most of the commonly used enrichment

descriptors are based on two values. The first value is the

sensitivity (Se, true positive rate, Eq. 2), which describes

the ratio of the number of active molecules found by the

VS method to the number of all active database compounds

[70, 71].

Se ¼ N selected actives

N total actives
¼ TP

TP þ FN
ð2Þ

The second value is the specificity (Sp, false positive

rate, Eq. 3), which represents the ratio of the number of

inactive compounds that were not selected by the VS

protocol to the number of all inactive molecules included

in the database [71].

Sp ¼ N discarded inactives

N total inactives
¼ TN

TN þ FP
ð3Þ

Most enrichment descriptors do not include a weight for

the rank that is assigned to the active molecule by the VS

algorithm. Therefore, only the fraction of actives recouped

from the database using the VS method is taken into

account by these descriptors. The positions of the active

molecules in a list ordered by the VS rank are disregarded.

However, only about 0.1–10% of the molecules retrieved

by a VS method are investigated, e.g., by biological testing

Fig. 1 Selection of n molecules from a database containing N entries

by a VS protocol
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[3]. Therefore, it is not only important to have a VS

protocol that performs well in discriminating actives from

decoys, but also to have a VS workflow that is able to rank

the actives at the beginning of a rank-ordered list. A VS

algorithm that is able to retrieve numerous active

molecules, but that ranks actives at random positions of

the ordered list, is useless. On that account, new

enrichment descriptors were derived with respect to this

so-called ‘‘early recognition problem’’ in VS practice [72].

In this review, we categorized enrichment descriptors into

classic and advanced descriptors. Classic descriptors do not

take into account the ‘‘early recognition problem’’, whereas

advanced descriptors possess a weight that favors active

molecules ranked in high positions over low-ranked

actives.

Classic enrichment descriptors

In this section, some of the classic enrichment descriptors,

including the well-known yield of actives and the enrich-

ment factor are summarized.

Accuracy. The accuracy Acc describes the percentage

of molecules which are correctly classified by the screening

protocol (Eq. 4) [73–75].

Acc ¼ TPþ TN

N
¼ A

N
� Seþ 1� A

N

� �

� Sp ð4Þ

Efficiency. The analysis of efficiency AE evaluates

the screening performance if the database includes

molecules with unknown activity (Eq. 5). Us is the

number of compounds with unknown activity selected by

the screening protocol, whereas Utotal represents the

number of all database molecules for which no activity

data exists [76].

AE ¼ 1

2
� ðSeþ SpÞ � 1� Us

Utotal

� �

ð5Þ

Balanced labeling performance. Equation 6 represents

the balanced labeling performance lbal. If all the active and

inactive molecules are correctly identified by the screening

method, this weighted accuracy descriptor has the value 1

[77, 78].

lbal ¼
1

2
� Seþ 1

2
� Sp ð6Þ

Ford’s M. Ford’s M is described by Eq. 7. It

represents another descriptor, which is based on Se and

Sp. The descriptor includes an adjustable weighting

coefficient x [79]. The accuracy, the analysis of

efficiency, the balanced labeling performance, and the

Ford’s M are equal as long as x = A/N = 1/2 and Us = 0

[70].

M ¼ x � Seþ ð1� xÞ � Sp ð7Þ

Discrimination ratio. The discrimination ratio DR

represents another combination of Se and Sp that describes

screening performance (Eq. 8) [80].

DR ¼ TP=A

TN=ðN � AÞ ¼
Se

Sp
ð8Þ

Information content. Equation 9 shows the information

content I, another descriptor which has been used in the

validation of pharmacophore-based screening methods [81].

I ¼ TP � log
TP

FP

� �

þ FN � log
FN

TN

� �

ð9Þ

‘‘Matthews’’ correlation coefficient. The ‘‘Matthews’’

correlation coefficient C is described by Eq. 10. In the ideal

case of a screening protocol which discriminates all actives

from all inactive molecules, the ‘‘Matthews’’ correlation

coefficient is 1 [82, 83].

C ¼ TP � TN � FN � FP

ððTN þ FNÞ � ðTN þ FPÞ � ðTPþ FNÞ � ðTPþ FPÞÞ1=2

ð10Þ

Goodness of hit list. The ‘‘Goodness of hit list’’ GH

was designed by Güner and Henry for evaluation of the

discriminatory power of pharmacophore models (Eq. 11).

With respect to the presence of active molecules that bind

to another site of the target which cannot be represented by

the pharmacophore model, the descriptor favors the Ya

over Se [10].

GH ¼ 3

4
Yaþ 1

4
Se

� �

� Sp ð11Þ

Screening percentage. Chen et al. [3] introduced the

screening percentage, which is defined as the fraction of a

database that has to be screened in order to retrieve a

certain percentage of molecules with known activity.

Yield of actives. One of the most popular descriptors for

evaluating VS methods is the yield of actives Ya (Eq. 12).

This descriptor quantifies the probability that one of n

selected compounds is active. In other words, it represents

the hit rate that would be achieved if all compounds

selected by the VS protocol would be tested for activity

[10, 70, 73]. However, it contains no information about the

consistence of the database and the increase of the ratio of

active molecules to decoys within a VS compound selec-

tion compared to a random compound selection. For

instance, a value of 0.3 could be caused by a VS protocol

that performs comparably to a random molecule selection

from a database containing 30% active molecules. On the

other hand, the database could include only 3% actives.

Therefore, a value of 0.3 would describe a VS algorithm

that performs ten times better than a random selection.
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Ya ¼ TP

n
ð12Þ

Enrichment factor. Another frequently used evaluation

descriptor is the enrichment factor EF (Eq. 13). This

descriptor takes into account the improvement of the hit

rate by a VS protocol compared to a random selection [70,

73, 84, 85].

EF ¼ TP=n

A=N
ð13Þ

One disadvantage of the EF is its high dependency on

the ratio of active molecules of the screened database [71,

72]. This descriptor can be used to decide which VS

method possesses the best performance if the same

database of actives and decoys is utilized for evaluation.

In contrast to that, comparisons of EFs derived from VS

workflow evaluations using compound sets with different

ratios of active molecules are less reliable [72]. Another

disadvantage is that all actives contribute equally to the

value. On that account, the EF does not distinguish high

ranked active molecules from actives ranked at the end of a

rank-ordered list. In other words, two VS methods that

differ in the ability of ranking the highest scored active

molecules at the beginning of such an ordered list, but

show the same enrichment for active molecules, would be

assessed to perform equal [72]. Thus, the EF belongs to the

classic enrichment descriptors that do not consider this

‘‘early recognition problem’’.

Statistical significance of the enrichment. In relation to

EF, the statistical significance of the enrichment given by Eq.

14 is used to assess VS performance (Eq. 14). It describes the

probability that a random selection of molecules contains an

equal or higher number of active compounds than a molecule

selection derived by a VS protocol [86].

S ¼
X

A

k¼TP

A

k

 !

N � A

n� k

 !

N

n

 ! ð14Þ

Receiver operating characteristic (ROC) curve

analysis. The ROC curve method describes Se for

any possible change of n as a function of (1-Sp) [71]. If

all molecules scored by a VS protocol with sufficient

discriminatory power are ranked according to their score,

starting with the best-scored molecule and ending with the

molecule that got the lowest score, most of the actives will

have a higher score than the decoys. Since some of the

actives will be scored lower than decoys, an overlap between

the distribution of active molecules and decoys will occur,

which will lead to the prediction of false positives and false

negatives [87].

The selection of one score value as a threshold strongly

influences the ratio of actives to decoys and therefore the

validation of a VS method. The ROC curve method avoids

the selection of a threshold by considering all Se and Sp

pairs for each score threshold, which represents another

advantage of this method [71].

A ROC curve is plotted by setting the score of the active

molecule as the first threshold. Afterwards, the number of

decoys within this cutoff is counted and the corresponding

Se and Sp pair is calculated. This calculation is repeated for

the active molecule with the second highest score and so

forth, until the scores of all actives are considered as

selection thresholds. Figure 2 shows a theoretical distri-

bution for actives and decoys according to their scores. One

selection threshold S represents one point on the ROC

graph, which in turn stands for one Se and Sp pair [71].

The ROC curve representing ideal distributions, where

no overlap between the scores of active molecules and

decoys exists, proceeds from the origin to the upper-left

corner until all the actives are retrieved and Se reaches the

value of 1. Thereafter, only decoys can be found using the

VS method. Thus, the ideal ROC curve continues as a

horizontal straight line to the upper-right corner where all

actives and all decoys are retrieved, which corresponds to

Se = 1 and Sp = 0. In contrast to that, the ROC curve for a

set of actives and decoys with randomly distributed scores

tends towards the Se = 1-Sp line asymptotically with

increasing number of actives and decoys. Finally, ROC

curves between the random graph and the ideal curve are

plotted for VS workflows which are able to score more

active molecules higher than decoys and cause overlapping

distributions which represents the usual case in VS (Fig. 3).

[87].

Fig. 2 Theoretical distributions for active molecules and decoys

according to their score. Due to distributions overlap, different ratios

of false positives (FP) and false negatives (FN) are retrieved,

depending on the selection threshold S
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If the ROC curves do not cross each other, the curve that

is located closer to the upper-left corner represents the VS

workflow with the better performance in discriminating

actives from decoys. On that account, ROC curves allow an

intuitive visual comparison of the discriminatory power of

different VS methods over the whole spectrum of Se and Sp

pairs [72].

Another way of interpreting the results of ROC curves is the

area under the ROC curve. The area under the curve (AUC)

can be calculated as the sum of all rectangles formed by the

Se and 1-Sp values for the different thresholds. Threshold

Si is the score of the ith active molecule (Eq. 15) [87].

AUC ¼
X

i

½ðSeiþ1ÞðSpiþ1 � SpiÞ� ð15Þ

For ideal distributions of actives and decoys an AUC value

of 1 is obtained; random distributions cause an AUC value of

0.5. VS workflows that perform better than a random

discrimination of actives and decoys retrieve an AUC value

between 0.5 and 1, whereas an AUC value lower than 0.5

represents the unfavorable case of a VS method that has a

higher probability to assign the best scores to decoys than to

actives. For instance, a randomly selected decoy is ranked

higher by the VS workflow than a randomly selected active

molecule 7 times out of 10 if the AUC value is 0.3 [87].

The ROC curve and the AUC value are useful and easily

manageable evaluation techniques for determining the

discriminatory power of VS methods, which—in contrast

to the EF—do not depend on the ratio of actives to decoys

in a database [87]. However, the AUC value itself suffers

from the disadvantage that two VS methods cannot be

discriminated according to their ability of recognizing

actives at the beginning of an ordered list. For example, an

identical AUC value for two different VS workflows does

not mean that both workflows are equal in scoring the

actives of a database. As displayed in Fig. 4a, VS method 1

retrieves more actives at the beginning of a list ordered by

the score than VS method 2 [88].

Thus, VS method 1 addresses the ‘‘early recognition’’

problem better than VS method 2. Only their overall dis-

criminatory performance and therefore their AUC values

are identical [89]. Another example for VS workflows that

achieve AUC values, which do not correlate with the

‘‘early recognition’’ performance of the VS workflows, is

displayed in Fig. 4b.

In Fig. 4b workflow 1 retrieves more actives at the

beginning of the ordered list, but has a significant lower

AUC than VS workflow 2. However, early-recognized

actives contribute more area to the AUC than actives at the

end of an ordered list. This becomes even more obvious if

horizontal (instead of vertical) rectangles—like in a Le-

besgue integration scheme—are used to calculate the AUC.

On that account, actives contribute according to their rank

in an ordered list to the AUC. Therefore, if only the area

under the beginning of the ROC curve, e.g. the highest

ranked 10% of the screened database is considered, VS

protocols could be evaluated with respect to the ‘‘early

recognition’’ problem.

Truchon et al. showed that comparisons between AUC

values derived from different evaluation studies should be

performed with a reasonable size of the ratio of actives

(Ra � 1) [72]. This is important, because like for other

enrichment metrics the accuracy in measuring the AUC,

but not the AUC itself depends on the ratio of actives.

To sum up, the AUC represents somehow a transition

state between classical and advanced enrichment descrip-

tors, as it weights actives according to their ranks in an

ordered list such as an advanced enrichment descriptor, but

the AUC value itself describes the overall performance of

the VS method. If a certain threshold is set, the area under

the beginning of the ROC curve allows addressing the early

recognition problem. Therefore, the AUC is a useful and

well-established enrichment metric for comparing the

performance of VS workflows.

Advanced enrichment descriptors

As mentioned above, classic enrichment descriptors, such

as the EF, cannot discriminate between a VS algorithm that

Fig. 3 The ROC curves for ideal and overlapping distributions of

actives and decoys. The three ROC curve points S1, S2, S3 are

representing the corresponding thresholds displayed in Fig.2. A

random distribution causes a ROC curve which tends towards the

Se = 1 - Sp line asymptotically with increasing number of actives

and decoys
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ranks half of the actives at the beginning of the ordered list

and the other half at the end and a VS protocol that ranks

all actives at the beginning of the list. This ‘‘early recog-

nition problem’’ of VS methods is addressed by only a very

small amount of existing evaluation descriptors such as the

robust initial enhancement (RIE), the Boltzmann-enhanced

discrimination of ROC (BEDROC) descriptor and—as

already explained above—by the AUC.

Robust initial enhancement RIE. The RIE was

developed by Sheridan et al. [88] to provide a descriptor

that does not suffer from large value variations if only a

small number of actives are investigated. For these pur-

poses, they related the rank for the ith active molecule to

the number of scored compounds investigated a. To get a

weight of approximately 1 for the active molecule which is

located at the beginning of the list and to retrieve decreased

weights for increasing ranks of the actives, an exponential

function described in Eq. 16 was utilized [88].

S ¼
X

actives

i¼1

expð�rankðiÞ=aÞ ð16Þ

The sum of all weights for all active molecules S is then

related to the mean sum hSi, which is derived from

calculations where the active molecules get randomly

selected ranks. This leads to the final RIE descriptor

(Eq. 17) [88].

RIE ¼ S

hSi ð17Þ

The RIE descriptor describes for how many times the

distribution of the ranks for active molecules caused by a

VS protocol is better than a random rank distribution. If the

VS method is able to score more active molecules higher

than a random distribution, the RIE value is greater than 1.

In addition, a RIE value of 1 indicates a random rank

distribution of the active molecules. On that account, a

distribution of all active molecules at the beginning of

a rank-ordered list will retrieve a higher RIE value than a

distribution with half of the actives ranked at the beginning

and the other half ranked at the end of the list. Therefore,

the RIE descriptor takes into account the ‘‘early recognition

problem’’. However, like the EF the RIE descriptor still

suffers from high variability if the ratio of actives in the list

changes. Thus, comparisons between RIE values are

impaired by the different ratios of active molecules in the

databases [72, 88]. Moreover, the RIE descriptor, as well as

the EF and other descriptors consider only one selection

threshold, whereas the AUC describes the VS workflow

performance for all possible thresholds [72, 87].

Boltzmann-enhanced discrimination of ROC

(BEDROC). In order to derive a new descriptor that

addresses the early recognition problem like the RIE

descriptor, but also possesses the advantages of AUC, such

as values limited by 0 and 1 or a measurement of the per-

formance above all thresholds, Truchon et al. [72] created

the Boltzmann-enhanced discrimination of ROC (BED-

ROC) descriptor. The BEDROC descriptor is a generalized

AUC descriptor that includes a decreasing exponential

Fig. 4 (a) ROC curves for two different VS methods that possess an

equal AUC. Notwithstanding both VS application examples are equal

in the overall performance, VS method 1 (red line) performs better in

discriminating actives from decoys in an early part of an ordered

score list than VS method 2 (blue line). (b) Although VS workflow 2

(blue line) addresses the ‘‘early recognition’’ problem better than VS

workflow 1 (red line), the AUC value for VS workflow 1 is significant

larger than for VS workflow 2
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weighting function that focuses on active molecules ranked

at the beginning of the ordered list. Equation 18 displays the

formula of the BEDROC descriptor [72].

BEDROC ¼RIE � Ra sinhða=2Þ
coshða=2Þ � coshða=2� aRaÞ

þ 1

1� eað1�RaÞ
� RIE

a
þ 1

1� ea
;

if aRa � 1 and a 6¼ 0

ð18Þ

In order to obtain comparable BEDROC values from VS

workflows with different underlying distributions of actives

and decoys, aRa should be smaller than 1. If aRa �1, the

BEDROC descriptor is independent from the ratio of

actives and can be described by Eq. 10. In this case, the

BEDROC descriptor represents the probability that a

randomly selected active molecule ranked by a VS

workflow will be retrieved before a randomly selected

compound from a hypothetical probability distribution

function following an exponential of the early recognition

parameter a. A high value for a corresponds to a high

weighting of the early part of the ordered list. Truchon et al.

[72] analytically derived a formal relationship between a
and the percentage h of the total score at z percent of the

normalized rank (Eq. 19).

0 ¼ hð1� e�aÞ þ 1� e�az � 1 ð19Þ

With respect to Eq. 19, Truchon et al. [72] recommend a

value of 20 for a if the BEDROC descriptor is used for

evaluation of VS methods. This means that the first 8% of

the relative rank contribute to 80% of the BEDROC value

(z = 8%, h = 80%) [72].

The accumulation curve produced by the exponential

distribution of a serves as comparator for the accumulation

curve caused by the VS protocol. Since the limiting values

of the BEDROC descriptor are 0 and 1, a BEDROC value

of 0.5 indicates that both accumulation curves are equal. In

other words, the enrichment of the evaluated VS workflow

is equal to the baseline enrichment from which a workflow

is useful in VS practice. Taking this into consideration,

BEDROC values greater than 0.5 are received for VS

workflows that perform better than a workflow, which is

useful in solving the respective screening problem of

finding a certain amount of actives within a certain number

of compounds that are tested for activity. Accumulation

curves for distributions with BEDROC values of 0.5 (red

line), 0.5–1 (yellow line), and 1 (blue line) are displayed in

Fig. 5.

To conclude, the newly developed BEDROC descriptor

is supposed to unify the advantages of RIE and AUC [72,

90]. It represents an advanced enrichment descriptor that

determines the usefulness of the VS workflow for a specific

screening problem. As long as the same early recognition

parameter a is utilized and the condition aRa � 1 is met,

the BEDROC values for different VS workflows are

comparable [72]. Therefore, the BEDROC descriptor

seems to be a promising evaluation technique for com-

paring the performances of different VS methods in a

screening problem. Recently, McGaughey et al. [90] used

the EF, the AUC, the RIE and the BEDROC descriptor for

evaluating different VS methods. However, the RIE and

BEDROC descriptors did not lead to dramatically different

conclusions about the performance of the VS methods [90].

Therefore, the advantage of the new BEDROC metric over

the well-known AUC and other classic enrichment factors

in screening practice needs to be proven in future studies.

Conclusions

Numerous as the publications on the performance assess-

ment of 3D VS tools are the issues and caveats that we are

currently facing during the evaluation of computational

methods. However, there are a lot of efforts going on in

order to overcome bottlenecks that limit the significance of

evaluative performance assessments. We provide guide-

lines for good evaluation practices based on the

investigation of recent literature. All steps of a VS

assessment are considered, starting from the selection of a

representative VS test set to data analysis of VS campaigns.

Fig. 5 BEDROC and AUC values for different accumulation curves.

An AUC value of 0.5 is received for a random distribution of actives.

The accumulation curve for this distribution will tend toward the

black line asymptotically with increasing number of actives and

decoys. The exponential distribution representing a defined baseline

enrichment expected by a useful VS method corresponds to a

BEDROC value of 0.5 (red line)
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Our survey renders the test set collection and preparation

for VS as being solved, considering several caveats.

Lacking information on the exact software setup frequently

prevents required reproducibility and also the multitude of

possible manipulations on the data input calls for publi-

cations with extended supporting material. We are facing

controversies in particular during the analysis of the VS

results. Both enrichment parameters and benchmarks for

the accuracy of the binding mode prediction are in large

part not satisfactory for characterizing the performance of

VS approaches and still offer a lot of space for further

developments.

We have outlined a list of recommendations that we

hope will help authors of future studies to obtain infor-

mation-rich, representative results and we strongly

encourage researchers to publish issues that they are facing

during such studies in order to overcome these bottlenecks.
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