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Abstract In this paper, we present a new set of bond-
level TOMOCOMD-CARDD molecular descriptors
(MDs), the bond-based bilinear indices, based on a
bilinear map similar to those defined in linear algebra.
These novel MDs are used here in Quantitative
Structure—Activity Relationship (QSAR) studies of
tyrosinase inhibitors, for finding functions that dis-
criminate between the tyrosinase inhibitor compounds
and inactive ones. In total 14 models were obtained
and the best two discriminant functions (Egs. 32 and
33) shown globally good classification of 91.00% and
90.17%, respectively, in the training set. The test set
had accuracies of 93.33% and 88.89% for the models
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32 and 33, correspondingly. A simulated virtual
screening was also carried out to prove the quality of
the determined models. In a final step, the fitted
models were used in the biosilico identification of new
synthesized tetraketones, where a good agreement
could be observed between the theoretical and
experimental results. Four compounds of the novel
bioactive chemicals discovered as tyrosinase inhibi-
tors: TK10 (ICsy = 2.09 uM), TK11 (ICsp = 2.61 uM),
TK21 (ICsy=2.06 uM), TK23 (ICsg=3.19 uM),
showed more potent activity than L-mimose
(ICsp = 3.68 uM). Besides, for this study a heteroge-
neous database of tyrosinase inhibitors was collected,
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and could be a useful tool for the scientist in the
domain of tyrosinase enzyme researches. The current
report could help to shed some clues in the identifi-
cation of new chemicals that inhibits enzyme tyrosi-
nase, for entering in the pipeline of drug discovery
development.

Keywords TOMOCOMD-CARDD software -
Non-stochastic and stochastic bond-based bilinear
indices - LDA-based QSAR model - Tyrosinase
inhibitor - TetraKetones - Virtual screening - Biosilico
identification - Experimental results

Introduction

Melanogenesis is a physiological process resulting in
the synthesis of melanin pigments, which play a crucial
protective role against skin photocarcinogenesis. In
humans and other mammals, the biosynthesis of mel-
anin takes place in a lineage of cells known as mela-
nocytes, which contain the enzyme tyrosinase [1].
Tyrosinase (phenoloxidase) is known to be a key
enzyme for melanin biosynthesis. This enzyme is
mainly involved in the initial steps of the pathway
which consist of the hydroxylation of the L-tyrosine
(monophenolase activity) and the oxidation of the
product of this reaction, the L-DOPA (diphenolase
activity), to give rise to o-dopaquinone [2]. This
o-quinone is transformed into melanins, followed by a
series of divergent steps that give rise to a predomi-
nantly indolic pigment (eumelanin) and a closely
related pigment containing benzothiazine subunits
(phaeomelanin).The current view is that most human
pigmentation involves a combination of these path-
ways giving rise to mixtures of varying composition
[3, 4].

Many approaches are based on the use of analogue
substrates for tyrosinase which are designed to maxi-
mize the generation of reactive orthoquinone oxida-
tion products and increasing their diffusion range by
preventing the spontaneous self-extinguishing cycliza-
tion reaction [5]. These, if released into the cytosol
through the defective melanosomal membranes of
malignant melanocytes, have the potential to react
with vital cellular components and cause irreversible
damage [6]. Therefore, inhibitors of tyrosinase should
be useful as therapeutic agents for the treatment of
melanin hyperpigmentation and cosmetic materials for
whitening after sunburn [7, 8].

On other hand, the computational methods have
become in a suitable alternative to the drug design,
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and have recently applied to QSAR studies of tyros-
inase inhibitors [9-11], using congeneric or heteroge-
neous dataset of compounds. In this sense QSAR
methods can reduce the costly failures of drug can-
didates in clinical trials by filtering virtual libraries of
chemicals.

One of our research group has carried out QSAR/
QSPR studies related to chemical, physicochemical
and biological properties of different chemicals and
drugs [12-16], including studies in nucleic acid-drug
interactions [17, 18] and discovery of antimalarial
compounds [19]. The ‘in house’ TOpologicalMOlec-
ular COMputer Design-Computer Aided‘Rational’
Drug Design (TOMOCOMD-CARDD) software [20]
a novel computer-aided molecular design scheme,
based in the graph theory and linear algebra; has
been used to develop this entire works and many
others.

Here we propose a new set of molecular descriptors
(MDs) namely non-stochastic and stochastic bond-
based bilinear indices, its application to discriminate
tyrosinase inhibitor compounds (actives) from inactive
ones using QSAR models, is shown. Furthermore a
virtual screening is carried out with a small library of
chemicals and as a final point we present the in silico
identification, synthesis and in vitro assays of a new set
of tetraketones, a procedure that can arise the poten-
tialities of these new MDs into a real world application,
that could help to speed up the discovery of new lead
compounds to treat the hyperpigmentation and skin
disorders.

Theoretical framework

The basis of the extension of bilinear indices that
will be given here is the edge-adjacency matrix
considered and explicitly defined in the chemical
graph-theory literature [21, 22], and rediscovered by
Estrada as an important source of new MDs [23-28].
In this section, we first will define the nomenclature
to be used in this work, then the atom-based
molecular vector (¥) will be redefined for bond
characterization using the same approach as previ-
ously reported, and finally some new definition of
bond-based non-stochastic and stochastic bilinear
indices will be given.

Background in edge-adjacency matrix and new
edge-relations: stochastic edge-adjacency matrix

Let G=(V, E) be a simple graph, with
V ={vi,va,...,vy} and E ={ej,ez,...€,} being the
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vertex- and edge-sets of G, respectively. Then G
represents a molecular graph having n vertices and m
edge (bonds). The edge-adjacency matrix E of G
(likewise called bond-adjacency matrix, B) is a square
and symmetric matrix whose elements e;; are 1 if and
only if edge i is adjacent to edge j [25, 28-30]. Two
edges are adjacent if they are incidental to a common
vertex. This matrix corresponds to the vertex-adja-
cency matrix of the associated line graph. Finally, the
sum of the ith row (or column) of E is named the edge-
degree of bond i, J(e;) [23, 26, 27, 29, 30].

By using the edge (bond)-adjacency relationships
we can find other new relation for a molecular graph
that will be introduced here. The kth stochastic edge-
adjacency matrix, ES* can be obtained directly from
E*. Here, ES* = [Fes;] is a square table of order m

(m = number of bonds) and the elements fes; are
defined as follows:

ko.. ko..
kesi]- i % (1)

~ ESUM(EF), ~ ko(e),

where, keij are the elements of the kth power of E and
the SUM of the ith row of E* are named the k-order
edge degree of bond i, “6(e);. Note that the matrix ES
in Eq. 1 has the property that the sum of the elements in
each row is 1. An m X m matrix with nonnegative
entries having this property is called a stochastic
matrix [31].

Chemical information and bond-based
molecular vector

The atom-based molecular vector (¥) used to represent
small-to-medium size organic chemicals has been ex-
plained in some detail elsewhere [12-14, 16, 17, 32-44].
In a manner parallel to the development of X, we
present the expansion of the bond-based molecular
vector (w). The components (w) of w are numeric val-
ues, which represent a certain standard bond property
(bond-label). That is to say, these weights correspond to
different bond properties for organic molecules. Thus, a
molecule having 5,10,15,...,m bonds can be repre-
sented by means of vectors, with 5,10,15,...,m com-
ponents, belonging to the spaces R®°, 10, R, ..., R,
respectively; where m is the dimension of the real sets
(™). This approach allows us encoding organic mole-
cules such as 3-hydroxy-2-butenenitrile through the
molecular vector w = [WCspS—CspZ, W(Csp2=Csp2> WCsp2—Osp3»
WH-0sp3>» WCsp2—Csps WCsp=Nsp ]- This vector belongs to
the product space R°.

These properties characterize each kind of bond
(and bond-types) within the molecule. Diverse kinds of

bond weights (w) can be used in order to codify
information related to each bond in the molecule.
These bond labels are chemically meaningful numbers
such as standard bond distance [45-48], standard bond
dipole [45-48] or even mathematical expressions
involving atomic weights such as atomic log P [49],
surface contributions of polar atoms [50], atomic molar
refractivity [51], atomic hybrid polarizabilities [52], and
Gasteiger—Marsilli atomic charge [53], atomic electro-
negativity in Pauling scale [54] and so on. Here, we
characterized each bond with the following parameter:

w:xi/éi—i-xf/é; (2)

which characterizes each bond. In this expression x; can
be any standard weight of the atom i bonded with atom
j. oi is the vertex (atom) degree of atom i. The use of
each scale (bond property) defines alternative molec-
ular vectors, w.

The chemical information can also be codify by
means of two different molecular vectors, for instance,
w=[wi,...,w,] and @& = [ui,...,u,]; then different
combinations of molecular vectors (W # &) are possi-
ble when a weighting scheme is used. In the present
report, we characterized each bond with mathematical
expressions involving the following parameters: atomic
masses (M) [55], the van der Waals volumes (V) [55],
the atomic polarizabilities (P) [55], and atomic elec-
tronegativity (E) in Mulliken scale [55]. The values of
these atomic labels are shown in Table 1. From this
weighting scheme, six (or 12 if wy-tiy # Wy-tiy)
combinations  (pairs) of  molecular  vectors
(w,u; w # u) can be computed, wy-ity, Wy-ilp, Wa-lig,
wy-up, wy-ig, and wp-ig. Here, we used the symbols
wx-iiz, where the subscripts y and , mean two
mathematical expressions involving atomic properties
from our weighting scheme and a hyphen (-) expresses
the combination (pair) of two selected bond-label
chemical properties. In order to illustrate this we will
consider this in an example describe in other section
of this work.

Definition of mathematical bilinear forms

In mathematics, a bilinear form in a real vector space is
a mapping b : VxV — R, which is linear in both argu-
ments [58-60]. That is, this function satisfies the fol-
lowing axioms for any scalar « and any choice of
vectors v, w, V1, vp, w1 and w,.

i. b(av,w) =b(v,aw) = (v,
ii. b(vy+vy,w)=b(n 2,
iii. bV, w; +wy) = bV, wy) +b(v,w)

@ Springer



170

J Comput Aided Mol Des (2007) 21:167-188

Table 1 Values of the atom weights used for linear indices cal-
culation [54-57]

ID Atomic VdW? Mulliken Polarizability
mass Volume (A% electronegativity (A%)
H 1.01 6.709 2.592 0.667
B 1081 17.875 2.275 3.030
C 1201 22.449 2.746 1.760
N 1401 15.599 3.194 1.100
O 16.00 11.494 3.654 0.802
F  19.00 9.203 4.000 0.557
Al 2698 36.511 1.714 6.800
Si 28.09 31.976 2.138 5.380
P 3097 26.522 2.515 3.630
S 3207 24.429 2.957 2.900
Cl 3545 23.228 3.475 2.180
Fe 5585 41.052 2.000 8.400
Co 5893 35.041 2.000 7.500
Ni 58.69 17.157 2.000 6.800
Cu 63.55 11.494 2.033 6.100
Zn 6539 38.351 2.223 7.100
Br 79.90 31.059 3.219 3.050
Sn 118.71 45.830 2.298 7.700
I 126.90 38.792 2.778 5.350

# VdW: van der Waals

That is, b is bilinear if it is linear in each parameter,
taken separately.

Let V be a real vector space in ®*(V € ®") and
consider that the following vector set, {é1,e;,...,¢€,} is
a basis set of R". This basis set permits us to write in
unambiguous form any vectors w and y of V, where
(whw?, ... ,w") € R and (u',u?,...,u") € R are the
coordinates of the vectors X and i, respectively. That is
to say,

W= inéi (3)

and,

a=> ye (4)
i=1

Subsequently,

b(w,u) = b(w'e;,/e;) = w'/b(e;, ej) (5)

if we take the a;; as the n x n scalars b(e;, ¢;), That is,
ajj = b(éi,é/'), toi= 1,2,...,1’1 andj: 1,2,...,}’1 (6)
Then,

b(w, i) = Zn:a,-jwiuf = W] A[U)

air ... 4 u
=[w' oow]|.. o ] (7)

ay1 ... Qpp u

@ Springer

As it can be seen, the defined equation for b may
be written as the single matrix equation (see Eq. 7),
where [U] is a column vector (an n X 1 matrix) of the
coordinates of & in a basis set of &, and [W]” (a 1 x n
matrix) is the transpose of [W], where [W] is a column
vector (an n x 1 matrix) of the coordinates of w in the
same basis of .

Finally, we introduce the formal definition of sym-
metric bilinear form. Let V be a real vector space and b
be a bilinear function in V x V. The bilinear function b
is called symmetric if b(w,u) =b(u,w),Yw,uecV
[58-60] Then,

b(w,u) = ayw'd =" aywu' = b(u,w) (8)
l‘?j 17]

The total non-stochastic and stochastic bond-based
bilinear indices

If a molecule consists of m bonds (vector of ™), then
the kth total bilinear indices are calculated as bilinear
maps (bilinear form) in ™ in canonical basis set.
Specifically, the kth total non-stochastic and stochastic
bond bilinear indices, by (w,u) and *by(w, 1), are com-
puted from these kth non-stochastic and stochastic
edge adjacency matrices, Ef and ES¥, as shown in
Egs. 9 and 10, correspondingly:

kegw'id/ = [W]'EM[U] 9)

b (W, i) = Z

4

m
=1 j

m
=1

Shr(w, it) = kes;wil = [W]'ES¥[U] (10)

M
Mz

I
—_

i=1j

where, m is the number of bonds of the molecule, and
wl,...,w" and u!,... u™ are the coordinates of the
bond-based molecular vectors w and # in a canonical
basis set of ®". Therefore, if we used the canonical basis
set, the coordinates [(w!,...,w") and (&',...,u") ] of
any molecular vectors (w and #) coincide with the
components of those vectors [(wi,...,w,) and
(u1,...,uy) ] [28, 45, 46]. For that reason, those coordi-
nates can be considered as weights (bond-labels) of the
edge of the molecular graph. The coefficients *e; and
kes;; are the elements of the kth power of the matrix
E(G) and ES(G), correspondingly, of the molecular
pseudograph. The defining Eqs. 9 and 10 for by (w, &) and
Sbr(w, u1), respectively, may be also written as the single
matrix equation (see Egs. 9 and 10), where [U] is a col-
umn vector (an n x 1 matrix) of the coordinates of # in
the canonical basis set of i, and [W]'is the transpose of
[W], where [Wis a column vector (an n x 1 matrix) of the

)
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coordinates of w in the canonical basis of ®". Here, EX
and ES* denote the matrices of bilinear maps with
respect to the natural basis set.

It should be remarked that non-stochastic and sto-
chastic bilinear indices are symmetric and non-
symmetric bilinear forms, respectively. Therefore, if in
the following weighting scheme, M and V are used as
weights to compute theses MDs, two different sets
of stochastic bilinear indices, ~VsbJ!(w,u) and
V-Mspil(w, ) [because Wy-ity # Wwy-iiy] can be
obtained and only one group of non-stochastic bilinear
indices (M~Vsbi(w, @) = V"Ml (W, @) because in this
case wy-ily = Wy-iiy) can be calculated.

The local non-stochastic and stochastic bond-based
bilinear indices

Finally, in addition to total bond-based quadratic
indices, computed for the whole molecule, a local-
fragment (bond and bond-type) formalism can be
developed. These descriptors are termed local non-
stochastic and stochastic bilinear indices, by, (W, ) and
Sbrr,(w,u), respectively. The definition of these
descriptors is as follows:

b (W, @) Z Zke,]Lw W = [W])'EF[U] (11)
i=1 j=1
Sbrr(w,u) = szesijLwiuj = [W]'ES¥[U] (12)

I
_
I
-

=1 j
where, m is the number of bonds and ¥e;; [Fes;j ] is the
kth element of the row i’ and column *‘j”’ of the local
matrix E¥ [¥]. This matrix is extracted from the *[ES*]
matrix and contains information referred to the edges
(bonds) of the specific molecular fragments and also of
the molecular environment in k steps. The matrix
Ef [ES’E] with elements ke,-,-L [kes,-,-L} is defined as follows:

kel-jL [kes,-]-L] = keij[kes,-jL] if both
e; and e; areedges
(bonds)contained within the molecular fragment
=1/2%¢;i[*es;jr] if e; ande; areedges (bonds)
contained within the molecular fragment but not both
= 0 otherwise
(13)

Is important to highlight that the scheme above
follows the spirit of a Mulliken population analysis
[61]. It should be remarked also that for every parti-
tioning of a molecule into Z molecular fragments there

will be Z local molecular fragment matrices. In this
case, if a molecule is partitioned into Z molecular
fragments, the matrices EX[ES¥] can be correspond-
ingly partitioned into Z local matrices EF[ESf],
L =1,...,Z, and the kth power of matrix E [ES] is
exactly the sum of the kth power of the local Z
matrices. In this way, the total (both non-stochastic and
stochastic) bond-based bilinear indices are the sum of
the non-stochastic and stochastic bond-based bilinear
indices, respectively, of the Z molecular fragments:

Z
i) = by (W, it) (14)
L=1
Z
bi(w, ) =Y ber. (W, ) (15)
L=1

Bond and bond-type bilinear fingerprints are specific
cases of local bond-based bilinear indices. The kth
bond-type bilinear indices of the edge-adjacency
matrix are calculated by summing up the kth bond
bilinear indices for all bonds of the same type in the
molecule. That is to say, this extension of the bond
bilinear index is similar to group additive schemes, in
which an index appears for each bond type in the
molecule together with its contribution based of the
bond bilinear index.

In the bond-type bilinear indices formalism, each
bond in the molecule is classified into a bond-type
(fragment). In this sense, bonds may be classified into
bond types in terms of the characteristics of the two
atoms that define the bond. For all data sets, including
those with a common molecular scaffold as well as
those with very diverse structure, the kth fragment
(bond-type) quadratic indices provide much useful
information. Thus, the development of the bond-type
bilinear indices description provides the basis for
application to a wider range of biological problems in
which the local formalism is applicable without the
need for superposition or a closely related set of
structures.

It is useful to perform a calculation on a molecule to
illustrate the steps in the procedure. For this, in the
next section we depict a pictorial representation of the
calculus of the non-stochastic and stochastic bilinear
indices of the bond matrix (both total and local) using a
simple chemical example.

Sample calculation
The bilinear indices of the bond matrix are calculated

in the following way. Considering the molecule of
3-hydroxy-2-butenenitrile as a simple example, we

@ Springer
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have the following labeled molecular graph and bond-
based adjacency matrices (E and ES). The second
(k = 2) and third (k = 3) power of these matrices and
bond-based molecular vector, w, are also given:

The molecule contains five localized bonds (cor-

A

uy = yc/4+yn/3 =12.01/4 +14.01/3 = 7.6725
us = yc/4+yo/1 = 12.01/4 +16.00/1 = 19.0025

and therefore, i = [15.0125, 7.005833, 7.005833, 7.6725,
19.0025].

e N
HO5 3

1 0 0 01 21101 24113
1 1 0 101 13011 4240 4
E'=ES° = 1 E'=|0 10 1 0 E’=|1 020 1|E=|14021
1 0 0100 01010 10201
1 11000 11102 34112
0 05 0 0 05 04 02 02 0 02 0.18 0.36 0.090 0.090 0.27
033 0 033 0 033 016 05 0 0.16 0.16 028 014 028 0 028
ES'=| 0 05 0 05 0 |[ES=[025 0 05 0 025[ES*=012 05 0 025 012
o 0 1 0 O 0 05 0 05 0 025 0 05 0 025
05 05 0 0 O 02 02 02 0 04 0.27 036 0.090 0.090 0.18
responding to five edges in the H-suppressed Each non-stochastic and stochastic total bilinear

molecular graph). To these we will associate the five
“bond orbitals” wy,w,, w3, ws, and ws. Thus, w =
Wi, wa, w3, wa, ws] = [Wic_c), W(c=c), W(C-C)s W(C=N),
w(c-0)] and each ““bond orbital”” can be computed by
Eq. 2 using, for instance, the atomic electronegativity
in Pauling scale (x) [54] as atomic weight (atom-la-
bel):

wi = xc/1+xc/4 =2.55/1+2.55/4 = 3.1875
wy = xc/4+xc/3 =2.55/4 +2.55/3 = 1.4875
w3 = xc/3 +xc/4 =2.55/3 +2.55/4 = 1.4875
Wy = xc/4+xy/3 = 2.55/4 +3.04/3 = 1.650833
ws = xc/4+x0/1 = 2.55/4 + 3.44/1 = 4.0775

and therefore, w = [3.1875, 1.4875, 1.4875, 1.650833,
4.0775].

Besides other vector, u must be calculated in the
same way that w, but using other property, for
example the atomic masses [55] as atomic weight
(atom-label):

wm =yc/l+yc/4=12.01/1+12.01/4 = 15.0125

1y = ye 4+ ye/3 = 12.01/4 + 12.01/3 = 7.005833
us = ye/3 + ye/4 = 12.01/3 + 12.01 /4 = 7.005833

@ Springer

index will have the form:

by (w,u) =kerwlu! + ke whi? +-Feswtu® +-Feqwlu
e’ +*epwl i + ey +* e Wil
FRepwi® +*es; Wi +Ferwli® +* e w3
oW +*epwiut + esswu® +* e u
+kez4w2u4+ke34w3u4+ke44w4u4+kes4w4u5
R swl® +%ersw?ud +Fesswii +*esswu
+*esswu’ :Zke[iwiui+22keijwiuj (16)

0] (i)

Shi(w, it) = + Feswlu! + Kesywlu? 4 Fesyyw'i®
+ k€S41W1M4 + k6551 Wll/t5 + keslzwluz
+ keszzwzu2 + k6332w2u3 + keS42w2u4

+ kesszwzu5 + kes13w1u3 + kesz3wzu3

+ keS33w3u3 + kes43w3u4 + kes53w3u5
+ kes14w1u4 + keS24w2u4 + keS34w3u4
+ keS44w4u4 + kess4w4u5 + kes15w1u5
+ keszswzus + kes35w3u5 + kes45w4u5
=+ k€S55W5M5

- Z kesiw'ul +2 Z kesiw'u/
) (&)
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The ¥e;; ’s and ¥es;; ’s can be considered a measure of
the attraction of an electron for a bond in the k step.
The ke; ’s and *es; ’s are the terms of interaction
between two bonds in the k step. The *e;; ’s =kej; ’s are
equal by symmetry (non-oriented molecular graph).
However, Xes;; # kes;;. This is a logical result because
the kth es; elements are the transition probabilities
with the ‘electrons’ moving from bond i to j at the
discrete time periods #; and it should be different in
both senses. This result is in total agreement if the
electronegativity of the two atom types in the bonds
are taken into account.

In this way, E¥ and ES* can be seen as graph-the-
oretic electronic-structure models [62]. In fact, quan-
tum chemistry starts from the fact a molecule is made
up of electrons and nuclei. The distinction here be-
tween bonded and non-bonded atoms is difficult to
justify. Any two nuclei of a molecule interact directly
and indirectly through the electrons present in the
molecule. Only the intensity of this interaction varies
in going from one pair of nuclei to another. In this
sense, the electron in an arbitrary bond i can move
(step-by-step) to other bonds at different discrete time
periods f, (k=0,1,2,3,...) through the chemical-
bonding network. That is to say, the E! and ES'
matrices consider the valence-bond electrons in one
step and their power (k=0,1,2,3...) can be consid-
ering as an interacting-electron chemical-network
model in k step. This model can be seen as an inter-
mediate between the quantitative quantum-mechanical
Schrodinger equation and classical chemical bonding
ideas [62].

On the other hand, the kth (k = 0-3) non-stochastic
total quadratic indices can be expressed as the sum of
the local (bond) quadratic indices for this molecule as
follows:

qo(w, ) =qor.(w, 1) + qor (W, 42) + qor(W, u3)
+ qor. (W, ut4) + qor. (W, is) = 47.85234
+10,42118 +10,42118 + 12, 66602
+ 77,48269 = 158, 8434

g, (W, u) =q1.(W, 1) + q.(W, u2) + q1.(W, i3)
+ qu (W, itg) + quz (W, its) = 83,22306
+61,16852 4+ 21,91033 + 11,48915
+ 89,30822 = 267,09929

@ (W, u) =qo1.(W, 1) + q2.(W, U2) + qor. (W, i3)
+ qar.(W, tg) + qor. (W, i) = 201,2588
+93,50003 + 71,5897 + 24,15517
+272,6899 = 663,1936

g (W, ) =q3. (W, tt1) + g3 (W, 2) + q31.(W, U3)
+ q3.(w, ﬁ4) + q31.(w, us) = 414,6557
+ 265,5164 4+ 115,4104 + 78,92521
+511,0498 = 1385, 5575

The terms in the summations for calculating the total
quadratic indices are the so-called local (bond) qua-
dratic indices. We have written these terms in the
consecutive order of the bond labels in the graph. For
instance, the non-stochastic bond quadratic indices of
order 0, 1, 2 and 3 for the bond labeled as 1 are
47.85234, 83.22306, 201.2588 and 414.6557, respectively.

The kth total stochastic quadratic indices values are
also the sum of the kth local (bond) stochastic qua-
dratic indices values for all bonds in the molecule:

‘go(w,u) ="qor(w, u1) +°qor (W, u2) +°qor (W, i3)
+ qor. (W, 4) + >qor. (W, is)
=47,85234 +10,42118 + 10,42118
+12,66602 + 77,48269 = 158, 8434
g (w,u) =qi.(w, ) + qi(w, i) +°q1.(w, u3)
+q1. (W, g) + qr (W, i)
=39,75061 + 25,47438 + 12,93994
+ 8,597788 + 42,27359 = 129, 0363
‘gy(w,u) ="qar(w, 1) +°qor (W, u2) +°qar.(W, i3)
+3qor (W, ug) +°qar (W, ts)
=40, 43786 + 18,32877 + 16,63249
+10,15001 + 54,77602 = 140.3252
‘gs(w,u) =gz (W, 1) + qar (W, i2) +°q3.(W, i3)
+3q3 (W, ug) +°q3p (W, its)
—39, 15194 + 22, 05334 + 13, 87389
+ 13,8189 + 48,32158 = 137,2196

Material and methods
TOMOCOMD-CARDD approach

The total and local (bond-type) bond-based bilinear
indices were calculate by the interactive program for
molecular design and bioinformatic research TO-
MOCOMD-CARDD [20]. The software was devel-
oped based on a user-friendly philosophy. That is to
say, this computer graphics software shows a great
efficiency of interaction with the user, without prior
knowledge of programming skills (e.g. practicing
pharmaceutic and organic chemist, teacher, university
student, and so on). CARDD subprogram allows
drawing the structures (drawing mode) and calculat-
ing 2D (topologic), 3D-chiral (2.5D) and 3D (geo-
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metric and topographic) non-stocahstic and stochastic
MDs (calculation mode).

The main steps for the application of this method in
QSAR/QSPR and for drug design can be briefly
summarized as follows:

1. Drawing of the molecular pseudographs for each
molecule in the data set, using the drawing mode.

2. Use appropriate weights in order to differentiate
the molecular atoms. The weights used in this
work are those previously proposed for the
calculation of the DRAGON descriptors [55-
57], i.e., atomic mass (M), atomic polarizability
(P), atomic Mullinken electronegativity (K) plus
the van der Waals atomic volume (V). The
values of these atomic labels are shown in
Table 1 [54-57].

3. Computation of the total and local (bond and
bond-type) bond bilinear indices of the bond
adjacency matrix can be carried out in the software
calculation mode, where one can select the atomic
properties and the descriptor family before calcu-
lating the molecular indices. This software gener-
ates a table in which the rows correspond to the
compounds, and the columns correspond to the
bond-based (both total and local) bilinear maps or
other MD family implemented in this program.

4. Development of a QSPR/QSAR equation by using
several multivariate analytical techniques, for
instance, linear discrimination analysis. That is
to say, one can find a quantitative relationship
between an activity A and the bond-based bilinear
fingerprints having, for instance, the following
appearance:

A= Ll()b()(ﬁ/7 ﬁ) + (1]1L(£1)/V + arb, (W u) (18)

+ -+ agb(w

where A is the measured activity, by(w, ) are the kth

non-stochastic total bond-based bilinear indices, and

the a,’s are the coefficients obtained by the linear
regression analysis.

5. Test of the robustness and predictive power of the
QSPR/QSAR equation by using internal [leave-
one-out (LOO)] and external (using a test set and
an external predicting set) validation techniques.

The bond-based TOMOCOMD-CARDD descrip-
tors computed in this study were the following:

(1) kth (k=15) total non-stochastic bond-based
bilinear indices not considering and considering
H-atoms in the molecular graph (G) [by(W, &) and
b,i’ (w,u), respectively].
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(2) kth (k = 15) total stochastic bond-based bilinear
indices not considering and considering H-atoms
in the molecular graph (G) [*bp(w,u) and
sbf (w, ), respectively].

(3) kth (k =15) bond-type local (group = heteroa-
toms: S, N, O) non-stochastic bilinear indices not
considering and considering H-atoms in the
molecular graph (G) [byy(Wg,ig) and b,
(wg,ug), correspondingly]. These local des-
criptors are putative molecular charge, dipole
moment, and H-bonding acceptors.

(4) kth (k =15) bond-type local (group = heteroa-
toms: S, N, O) stochastic bilinear indices not
considering and considering H-atoms in the
molecular graph (G) [*bpp(Wg,ug), and
Sby. (wg,iig), correspondingly]. These local de-
scriptors are putative molecular charge, dipole
moment, and H-bonding acceptors.

Database construction

The database collected to our study of tyrosinase
inhibitory activity consists of 685 compounds in total.
The active compounds inside this set were of 246,
having reported activity against the enzyme tyrosinase.
The rest, 412 organic-chemicals were chosen as inactive
compounds. In both cases (active and inactive ones) we
consider the structural molecular variability as impor-
tant goal to assure the quality of our QSAR study.

In the case of tyrosinase inhibitor compounds
(actives) many different subsystems were included. An
example of the most representative tyrosinase refer-
ence drugs is illustrates in Fig. 1, together with some
tyrosinase inhibitors of different families.

The names of compounds in the active database to-
gether with their experimental data taken from the
literature are shown in Table 1 of Supporting Infor-
mation. In the same way, we depict in Table 2 (Sup-
porting Information) the molecular structures of these
246 tyrosinase inhibitors. This dataset provides a help-
ful tool for scientific research in many chemistry fields
related with the tyrosinase enzyme and its inhibitors.

By other way, the rest 412 compounds having dif-
ferent pharmacological uses were selected for the
inactive set. All these chemicals were taken from the
Negwer Handbook [63], where their names, synonyms
and structural formulas can be found.

Statistical techniques

The STATISTICA software [64] was used to develop
the different statistical methods used in this report. In
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Fig. 1 Random, but not
exhaustive, sample of the
molecular families of
tyrosinase inhibitors studied
here and some reference
drugs OH
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first place we employed the cluster analysis as a
method that recognizes similarities among cases and it
contains them according to these criteria [65]. In our
case k-MCA (k-means cluster analysis) and k-NNCA
(k-nearest neighbors cluster analysis) algorithms were
used to design the training and prediction series
[64-67]. The dendrograms were obtained using the
Euclidean distance (X-axis) and the complete linkage
(Y-axis), and show the distance between the com-
pounds inside the clusters, that are grouped according
to its chemical similarity encoded by the MDs used as
variables. Linear Discriminant Analysis (LDA) a sim-
ple and very useful technique in drug design was car-
ried out to find the QSAR models [13, 16, 17, 19, 34, 35,
37, 38, 42-47, 68-73]. Here, the forward stepwise pro-
cedure was fixed as the strategy for variable selection
and taken into account the principle of parsimony
(Occam’s razor) for model selection.
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The classification of cases was carried out by mean
of posterior classification probabilities. Tyrosinase
inhibitory activity was codified by a dummy variable
“Class”. This variable indicates the presence of ei-
ther an active compound (Class = 1) or an inactive
compound (Class = -1). By using the models, one
compound can then be classified as active, if
AP%>0, being AP% = [P(Active) — P(Inactive)]x
100, or as inactive otherwise. P (Active) and P
(Inactive) are the probabilities with which the
equations classify a compound as active or inactive,
respectively.

The Randi¢’s method of orthogonalization was used
in this study as a way to avoid the interrelation among
the molecular fingerprints [45, 74-79]. This may pos-
sible a better statistical interpretation of the correla-
tion coefficient and to evaluate the role of individual
MDs in the QSAR model.
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The data set was standardized before the orthogo-
nalization process, because the different MDs included
here used entirely “different types of scales”. This
process to proportionate each variable has a mean of 0
and a standard deviation of 1.

Experimental methods

The synthesis and characterization of the 24 tetrake-
tones, their biological studies and cross references have
been reported by other of our research team [80].

Tyrosinase inhibition assay was performed with
kojic acid and L-mimosine as standard inhibitors for
the tyrosinase in a 96-well microplate format using a
SpectraMax 340 micro-plate reader (Molecular
Devices, CA, USA) according to the method
developed by Hearing [81]. Briefly, the compounds
were first screened for the o-diphenolase inhibitory
activity of tyrosinase using L-DOPA as substrate. All
the active inhibitors from the preliminary screening
were subjected to ICsy studies. Compounds were
dissolved in methanol to a concentration of 2.5%.
Thirty units of mushroom tyrosinase (28 nM from
Sigma Chemical Co., USA) were first preincubated
with the test compounds in 50 nM Na-phosphate
buffer (pH 6.8) for 10 min at 25 °C. Then the r-
DOPA (0.5 mM) was added to the reaction mixture
and the enzymatic reaction was monitored by mea-
suring the change in absorbance at 475 nm (at
37 °C) due to the formation of the DOPAchrome
for 10 min. The percentage of inhibition of the en-
zyme was calculated as follows, by using MS Ex-
cel®™ 2000 (Microsoft Corp., USA) based program
developed for this purpose:

Percent inhibition = [(B — §)/B] x 100 (19)

Here, B and S are the absorbances for the blank and
samples, respectively. After the screening of the com-
pounds, 50% inhibitory concentrations (ICsy) were
also calculated. Kojic acid and L-mimosine were used
as standard inhibitors for the tyrosinase and both of
them were purchased from Sigma Chem. Co., USA.

Results and discussion

Dividing the training and prediction series through
cluster analysis

In above section we describe the database selection

process, now the structural variability of such set must
be proved. This is a crucial aspect in any QSAR study
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Fig. 2 A dendrogram illustrating the results of the hierarchical
k-NNCA of the set of tyrosinase inhibitors used in the training
and prediction set of the present work
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Fig. 3 A dendrogram illustrating the results of the hierarchical
k-NNCA of the set of inactive compounds (non-tyrosinase
inhibitors) used in the training and prediction set of the present
work

in order to explain its reliability. Following this main
reason, different cluster analysis techniques were car-
ried out. In first place was used a k-NNCA to prove the
structural diversity in the families presented in the
data. Two dendrograms, one for the active compounds
series and other for the inactive ones, were obtained
through hierarchical cluster analysis (Figs. 2, 3) were
can be observed different structural patterns which
demonstrate the chemical variability of the database.

Now the dataset should be partitioned in training
and prediction sets, to find the discriminant functions,
but due to the difficulty of evaluating the output
dendrograms other kind of CA must be do it, for the
selection of compounds in a ‘rational’ way.

Therefore we chose the k-MCA to solve this prob-
lem, and were applied to active and inactive subsets.
The first k-MCA for tyrosinase inhibitors divide this



J Comput Aided Mol Des (2007) 21:167-188

177

Table 2 Main results of the k-MCAs, for tyrosinase inhibitors
and inactives drug-like compounds

Analysis of variance

Variables Between  Within SS®  Fisher p-level®
Ss? ratio (F)
Tyrosinase inhibitors clusters (k-MCA 1)
YPb; (xE) 187.01 20.29 241.65 0.00
VbeI (%) 301.99 34.58 228.98 0.00
YKboy (xE) 298.30 56.31 138.91 0.00
VKB (x) 309.23 33.40 242.77 0.00
VPb?[(x 213.04 25.90 215.68 0.00
VKbZ{(x) 265.14 35.70 194.73 0.00
YPhoy (xg) 157.80 2541 162.86 0.00
Mbe'L(xE) 164.30 29.24 147.37 0.00
MPho (xE) 50.63 9.54 139.12 0.00
MEp 1 (xE) 192.77 25.84 195.60 0.00
MPpH () 26.04 8.80 77.64 0.00
YPhip(xg) 187.01 20.29 241.65 0.00
Inactives clusters (k-MCA 11)
"Pbyp (xE) 455.59 126.84 130.62 0.00
VK I (x) 312.80 60.56 187.83 0.00
Kby (xE) 406.45 74.23 199.12 0.00
VK bg (x) 365.14 75.46 175.96 0.00
VP b%(x) 259.67 208.61 45.26 0.00
VEp (x) 298.04 50.65 213.97 0.00
bor.(xE) 679.51 85.82 287.93 0.00
MEBI (xp) 412.22 125.66 119.29 0.00
Pbor (x) 1171.79 88.34 482.36 0.00
MEp; (xE) 451.92 131.25 125.21 0.00
MPbgL (xg) 1215.08 106.85 413.53 0.00
? Variability between groups
® Variability within groups
¢ Level of significance
183 Active Training Data Set 295 Inactive
Compounds 478 chemicals in total Compounds
O O O :, Dataset of 658 , . . .
O O : chemicals in total ; 000
O O : : 000
OO QO] kMcAl 26 412 KMCAIl @ @ @
10 Active [~ Tbion | | kit | | 12 Inactive
| Clusters _| : : L CluIters i
63 Active Test Data Set 117 Inactive
Compounds 180 chemical in Total Compounds

Fig. 4 General algorithm used to design training and test sets
throughout &-MCA

set into 10 clusters. On other hand the k-MCA II split
the inactive set into 12 clusters. The variables used
were the kth non-stochastic bond-bilinear indices, and
the analyses of variance for these k-MCAs are depicted
in Table 2.

The following process using the cluster analysis
techniques to divide entire database in training and
prediction series is shown in shown in Fig. 4. How can

be observed in the same diagram there are 183 active
compounds and 295 inactive ones belonging to training
set (478 organic-chemicals). The prediction series of
180 compounds have 63 tyrosinase inhibitors and 117
non-inhibitors of tyrosinase.

Developing the discriminant functions

The representative selection of training set permit
continues to the next step, the finding of the classifi-
cation functions to discriminate between active and
inactive. For this we select the LDA as statistical
technique due to it’s broadly use and simplicity.

In total were obtained fourteen models, the first six
models developed with the non-stochastic bond-based
bilinear indices and the other first six perform with the
stochastic molecular descriptors, these equations are
depicted Table 3. Besides, below we shown the Eqgs. 32
and 33 of the last seven models in both cases (non-
stochastic and stochastic molecular fingerprints)
resulting in a combination of all pairs of atom weights
(atomic labels):

Class = — 0.636 — 8.422 x 107 2MPpl! (W, )

+ 0. 107MPb0L(WE7 LLE)
+1.792 x 107 2MKp! (o, 1)
— 2373 x 102MKpy; (Wi, )

+3.287 x 107" (w, &)

—9.590 x 107 2"Pby (W, i)

+1.166 x 1072Pby; (WE, i)

+2.277 x 107Kl (w, )

+ 5.4 x1073VEB! (w, i)

—4.04 x 1073VEBY (w, &)

+2.34 x 1072 Kbo, (W, i) (32)

N=478 1=045 D?=513
R=074 %%2=3748 Qow = 91.00%

F = 51.6 Canonical
C=0.381

Class = —0.302 4 5.290 x 10MVb2 (., ur)

+6.267 x 1073MPhy; (W, i)

+1.262 x 107X p(w, i) — 3.458

x 1072MKpl (g, ig) — 1.734 x 1072Pby(w, )

+1.286 x 1072Pbyy; (W, 1) — 4.840

x 1072 by (g, ag) + 0.129VEbY, (Wi, ig)

—0.133VEbL (Wi, ig) +1.067 x 1072VE b,
(WE, lig) (33)
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Table 3 Discriminant models obtained with total and local non-stochastic and stochastic bond-based bilinear indices used in this study

LDA-based QSAR models obtained using non-stochastic bilinear indices

Class = —0.333 + 6.296 x 10~V pl (i,

) +2.519 x 1073MVpl (% i) — 1.062 x 10~ WVb”(w @) +5.213 x 10" MV plL (% @)

—1.018 x 10 2MV bl (W, ) +1.592 x 103MV bt (g, @1g) + 1.877 x 10 *MVbE, (W, )

+4.316 x 10~ 3MVb0L(WE ug) —
—2.632 x 10°2MVpyy; (Wi, lig)

4201 x 10~ 3va11 (WF,L{[:) +4 939 x 10~ 4MVb21 (WF MF) —1.303 x 10~ 6va6[ (WF uF)

(20)

Class = —0.351 + 6.742 x 10-2MPpl! (. @) 4 3.085 x 10-MPpt! (W, @) — 1.727 x 10-2MPp (W, @) 4 2.900 x 10-2MPp, (w, i)

—1.381 x 102MPp (. i) + 3.085 x 10-3MPhs(w, it) —
+5.058 x 10~ 2MPb()L(WE LtE)
—3.077 x 10~ 4MPb4L(wE,uE)
Class = —1.577 + 6.753 x 107 2MKpl! (% @) —
—9.832 x 10 2MKpfl () +
+3.148 x 10~ 2MKbOL(WE7 uE) —
Class = —0.630 + 3.534 x 102V7pl!

0. 118M‘Db01 (WE7 llE) +1.584 x 10~ 2MPb21 (WE, ME)
6.603 x 1072]\/”3171[‘(WE7 ME) +9.529 x 10~ 3Mpb2L(WE LLE)

eay)

@) — 5.903 x 10~*MKpH (% @) +3.015 x 10-8MKp!l (% @) 4+ 1.585 x 10-3MKpll (i
1.899 x 10~ 2’V'Kb{’L(wE,uE) +2.051 x 10~ 3MKb3L(wE iig) —
2.375 x 10~ ZMKblL(WE uE)
(W, it) + 3.696 x 10~ ZVPb”(’ i) —
—6.702 x 10_2VPb0L(WE, ME) +1.834 x 10~ 3VPb3L(WE,ME) +2.303 x 10~ 2VPIJ()L(WE7 uE)
)

1)
2.572 x 10~ 12M’<b{2L(wE i)
2.385 x 105MK s, (wg,iig)  (22)
5218 x 1073VPbY (w, @) 4 1.494 x 10-4VPb (w, @)
3.110 x 10~ ZVPblL(WBuE)

+4.899 x 10— 3VPb2L(wE,uE —1.810 x 10~ 7VPb1()L(WE7ME) +1.188 x 10~ 9VPb14L(W]:,llE) —1.813 x 10~ 10VPb15L(wE,uE) (23)

Class = —1.058 x 102 —

2.314 x 1072VKpl (w, @) +2.108 x 10-2VKpt (w, ) —
+5.867 x 1073VK by (w, ) — 1.494 x 107VE b, (w, @) + 1.075 x 1072V bgy (W, 1) —

3513 x 103Vl (, @) + 2.053 x 10~ 12VKbIL (10, )
2.066 x 10-2VKby, (g, iir)

+4.864 x 1073VKb2L(WE., up) —1.212 x 1076VKb8L(ﬁ/E, ug) +4.842 x 107]OVKb14L(WE, ug)

—8.174 x 10~ HVKbHL(WE,L{E)
Class = 0.182 — 0.2717Kb! (w,i) + 0.3117K b (w, 1) —

+5.107 x 1072PK by, (g, iig) —

Class = —0.303 — 4.647 x 10>V bl (w, ) —

—8.967 x 10-3MV pl1
Class = —0.696 — 0.148""p;

+5.6291 x 1072MP b, (W, itg) —

—2.423 x 10 2MK b, (Wi, 1)

Class = —0.422 — 3.200 x 10~ 2‘/PbH(’ u) —5.377 x 10~ ZVsz (w,u) +0. 112VPb 3(w, )
5.030 x 1072YPbY (wg, ig) + 0. 543VPb4L(wE,uE)
4.654 x 1072VP b4L(WE ME) +2.222 x 10~ 2ve b14L(WE,ilE) (29)
u)+5.701 x 10~ 2VKb (W, 1) — 1.007 x 1072VKpy(w, i) + 1.079 x 1072VKpy (w, i)
2,952 x 10~ 2VERH (1, uE) +0.153VEB (W, g) —

+2.413 x 102YPbyy (W, i) —
+2.156 x 10~ ZVPbOL(wE,uE)
Class = —0.736 — 5.040 x 1072VKpl (i,
+1.004 x 10~ ZVKbM(w i) —
—6.737 x 10_2VKb (WE ME) +1.670 x 10_2VKb()L(WE ug
Class = —0.401 — 0. 558P1<b0 (w, @) + 0.605°K bl (w, ) —
+0.180FK by (w, it) + 0.1187K by (w, i) —
—0.287Kbs; (W, iig)

6.625 x 10-2PKpl (5,
—1.794 x 10~ ZPsz(w i) +1.452 x 10~ 3PKbH L (W, i) + 0.162PKbo, (W, i) —
3.957 x 10~ 4PKb5L(WE LtE)

LDA-based QSAR models obtained using stochastic bilinear indices
2.557 x 1073MVpH (1%, @) + 8.831 x 103MV bt (W, 71) + 5.245 x 1073MV b, (w, &)
—7.103 x 10~ w”/bz(w i) +2.955 x 103V s(w, i) + 3.191 x 10~ 2"”‘/174L(14115,L¢E)
‘élL(WE, ME) +3.855 x 10~ 3MVbQL(WE uE)
(W, i) + 6.719 x 102MPp (% 7)) + 0. 102MPb”(w ii) 4 4.644 x 1072MPp, (3, i7) —
+2.518 x 10~ 2]"“Db14(w ) — 5.617 x 1072MPpl (W ) 4+ 0.174MPbE (W, iag) —

6.346 x 10~ ZMPblL(W[;,M[;)
Class = —0.269 — 1.435 x 1072MKp (i i1) + 1.412 x 1072MKpy (w, i1) —
—3.746 x 107 2MKpll (i) + 4.210 x 1072MKpE (g i) +3.622 x 1072MK by, (g, it

0.502PK bt (. it) + 0.560PK bt (w, it) —

0. 972PKb1L (WE7 ME) -‘r 1 747PKb2L(WE LLE) —1. 016PKb7L(WE,llE) +0. ZOSPKb()L(WE7 LLE)

(24)
i) +2.712 x 10" PKBIL (i) +9.137 x 10-27K by (w, i)
0.289 x 10~ ZPKblL(WE, ﬁE)
(25)

2.634 x 102MVpY (W ar)
4915 x 10~ 3va1L(WE,uE) (26)
6.597 x 107 2MPp, (W, ir)
0.154MPpt (3o, iig)
(27

3.842 x 107 2MK po (i, ) + 4.586 x 10~2MKpy, (w, i)
—2.421 x 1072MKpy ) (W, iig)

(28)
—1.711 x 1072VPby (w, &)
0.438"PbL} (we,ag) — 0.103"Pb1%, (g, ir)

7.459 x 10°2VKb (1w, g
z 333 x 10~ ZVKbSL(wE, ug) (30)
0. 161PKb0(w i)

&)

N=478 J=046 D?=500 F =554 Canonical
R=074 7?=3685 Orow =90.17% C=0.79

Prediction performances of all the obtained models
including these last two equations are given in Table 4,
together with the Wilks’ statistics (1), the square of the
Mahalanobis distances (D?), and the Fisher ratio (F).
The models selected showed to be statistically signifi-
cant at p-level <0.0001.

The fitted models 32 and 33, resulting of the
combination of weighting schemes for the non-sto-
chastic and stochastic bond-level bilinear indices,
respectively, exhibit the best results, how can be
observed in Table 4. These best two equations cor-
rectly classified the 91.00% and 90.17% of the
training set, and showed values of the Matthews
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correlation coefficients (C) of 0.81 and 0.79, respec-
tively. The most common parameters in medical
statistics for all the models are depicted in the same
Table 4.

Although these two best models exhibited good
results, the interpretation of the individual role of
every index in the model can become in a difficulty due
to the interrelation among them (data not shown). This
impelled us to use the Randi¢’s orthogonalization
process to avoid this problem, and eliminate the col-
linearity between the variables [74-78].

In Eqgs. 34 and 35 are depicted the results of the
orthogonalization process for the best two models
of the non-stochastic and stochastic bilinear indices,
correspondingly.
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Table 4 Prediction performances and statistical parameters for LDA-based QSAR models in the training set
Models? Matthews  Accuracy Specificity (%) Sensitivity False positive Wilks’ A D> F Chi-sqr Canonical
COIT. ‘OTotal’ ‘hit rate’  rate (%) A R(Rcan)b
coefficient (%) (%)
©)
LDA-based QSAR models obtained using non-stochastic bilinear indices
Equation 20 (12) 0.75 87.87 82.1 88.0 11.9 0.52 383 352 2793 0.67
Equation 21 (12) 0.70 85.77 79.8 84.1 132 0.52 389 357 307.1 0.69
Equation 22 (11) 0.80 90.59 86.3 89.6 8.8 0.47 481 484 3583 0.73
Equation 23 (12) 0.70 85.77 79.2 85.2 13.9 0.58 311 28.6 2434 0.64
Equation 24 (12) 0.74 87.45 81.5 86.9 122 0.51 4.03 37.0 288.9 0.68
Equation 25 (12) 0.73 87.24 81.4 86.3 122 0.51 4.03 37.0 3159 0.70
Equation 32 (11) 0.81 91.00 86.8 90.2 8.5 0.45 513 51.6 3748 0.74
LDA-based QSAR models obtained using stochastic bilinear indices
Equation 26 (11) 0.71 86.19 79.7 85.8 13.6 0.54 352 354 286.0 0.67
Equation 27 (11) 0.70 85.98 82.6 80.3 10.5 0.57 323 325 2678 0.66
Equation 28 (9)  0.71 85.98 79.6 85.2 13.6 0.52 385 475 306.2 0.69
Equation 29 (12) 0.67 84.31 77.6 83.1 14.9 0.57 313 28.8 260.9 0.65
Equation 30 (11) 0.73 87.24 81.8 85.8 11.9 0.52 394 39.6 310.6 0.70
Equation 31 (12) 0.76 88.28 82.6 88.0 11.5 0.53 375 345 2992 0.69
Equation 33 (10) 0.79 90.17 85.8 89.1 9.2 0.46 5.00 554 3685 0.74
? Between brackets the quantity of variables of the models
® Canonical correlation coefficient obtained from the linear discriminant canonical analysis
VP .
Class = — 0.331 — 1.515'O(""b{] (e, ur)) N =478 . =046 D*=500 F=554 Canonical
— vy 2 _ — —
4 20372 (VKbH( ))2 4063 (VKbOL (WE’ aE)) R =0.74 b4 = 368.5 QTotal =90.17% C =0.79.

—3.176*0(V* b (w, 1)) + 0.805° 0 (" bl (W, 7))
—6.540°0(V b (w, @)

—1.95970("" by, (w 715)

—1.01580 (™% bt (Wi, ar))

+1.913°0(M by (g, iir))

—5.997°0M% by (WE, iE))

— 16337 OMPbl (W, iig))

N=478 =045 D?=513 F=51.6 Canonical
R =0.74 7% =374.8 Qrow = 91.00% C = 0.81.

(34)

Class = — 2.414 x 1072 — 1.197'0("*
+4.346°0 (" by (W, 1))
+1.075°0("" bt (w, @) — 3.196* O (Y by(w, )
+0.899°0(M by (W, i)

—1.197°0(M% bl (W, ug))

O(
O(
(

by (We, ug))

+5.4747 0% by (w, )
+2.09350("%b2 (Wi, r))
—7.3711°0(%b2 (Wi, r))
+3.461"°0MbY (Wi, iir))

Here, we used the symbols " O[bi(w, )], where the
superscript m expresses the order of importance of the
variable by(w,u1) after a preliminary forward-stepwise
analysis and O means orthogonal. If we take a look to
the statistical parameter to every model before and
after of the orthogonalization process, can be observed
that they keep be the same for the non-orthogonal and
orthogonal descriptors.

Assessing the predictive power of the models

Validation external process or most commonly
namely test set is necessary to ensure the quality and
extrapolation power of the QSAR models found
in this report [82, 83]. Following this aim all the
equations were evaluated and results are shown in
Table 5. In the case of the best two discriminant
functions Eqgs. 32 and 33, presented overall accuracies
of 93.33% (C = 0.85) and 88.89% (C = 0.77), respec-
tively. Likewise a plot of the AP% for the entire
dataset using models (32) and (33), is illustrates in
Figs. 5 and 6.

The results of the classification using the total
fourteen models, for all the active and inactive organic-
chemicals in the training and external series are shown
in Tables 3-10 of Supporting Information.
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Table 5 Prediction

performances for LDA-based Models Ic\il)ztf;lhcei;vjt c((g; g:;:ur?c(y%) Specificity (%) ‘S}irtls;:t\s’t}(l%) FRE::: (Iz)zs)ltlve
QSAR models in the test set ot
LDA-based QSAR models obtained using non-stochastic bilinear indices
Equation 20  0.69 85.56 76.8 84.1 13.7
Equation 21  0.64 83.33 73.9 81.0 154
Equation 22 0.73 87.78 82.5 82.5 9.4
Equation 23 0.65 83.89 75.0 81.0 14.5
Equation 24  0.67 83.89 73.0 85.7 171
Equation 25  0.67 84.44 74.0 85.7 16.2
Equation 32 0.85 93.33 89.2 92.1 6.0
LDA-based QSAR models obtained using stochastic bilinear indices
Equation 26  0.68 85.00 75.0 85.7 154
Equation 27  0.69 86.11 81.7 77.8 9.4
Equation 28  0.74 86.67 74.7 93.7 17.1
Equation 29  0.65 83.33 72.6 84.1 17.1
Equation 30  0.71 86.11 75.7 88.9 154
Equation 31  0.68 85.00 75.7 84.1 14.5
Equation 33  0.77 88.89 79.5 92.1 12.8
120 120
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Fig. 5 Plot of the AP% from Eq. 32 (using non-stochastic bond-
based bilinear indices) for each compound in the training and
test sets. Compounds 1-183 and 184-246 are active (tyrosinase
inhibitors) in training and test sets, respectively; chemicals 247—
541 and 542-658 are inactive (non-tyrosinase inhibitors) in both
training and test sets, correspondingly

Simulated virtual screening of new tyrosinase
inhibitors

The good behavior of the results obtained above,
encouraged us, to expand moreover the possibilities of
this novel approach for the in silico discovery of novel
tyrosinase inhibitor compounds. Virtual High
Throughput Screening (HTS) can become an important
tool capable to resolve the largely query of database of
thousands of compounds, and has the potential to
transform early-stage drug discovery. To prove the
ability of our models a simulated virtual screening to a
data of 104 organic-chemicals (Table 6) reported from
the literature as inactive/inactive (see the last column of
the same Table 6: Ref) was carried out. The molecular
structures of these compounds are shown in Table 11 of
Supporting Information.
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Fig. 6 Plot of the AP% from Eq. 33 (using stochastic bond-based
bilinear indices) for each compound in the training and test sets.
Compounds 1-183 and 184-246 are active (tyrosinase inhibitors)
in training and test sets, respectively; chemicals 247-541 and 542—
658 are inactive (non-tyrosinase inhibitors) in both training and
test sets, correspondingly

Besides to assure the great possibility of our models
to identify several classes of compounds a k-NNCA to
this data was carried and the dendrogram obtained can
be observed in Fig. 7, where a great molecular diversity
can be visualized. In Table 6 are depicted the results of
the classifications of the 104 compounds. Additionally
the posterior classification probabilities (including
canonical scores) for all the equations are summarized
in Table 12 (Supporting Information). The percent of
globally good classification were of 85.57% and 84.61%
for the non-stochastic and stochastic molecular
descriptors, correspondingly.

This method could very useful, due that making use
of this many great databases of drug-like compounds
could be make it, and some compounds identified



J Comput Aided Mol Des (2007) 21:167-188 181
Table 6 Results of the virtual screening
Compound?® Class” Ref.® Compound? Class” References®
Active compounds (tyrosinase inhibitors)
1 p-Nitrophenol +—+++++ A 27 Dithiothreitol +++++++ O
+++++—+ B -+t
2 3-(3,4-Dihydroxyphenyl)-l-alanine +4+4++++ C 28 Azelaic acid ——t+ P
-+t F+—+++
3 3-Amino-4-hydroxybenzoic acid +++++++ C 29 Undecandioic acid —+—+++ P
+H++H+ +++++++
4 4-Amino-3-hydroxybenzoic acid +++++++ C 30 Suberic acid ——t+ P
-+t F+—+++
5 3,4-Diaminobenzoic acid +++++++ C 31 Sebacic acid ——+++ P
++++++H+ -+t
6 3-Aminobenzoic acid +++++++ C 32 Dodecandioic acid Attt P
-+t +++++++
7 4-aminobenzoic acid +++++++ C 33 Tridecandioic acid —++—+++ P
++++++ ++++++
8 4,6-O-hexahydroxy —++—+ D 34 Traumatic acid —++—+++ P
+H++++H+ o+t
9 Tunicamycin +++—+++ E 35 Pantothenic acid +++—+++ K
+++++++ ++++++
10 Methyl p-coumarate +++++++ F 36 5-(hydroxymethyl)-2-furfural +++++++  Q
+++++++ +++—+++ R
11 o-Phenylphenol +++++++ F 37 Hinokitiol +++++++ S
+++++++ e —t
12 Phenylhydroquinone +++++++ F 38 Penicillamine +++—+++ T
+++++++ ++++++
13 Chamaecin +++++++ F 39 Toluic acid +++++++ A
+++++++ G +—++++
14 Stearyl glycyrrhetinate +++++++ H 40 +++++++ U
+—+++++ ++++++
15 2-(4-Methylphenyl)-1,3-selenazol-4-one  ++—+++— 1 41 +++++++ U
J e+
16 ++—+++— 1 42 3,5-dihydroxy-4’-O-methoxystilbene +++++++ V
o+t
17 | 43 p-Hydroxybenzoic acid ettt W
S ++++++
18 S | 44 o-Hydroxybenzoic acid +H+tttt W
i
19 3-Flurotyrosine +++++++ K 45 Cysteine +++++++ X
+H++H+ A+
20 N-acetyltyrosine —t++ K 46 Methimazole ++++++- X
21 N-formyltyrosine +++++++ K 47 BMY-28438 +++++++ X
4+ o+
22 Gentisic acid +++++++ L 48 Captopril +++++++ Y
-+ o t—t—
23 6-BH,4 M 49 Yohimbine +—tttt Z
+——+ o+
24 7-BH, M 50 4-(phenylazo)phenol o+ a
+——+ A+
25 Propylparaben +++++++ N 51 SACat +++++++ a
++—+++ A+
26 Phenylalanine +++++++ K 52 NPACat +++++++ a
4 o
53 DNPACat +—+++++ a 70 27 +++++++ d
-+ A+
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Table 6 Continued

Compound?® Class® Ref. Compound?® Class® References®
54 EDTA —_— b 71 28 +++++++  d
+H+H++++

55 Dodecyl gallate +++++++ ¢ 72 29 F+++++  d
-+ T

56 Gallic acid +++++++ ¢ 73 30 FH+++++  d
-+t +H+H++++

57 (+)-flavanone ++—++++ d 74 31 +t+++++ d
- +H+H++++

58 (-)-Pinocembrin +++++++ d 75 32 +++++++ d
-+ +H+H++++

59 (+)-Naringenin +++++++ d 76 34 +t+++++ d
A+t FH+++++

60 (+)-Dihydromorin +++++++ d 77 35 +++++++ d
-+t +H+H++++

61 Flavone +++++++  d 78 36 +++++++ d
- +H+H++++

62 Myricetin +++++++ d 79 37 FH+++++ d
A+ F+++++

63 Artocarpin +++++++  d 80 38 +++++++ d
-+ F—t—t+++

64 Artocarpesin +++++++  d 81 39 +++++++ d
A+ FH+H++++

65 Isoartocarpesin +++++++  d 82 40 +++++++ d
-+ +H+—+

66 (-)-Angolensin +++++++  d 83 41 +++++++  d
A+ttt +H+—t++

67 Pinosylvin +++++++  d 84 2’-O-feruloylaloesin +++++++ e
-+ FH+++++

68 4-Prenyloxyresveratrol +++++++  d 85 Barbaloin +++++++ e
Attt e

69 26 +++++++  d
A+ttt

Inactive compounds

86 +++++— f 95 2-Formyl-5-methoxyfuran +++++++ 1
— -+t o

87 Ft—t++— f 96 5-Methyluracil _ k
—t S—

88 —t— f 97 Uracil - k

89 Caffeine —— g 98 Thiourea —_— l

90 Trimethylresveratrol +—t h 99 Veratric acid methyl ester +t+++++ M
+—t i +H+++++

91 4-Aminoazobenzene-4’-sulfonic acid FHtt+t++— ] 100 6-Nitroquipazine n
-+

92 2-Methoxy-4-isopropyl benzaldehyde +++++++ G 101 4-Methoxybenzaldehyde-O-ethyloxime +—+—+ 1)
+——+t

93 Petroselinic acid —++—+++ P 102 +++++++ 0
-+ +H+H++++

94 Crocusatins F —+— k 103 +++++++ 0
F—t—t— +H+H++++
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Table 6 Continued

Compound?® Class® Ref. Compound?® Class® References®
104 Phytyl-1-hexanoate —++—+++ p
e

# The molecular structures of these tyrosinase inhibitors is given as Supporting Information (see Table 11)

® Results of the classification of compounds in this set: (i) Above, classification of each compounds using the obtained models with
non-stochastic bond-based linear indices in the following order: Egs. 20, 21, 22, 23, 24, 25 and 32; and (ii) Below; classification of each
compounds using the obtained models with stochastic bond-based linear indices in the following order Egs. 26, 27, 28, 29, 30, 31 and 33

¢ References taken from the literature: “Bubacco, L.; van Gastel, M.; Groenen, E. J. J.; Vijgenboom, E.; Canters, G.W. J. Biol. Chem.
2003, 278, 7381-7389. Bvan Gastela, M.; Bubaccob, L.; Groenena, E. J. J.; Vijgenboomc, E.; Cantersc, G. W. FEBS Lett. 2000, 474,228-
232. “Gasowskaa, B.; Kafarskia, P.; Wojtasek, H. Biochim. Biophys. Acta. 2004, 1673, 170-177. Dhttp://open.cacb.org.tw/index.php
(2005-03-03 09:09:51). ETakahashi, H.; Parsons, P. G. J. Invest. Dermatol. 1992, 98, 481-487. "Kubo, L; Niheia, K.; Tsujimoto, K.
Bioorg. Med. Chem. 2004, 12, 5349-5354. SNihei, K-L; Yamagiwa, Y.; Kamikawab, T.; Kubo, 1. Bioorg. Med. Chem Lett. 2004, 14, 681—
683. HUm, S-1.; Park, M-S.; Park, S-H.; Han, H-S.; Kwonb, Y-J.; Sin, H-S. Bioorg. Med. Chem. 2003, 11, 5345-5352. 'Barlocco, D.;
Barrett, D.; Edwards, P.; Langston, S.; Pérez-Pérez, M. J.; Walker, M.; Weidner, J.; Westwell, A. Drug Disc. Today. 2003, 8, 372-373.
TKoketsu, M.; Choi, S.Y.; Ishihara, H.; Lim B. O.; Kim, H.; Kim, S., Y. Chem. Pharm. Bull. (Tokyo). 2002, 12, 1594-1596. http://
www.thecosmeticsite.com/formulating/959621.htlm (April-00). LCurto, E. V. Kwong, C.; Hermersdorfer, H.; Glatt, H.; Santis, C.;
Virador, V.; Hearing, V. J.; Dooley, T. P. Biochem. Pharmacol. 1999, 57, 663-672. MWood, J. M.; Schallreuter-Wood, K. U.; Lindsey,
N. J.; Callaghan, S.; Gardner, M. L.G. Biochem. Biophys. Res. Commun. 1995, 206, 480-485. NHori, L.; Nihei, K-L; Kubo, L. Phytother.
Res. 2004, 18, 475-479. ®Naish-Byfield, S.; Cooksey, C. I.; Riley, P. A. Biochem. J. 1994, 304, 155-162. Nazzaro-Porro, M.; Passi, S. J.
Invest. Dermatol. 1978, 71, 205-208. 2Sharma, V. K.; Choi, J.; Sharma, N.; Choi, M.; Seo, S-Y. Phytotherapy Res. 2004, 18, 841-844.
RKang, H.S.; Choi, J. H.; Cho, W. K.; Park, J. C.; Choi, J. S. Arch Pharm Res. 2004, 7, 742-750. SSakuma, K.; Ogawa, M.; Sugibayashi,
K.; Yamada, K.; Yamamoto, K. Arch Pharm Res. 1999, 4, 335-339. TLovstad, R. A. Biochem. Pharmacol. 1976, 25, 533-535. YKubo, L;
Kinst-Hori, I.; Yokokawa, Y. J. Nat. Prod. 1994, 57, 545-551. VRegev—ShoshanL G.; Shoseyov, O.; Bilkis, I.; Kerem, Z. Biochem. J.
2003, 374, 157-163. WBernard, P.; Berthon, J-Y. Int. J. Cosmetic Sci. 2000, 22, 219-226. *Imada, C.; Sugimoto, Y.; Makimura, T.;
Kobayashi, T.; Hamada, N.; Watanabe, E. Fish. Sci. 2001, 67, 1151-1156. YEspin, J. C.; Wichers, H. J. Biochim. Biophys. Acta. 2001,
1544, 289-300. “Fuller, B. B.; Drake, M. A.; Spaulding, D. T.; Chaudry, F. J. Invest. Dermatol. 2000, 114, 2680-276. “Borojerdi, S. S.;
Haghbeen, K.; Karkhane, A. A.; Fazli, M.; Sabouryc, A. A. Biochem. Biophys. Res. Commun. 2004, 314, 925-930. bKong, K-H.; Hong,
M-P.; Choi, S-S.; Kim, Y-T.; Cho, S-H. Biotechnol. Appl. Biochem. 2000, 31, 113-118. °Kubo, I.; Chen, Q-X.; Nihei, K-I. Food Chem.
2003, 81, 241-247. 9Shimizu, K.; Kondo, R.; Sakai, K. Planta Medica. 2000, 66, 11-15. Yagi, A.; Kanbara, T.; Morinobu, N. Planta
Medica. 1987, 515-517. fShiino, M.; Watanabe, Y.; Umezawa, K. Bioorg. Med. Chem. 2001, 9, 1233-1240. ¥No, J. K.; Soung, D. Y.; Kim,
Y. J.; Shim, K. H.; Jun, Y. S;; Rhee, S. H.; Yokozawa, T.; Chung, H. Y. Life Sci, 1999, 65, 241-246. "Shin, N-H., Ryu, S.; Choi, Y. E. J;
Kang, S-H.; Chang, I-M.; Min, K. R.; Kim, Y. Biochem. Biophys. Res. Commun. 1998, 243, 801-803. Kim, Y. M.; Yun, J.; Lee, C-K_;
Lee, H.; Min, K. R;; Kim, Y. J. Biol. Chem. 2002, 277, 16340-16344. 'Komori, K.; Yatagai, K.; Tatsuma, T. J. Biotechnol. 2004, 108, 11—
16. ¥Li, C-Y.; Wu, T-S. J. Nat. Prod. 2002, 65, 1452-1456. ’Gilly, R.; Mara, D.; Oded, S.; Zohar, K. J. Agric. Food Chem. 2001, 49, 1479—
1485. "Miyazawa, M.; Oshima, T.; Koshio, K.; Itsuzaki, Y.; Anzai, J. J. Agric. Food Chem. 2003, 51, 6953-6956. "McEwan, M.; Garsons,
P. G. J. Invest. Dermatol. 1990, 89, 82-86. °Ley, J. P.; Bertram, H-J. Bioorg. Med. Chem. 2001, 9, 1879-1885. Sabudak, T.; Khan, M. T.
H.; Choudhary, M. I.; Oksuz, S. E. Nat. Prod. Res. Accepted for publication

reported with the new biological activity, also taken
into account that this kind of chemicals have well-
established methods of synthesis, as well as their
toxicological, pharmacodynamical and pharmaceutical
properties are well known.

Biosilico identification of novel tyrosinase
inhibitors and experimental corroboration

The entire algorithm describes in the above sections,
was make up with the main objective to explore the
possibilities of the current in silico approach for the
identification of hits from largely databases. In this
sense an in silico screening of novel compounds
looking for the biological activity concern to this work
was performed. To make this, a pool of compounds
never described in the literature as tyrosinase inhibi-
tors was chosen. Later the in silico essays were done
using all the models developed inside this report, to

find bioactive chemicals that present tyrosinase inhib-
itory activity.

Here, 24 tetraketones were evaluated with the
LDA-based QSAR models, and the in vitro assays of
the synthesized compounds were done to corroborate
the in silico predictions. The values of the posterior
classification probabilities (AP%) obtained with all
the equations for the data are shown in Table 7.
Hence here we can see that exits a good concordance
among the theoretical predictions and the experi-
mental results for all the organic-chemicals, and all
were active against the tyrosinase enzyme in the in
vitro assays. It is important to stand out that the
majority of compounds showed values of activity
higher than Kojic acid (standard tyrosinase inhibitor:
ICsp =16.67 uM) with the exception of TK2
(ICso = 26.63 M), TK4 (ICs50 =16.99uM), TK7
(ICsp = 19.73uM) and TK19 (ICsy = 71.47 uM). By
other way, four chemicals TK10 (ICsy= 2.09 uM),
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Table 7 Results of ligand-based in silico screening and tyrosinase inhibitory activities of new tetraketones

Com- AP%? Scores® AP%® Scores® AP%° Scores AP%® Scores® AP%¢ Scores® AP%' Scores’ AP%2 Scores® ICH,

pound* (LM)

TK1 10.55 -0.93 33.34 -0.56 -90.36 1.12 38.82 0.79 55.72 -0.48 5498 -1.24 54.79 —0.84 6.55
69.36 1.17 53.11 -1.38 32.38 049 6882 116 23.00 -0.49 49.88 -0.83 20.45 0.39

TK2 31.76 -1.39 4750 —0.73 -7491 0.65 44.82 0.96 7849 -095 7645 -1.33 82.68 -1.34 26.63
80.32 1.44 67.27 -1.76 65.16 094 7534 132 46.12 -0.76  64.91 -1.07 61.12 0.84

TK3 57.51 -1.43 70.86 -1.11 -33.51 0.08 5498 1.20 9192 -1.52 89.28 -1.43 93.69 -1.81 12.31
90.83 1.88 81.98 -1.71 84.10 1.40 8380 1.58 74.18 -1.21 81.96 -1.46 88.77 1.47

TK4 60.24 —0.48 67.74 -1.05 -53.03 0.30 60.76 1.19 83.15 -119 8219 -1.15 88.76 -1.55 16.99
86.30 1.65 80.36 -0.71 65.81 0.95 78.84 141 46.24 -0.76  64.63 -1.06 63.96 0.89

TKS -25.84 -1.06 0.10 -0.21 -89.43 1.08 -6.73 0.68 4793 -0.50 40.24 -0.89 7410 -1.14 11.77
47.75 0.82 20.29 -1.29 13.99 029 3256 0.59 7.01 -0.32 29.11 -0.58 30.22 0.49

TK6 40.97 -1.04 41.10 -0.65 -82.24 0.82 5692 1.02 65.66 -0.78 67.06 -1.09 71.08 -1.09 4.83
68.90 1.16 62.30 -1.38 3281 0.50 6719 1.13 1291 -0.38 40.80 -0.72 13.07 0.33

TK7 37.33 -1.90 4712 —0.73 -83.39 0.86 52.66 0.94 58.66 -0.63 61.93 -1.04 69.63 -1.06 19.73
74.69 1.29 67.26 —1.90 3931 0.57 7141 122 30.32 -0.57 51.86 -0.86 20.22 0.39

TKS8 -2498 -0.43 -28.18 0.08 -93.28 1.29 20.11 0.84 31.04 043 2321 -0.99 78.75 -1.24 4.80
74.56 1.29 60.52 -1.29 138 016 72.00 1.23 10.76 -0.36 9.83 -0.37 29.92 048

TK9 -2498 -1.04 -27.37 0.07 -9346 130 18.63 0.82 30.23 -0.40 23.87 -0.99 79.05 -1.25 6.77
76.54 1.34 62.61 —1.48 5.66 0.21 74.10 1.28 15.03 -0.41 14.98 -0.42 29.87 048

TK10 42.78 —0.38 58.77 089 -77.13 0.69 48.29 0.99 8041 -0.97 7840 -1.33 75.89 -1.18 2.09
80.61 1.45 71.61 -0.49 64.72 0.93 76.04 1.33 46.53 -0.76 67.73 -1.12 44.42  0.64

TK11 41.85 -1.40 97.66 -2.46 4749 0.23 67.00 1.09 7799 -1.22 92.82 -1.82 7793 -1.22 2.61
73.79 1.27 60.16 —1.50 62.88 0.90 9329 211 73.00 -1.19 93.07 -1.99 62.94 0.87

TK12 58.44 -1.90 98.33 -2.63 043 -0.24 7084 1.26 90.06 -1.69 96.64 -1.91 92.26 -1.72 4.13
83.49 1.55 72.70 -1.83 82.63 1.35 9481 226 82.82 -1.44 9544 -221 84.61 1.32

TK13 77.69 —0.95 99.09 -2.95 36.09 -0.59 80.32 1.49 9234 -194 97.53 -1.73 95.07 -1.92 14.58
88.53 1.75 83.81 -0.82 8210 1.33 9549 234 8222 -1.42 95.23 -2.18 85.75 1.36

TK14 7.60 -1.52 9538 -2.11 -43.62 0.19 32.29 0.98 73.55 -1.25 89.64 -1.47 88.12 -1.52 9.06
54.86 0.92 30.29 -1.41 47.19 0.67 82.02 1.52 62.59 -0.99 8827 -1.70 68.57 0.96

TK15 65.00 -1.51 98.04 -2.55 -18.69 -0.07 78.10 1.31 8348 -1.52 95.07 -1.67 86.60 -1.46 3.70
73.77 1.27 68.49 —1.45 63.03 090 9285 2.07 67.32 -1.08 91.24 -1.86 58.07 0.80

TK16 65.07 -1.50 98.12 -2.57 -19.52 -0.06 77.06 1.29 83.20 -149 9511 -1.68 86.78 -1.47 12.82
75.57 1.31 70.33 -1.50 65.71 0.95 9339 212 68.88 -1.10 91.85 -1.90 57.34 0.79

TK17 62.54 —0.90 98.31 -2.63 -21.99 —0.04 75.65 1.24 79.84 -1.38 94.16 -1.62 85.87 -1.44 15.36
78.45 1.39 72.54 -1.38 66.83 0.97 9372 215 75.09 -1.23 93.01 -1.98 62.32 0.86

TK18 8.48 —0.89 91.89 -1.82 -60.69 0.40 54.09 1.14 62.79 -1.17 8520 -1.57 90.39 -1.62 6.59
78.56 1.39 66.97 —1.42 37.89 0.55 9397 217 6581 -1.05 8343 -1.51 68.54 0.96

TK19 8.50 -1.52 92.03 -1.82 -61.56 0.42 53.02 1.12 62.30 -1.14 8540 -1.57 90.54 -1.63 7147
80.49 1.45 68.96 —1.55 41.58 0.60 94.52 2.23 67.95 -1.09 84.83 -1.56 68.58 0.96

TK20 66.56 -1.51 98.64 -2.74 —4.07 020 7446 1.31 91.23 -1.75 96.95 -1.90 88.87 —-1.55 4.01
82.39 1.51 74.73 —-1.59 81.85 132 9486 2.26 82.89 -1.45 9575 -2.25 76.97 1.12

TK21 66.26 —0.93 98.78 -2.79 -4.82 020 73.00 1.29 91.01 -1.72 96.94 -191 89.00 -1.56 2.06
83.58 1.55 76.30 -1.02 82.44 1.34 9493 227 83.01 -1.45 9588 -2.26 76.46 1.11

TK22 5.03 -1.03 9243 -1.85 -68.79 0.53 32.01 0.84 63.10 -1.21 81.04 -1.18 16.32 -0.45 13.40
53.07 0.89 45.36 —0.96 52.88 0.75 80.67 147 6424 -1.02 89.76 -1.78 11.07 0.31

TK23 26.30 —0.81 96.34 -2.23 -68.06 0.52 65.77 1.20 79.24 -1.29 93.26 -1.94 65.97 -1.00 3.19
58.13 0.97 40.61 —0.46 36.66 0.54 86.45 1.69 42.84 -0.71 84.54 -1.55 1829 0.37

TK24 -6.80 0.00 90.18 -1.71 -77.75 0.71 63.17 111 76.58 -1.23 92.04 -1.95 63.17 096 12.68

7.57 0.34 -1.59 0.00 13.04 028 7374 1.28 3938 —0.67 82.72 -1.49 -56.33 —0.36

* The molecular structures of these chemicals are shown in Table 8

abedefs Ap% — [P(Active) — P(Inactive)] x 100 as well as canonical scores of each compound in this set: (i) Above in bold, classi-
fication of each compound using the obtained models with non-stochastic bond-based bilinear indices in the following order: Egs. 20,
21,22,23, 24, 25 and 32; and (ii) Below in italic; classification of each compound using the obtained models with stochastic bond-based
bilinear indices in the following order: Egs. 26, 27, 28, 29, 30, 31 and 33

" 1Csq are the 50% inhibitory concentrations against the enzyme tyrosinase

TK11 (ICsq=2.61 uM), TK21 (ICso=2.06 uM), reference drug. In Table 8 are depicted the molecular
TK23 (ICso = 3.19 uM), exhibited more potent activ-  structures of these tetraketones and the rest used in
ity compared with L-mimosine (ICsqg= 3.68 pM) a  this study.

@ Springer
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Table 8 Molecular structure of the new tetraketones
O Y O
LT
X S X
Compound X Y 1Cso(uM) Compound X Y I1Cso(uM)
TK1 -H ©/ 6.55 TK13 —CHj, 0 : . 14.58
HO
TK2 -H /@/ 26.63 TK14 —-CH; ~_0 9.06
TK3 -H HO 12.31 TK15 —CH; /@/ 3.70
~
HO: i ©
TK4 -H /O : _ 16.99 TK16 —CH; /O : _ 12.82
HO
TKS5 -H \/O 11.77 TK17 —CH; ©\/ 15.36
~
HO: :/\ 0
TK6 -H 4.83 TK18 —CH; 6.59
o O,N
TK7 -H ©j 19.73 TK19 —CH; Q\ 71.47
~
o O,N
TKS8 -H 4.80 TK20 —CH; 4.01
O.N
H,N
TK9 -H Q\ 6.77 TK21 —CH;3 HoN 2.06
O,N :
TK10 -H HoN 2.09 TK22 ~CH; /®/ 13.40
N
Oy N
/
TK11 —CH; ©/ 2.61 TK23 —CH; Cl- : _ 3.19
TK12 —CH; /@/ 413 TK24 —CH; Br 12.68
HO \©/
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As a final point, a hierarchical cluster analysis was
performed for all the active compounds of the training,
test, virtual screening and the new tetraketones
(Fig. 8). The aim of this &-NNCA was compared if
there was any similarity between the novel bioactive
chemicals and some subsystems in the rest of the active
database. After an exhaustive analysis to each cluster,
we observed that these tetraketones were distributed in
many clusters, which is reasonable because this class of
compounds don’t have common structural features
with none of the compounds in the active database.
Therefore, they can be selected to make a structural
optimization with the objective to find a more potent
tyrosinase inhibitory activity, and afterward a complete
study of ADMET properties should be carried out to
entering these organic-chemicals discovered into the
pipeline of the drug market development.

120

o
o

@
o

Linkage Distance
8 3

n
o

Compounds

Fig. 7 A dendrogram illustrating the results of the hierarchical
k-NNCA of the set of active/inactive chemicals used for
evaluating the predictive ability of the QSAR models for
ligand-based virtual screening

120
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80
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40
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Fig. 8 A dendrogram illustrating the results of the hierarchical
k-NNCA of the set of all active chemicals (tyrosinase inhibitors)
included in training, test, virtual screening and new active
tetraketones discovery in the present work
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Summary and outlook

Many studies in the area of tyrosinase inhibitory
activity are involved to finding novel inhibitors from
different sources, due to its wide applications as food
additives, depigmentation agents, in the treatment of
melanogenesis disorders, to control insect pests and so
on. The interest of pharmaceutical, cosmetic, and
agricultural sciences in this kind of chemicals is re-
ferred to its broad spectrum of applications, and wide
distribution through all the phylogenetic scale.

The advent of virtual High Through Screening
(VHTS) encompassing in silico techniques in the drug
discovery, are solutions that enable research to pro-
ceed faster and more efficiently. These new algorithms
starting from the convergence of information technol-
ogy and drug discovery, can be useful to resolve the
question of accelerate the pace of drug discovery in the
identification of higher quality compounds. Neverthe-
less, in this case, the process of searching of new
tyrosinase inhibitor compounds until now is through
trial-error traditional methods [84, 85].

Taken all these into consideration, we made use of
the non-stochastic and stochastic bond-based bilinear
indices, a new set of MDs, together with pattern rec-
ognition techniques to discriminate active compounds
from inactive ones. QSAR models found here were
used in a virtual screening to arising from the in silico
to ‘real’” world applications. Besides, is reported the
biosilico identification of a novel tetraketone family as
tyrosinase inhibitors using the new molecular finger-
prints. The experimental in vitro assays were also
carried out to prove the usefulness of the TOMO-
COMD-CARDD descriptors for the rational design of
new bioactive agents.

These kinds of works are in the light of new chal-
lenges for the pharmaceutical industries because a
research in modern drug discovery needs training and
experience in multiple life science domain areas as
well as in computer science [86]. Finally, the present
report could permit us to look forward to many
exciting new insights in the field of tyrosinase inhibi-
tor compounds research for the treatment of hyper-
pigmentation and melanogenesis disorders in the
years ahead.

Supporting information available

The complete list of compounds used in training and
prediction sets, as well as their structures, posterior
classification and scores according to LDA-based
QSAR models, chemistry and data analysis of the
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obtained chemicals is available free of charge via
Internet at ...
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