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Abstract In this paper, we present a new set of bond-

level TOMOCOMD-CARDD molecular descriptors

(MDs), the bond-based bilinear indices, based on a

bilinear map similar to those defined in linear algebra.

These novel MDs are used here in Quantitative

Structure–Activity Relationship (QSAR) studies of

tyrosinase inhibitors, for finding functions that dis-

criminate between the tyrosinase inhibitor compounds

and inactive ones. In total 14 models were obtained

and the best two discriminant functions (Eqs. 32 and

33) shown globally good classification of 91.00% and

90.17%, respectively, in the training set. The test set

had accuracies of 93.33% and 88.89% for the models

32 and 33, correspondingly. A simulated virtual

screening was also carried out to prove the quality of

the determined models. In a final step, the fitted

models were used in the biosilico identification of new

synthesized tetraketones, where a good agreement

could be observed between the theoretical and

experimental results. Four compounds of the novel

bioactive chemicals discovered as tyrosinase inhibi-

tors: TK10 (IC50 = 2.09 lM), TK11 (IC50 = 2.61 lM),

TK21 (IC50 = 2.06 lM), TK23 (IC50 = 3.19 lM),

showed more potent activity than L-mimose

(IC50 = 3.68 lM). Besides, for this study a heteroge-

neous database of tyrosinase inhibitors was collected,
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and could be a useful tool for the scientist in the

domain of tyrosinase enzyme researches. The current

report could help to shed some clues in the identifi-

cation of new chemicals that inhibits enzyme tyrosi-

nase, for entering in the pipeline of drug discovery

development.

Keywords TOMOCOMD-CARDD software �
Non-stochastic and stochastic bond-based bilinear

indices � LDA-based QSAR model � Tyrosinase

inhibitor � TetraKetones � Virtual screening � Biosilico
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Introduction

Melanogenesis is a physiological process resulting in

the synthesis of melanin pigments, which play a crucial

protective role against skin photocarcinogenesis. In

humans and other mammals, the biosynthesis of mel-

anin takes place in a lineage of cells known as mela-

nocytes, which contain the enzyme tyrosinase [1].

Tyrosinase (phenoloxidase) is known to be a key

enzyme for melanin biosynthesis. This enzyme is

mainly involved in the initial steps of the pathway

which consist of the hydroxylation of the L-tyrosine

(monophenolase activity) and the oxidation of the

product of this reaction, the L-DOPA (diphenolase

activity), to give rise to o-dopaquinone [2]. This

o-quinone is transformed into melanins, followed by a

series of divergent steps that give rise to a predomi-

nantly indolic pigment (eumelanin) and a closely

related pigment containing benzothiazine subunits

(phaeomelanin).The current view is that most human

pigmentation involves a combination of these path-

ways giving rise to mixtures of varying composition

[3, 4].

Many approaches are based on the use of analogue

substrates for tyrosinase which are designed to maxi-

mize the generation of reactive orthoquinone oxida-

tion products and increasing their diffusion range by

preventing the spontaneous self-extinguishing cycliza-

tion reaction [5]. These, if released into the cytosol

through the defective melanosomal membranes of

malignant melanocytes, have the potential to react

with vital cellular components and cause irreversible

damage [6]. Therefore, inhibitors of tyrosinase should

be useful as therapeutic agents for the treatment of

melanin hyperpigmentation and cosmetic materials for

whitening after sunburn [7, 8].

On other hand, the computational methods have

become in a suitable alternative to the drug design,

and have recently applied to QSAR studies of tyros-

inase inhibitors [9–11], using congeneric or heteroge-

neous dataset of compounds. In this sense QSAR

methods can reduce the costly failures of drug can-

didates in clinical trials by filtering virtual libraries of

chemicals.

One of our research group has carried out QSAR/

QSPR studies related to chemical, physicochemical

and biological properties of different chemicals and

drugs [12–16], including studies in nucleic acid–drug

interactions [17, 18] and discovery of antimalarial

compounds [19]. The ‘in house’ TOpologicalMOlec-

ular COMputer Design-Computer Aided‘Rational’

Drug Design (TOMOCOMD-CARDD) software [20]

a novel computer-aided molecular design scheme,

based in the graph theory and linear algebra; has

been used to develop this entire works and many

others.

Here we propose a new set of molecular descriptors

(MDs) namely non-stochastic and stochastic bond-

based bilinear indices, its application to discriminate

tyrosinase inhibitor compounds (actives) from inactive

ones using QSAR models, is shown. Furthermore a

virtual screening is carried out with a small library of

chemicals and as a final point we present the in silico

identification, synthesis and in vitro assays of a new set

of tetraketones, a procedure that can arise the poten-

tialities of these new MDs into a real world application,

that could help to speed up the discovery of new lead

compounds to treat the hyperpigmentation and skin

disorders.

Theoretical framework

The basis of the extension of bilinear indices that

will be given here is the edge-adjacency matrix

considered and explicitly defined in the chemical

graph-theory literature [21, 22], and rediscovered by

Estrada as an important source of new MDs [23–28].

In this section, we first will define the nomenclature

to be used in this work, then the atom-based

molecular vector ð�xÞ will be redefined for bond

characterization using the same approach as previ-

ously reported, and finally some new definition of

bond-based non-stochastic and stochastic bilinear

indices will be given.

Background in edge-adjacency matrix and new

edge-relations: stochastic edge-adjacency matrix

Let G = (V, E) be a simple graph, with

V ¼ fv1; v2; . . . ; vng and E ¼ fe1; e2; . . . emg being the

168 J Comput Aided Mol Des (2007) 21:167–188

123



vertex- and edge-sets of G, respectively. Then G

represents a molecular graph having n vertices and m

edge (bonds). The edge-adjacency matrix E of G

(likewise called bond-adjacency matrix, B) is a square

and symmetric matrix whose elements eij are 1 if and

only if edge i is adjacent to edge j [25, 28–30]. Two

edges are adjacent if they are incidental to a common

vertex. This matrix corresponds to the vertex-adja-

cency matrix of the associated line graph. Finally, the

sum of the ith row (or column) of E is named the edge-

degree of bond i; dðeiÞ [23, 26, 27, 29, 30].

By using the edge (bond)–adjacency relationships

we can find other new relation for a molecular graph

that will be introduced here. The kth stochastic edge-

adjacency matrix, ESk can be obtained directly from

Ek. Here, ESk ¼ ½kesij� is a square table of order m

(m = number of bonds) and the elements kesij are

defined as follows:

kesij ¼
keij

kSUMðEkÞi
¼

keij

kdðeÞi
ð1Þ

where, keij are the elements of the kth power of E and

the SUM of the ith row of Ek are named the k-order

edge degree of bond i, kd(e)i. Note that the matrix ESk

in Eq. 1 has the property that the sum of the elements in

each row is 1. An m · m matrix with nonnegative

entries having this property is called a stochastic

matrix [31].

Chemical information and bond-based

molecular vector

The atom-based molecular vector (�x) used to represent

small-to-medium size organic chemicals has been ex-

plained in some detail elsewhere [12–14, 16, 17, 32–44].

In a manner parallel to the development of �x, we

present the expansion of the bond-based molecular

vector (�w). The components (w) of �w are numeric val-

ues, which represent a certain standard bond property

(bond-label). That is to say, these weights correspond to

different bond properties for organic molecules. Thus, a

molecule having 5; 10; 15; . . . ;m bonds can be repre-

sented by means of vectors, with 5; 10; 15; . . . ;m com-

ponents, belonging to the spaces <5, <10, <15; . . ., <m,

respectively; where m is the dimension of the real sets

(<mÞ. This approach allows us encoding organic mole-

cules such as 3-hydroxy-2-butenenitrile through the

molecular vector �w = [wCsp3�Csp2, wCsp2¼Csp2, wCsp2�Osp3,

wH�Osp3, wCsp2�Csp, wCsp�Nsp ]. This vector belongs to

the product space <6.

These properties characterize each kind of bond

(and bond-types) within the molecule. Diverse kinds of

bond weights (w) can be used in order to codify

information related to each bond in the molecule.

These bond labels are chemically meaningful numbers

such as standard bond distance [45–48], standard bond

dipole [45–48] or even mathematical expressions

involving atomic weights such as atomic log P [49],

surface contributions of polar atoms [50], atomic molar

refractivity [51], atomic hybrid polarizabilities [52], and

Gasteiger–Marsilli atomic charge [53], atomic electro-

negativity in Pauling scale [54] and so on. Here, we

characterized each bond with the following parameter:

w ¼ xi=di þ xj=dj ð2Þ

which characterizes each bond. In this expression xi can

be any standard weight of the atom i bonded with atom

j. di is the vertex (atom) degree of atom i. The use of

each scale (bond property) defines alternative molec-

ular vectors, �w.

The chemical information can also be codify by

means of two different molecular vectors, for instance,
�w ¼ ½w1; . . . ;wn� and �u ¼ ½u1; . . . ; un�; then different

combinations of molecular vectors (�w 6¼ �u) are possi-

ble when a weighting scheme is used. In the present

report, we characterized each bond with mathematical

expressions involving the following parameters: atomic

masses (M) [55], the van der Waals volumes (V) [55],

the atomic polarizabilities (P) [55], and atomic elec-

tronegativity (E) in Mulliken scale [55]. The values of

these atomic labels are shown in Table 1. From this

weighting scheme, six (or 12 if �wM-�uV 6¼ �wV-�uM)

combinations (pairs) of molecular vectors

(�w; �u; �w 6¼ �u) can be computed, �wM-�uV , �wM-�uP, �wM-�uK,
�wV-�uP, �wV-�uK, and �wP-�uK. Here, we used the symbols
�wX-�uZ, where the subscripts X and Z mean two

mathematical expressions involving atomic properties

from our weighting scheme and a hyphen (-) expresses

the combination (pair) of two selected bond-label

chemical properties. In order to illustrate this we will

consider this in an example describe in other section

of this work.

Definition of mathematical bilinear forms

In mathematics, a bilinear form in a real vector space is

a mapping b : VxV ! <, which is linear in both argu-

ments [58–60]. That is, this function satisfies the fol-

lowing axioms for any scalar a and any choice of

vectors �v; �w; �v1; �v2; �w1 and �w2.

i. bða�v; �wÞ ¼ bð�v; a�wÞ ¼ ð�v; �wÞ
ii. bð�v1 þ �v2; �wÞ ¼ bð�v1; �wÞ þ bð�v2; �wÞ
iii. bð�v; �w1 þ �w2Þ ¼ bð�v; �w1Þ þ bð�v; �w2Þ
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That is, b is bilinear if it is linear in each parameter,

taken separately.

Let V be a real vector space in <nðV 2 <nÞ and

consider that the following vector set, �e1;�e2; . . . ;�enf g is

a basis set of <n. This basis set permits us to write in

unambiguous form any vectors �w and �y of V, where

ðw1;w2; . . . ;wnÞ 2 <n and ðu1; u2; . . . ; unÞ 2 <n are the

coordinates of the vectors �x and �u, respectively. That is

to say,

�w ¼
Xn

i¼1

xi�ei ð3Þ

and,

�u ¼
Xn

i¼1

yj�ej ð4Þ

Subsequently,

bð�w; �uÞ ¼ bðwi�ei; u
j�ejÞ ¼ wiujbð�ei;�ejÞ ð5Þ

if we take the aij as the n · n scalars bð�ei;�ejÞ, That is,

aij ¼ bð�ei;�ejÞ; to i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; n ð6Þ

Then,

bð�w; �uÞ ¼
Xn

i;j

aijw
iuj ¼ W½ �TA U½ �

¼ w1 . . . wn
� � a11 . . . ajn

. . . . . . . . .

an1 . . . ann

2

64

3

75
u1

..

.

un

2

64

3

75 ð7Þ

As it can be seen, the defined equation for b may

be written as the single matrix equation (see Eq. 7),

where [U] is a column vector (an n · 1 matrix) of the

coordinates of �u in a basis set of <n, and [W]T (a 1 · n

matrix) is the transpose of [W], where [W] is a column

vector (an n · 1 matrix) of the coordinates of �w in the

same basis of <n.

Finally, we introduce the formal definition of sym-

metric bilinear form. Let V be a real vector space and b

be a bilinear function in V · V. The bilinear function b

is called symmetric if bð�w; �uÞ ¼ bð�u; �wÞ; 8�w; �u 2 V

[58–60] Then,

bð�w; �uÞ ¼
Xn

i;j

aijw
iuj ¼

Xn

i;j

ajiw
jui ¼ bð�u; �wÞ ð8Þ

The total non-stochastic and stochastic bond-based

bilinear indices

If a molecule consists of m bonds (vector of <m), then

the kth total bilinear indices are calculated as bilinear

maps (bilinear form) in <m in canonical basis set.

Specifically, the kth total non-stochastic and stochastic

bond bilinear indices, bkð�w; �uÞ and sbkð�w; �uÞ, are com-

puted from these kth non-stochastic and stochastic

edge adjacency matrices, Ek and ESk, as shown in

Eqs. 9 and 10, correspondingly:

bkð�w; �uÞ ¼
Xm

i¼1

Xm

j¼1

keijw
iuj ¼ ½W�tEk½U� ð9Þ

sbkð�w; �uÞ ¼
Xm

i¼1

Xm

j¼1

kesijw
iuj ¼ ½W�tESk½U� ð10Þ

where, m is the number of bonds of the molecule, and

w1; . . . ;wm and u1; . . . ; um are the coordinates of the

bond-based molecular vectors �w and �u in a canonical

basis set of <n. Therefore, if we used the canonical basis

set, the coordinates [ðw1; . . . ;wnÞ and ðu1; . . . ; unÞ ] of

any molecular vectors (�w and �u) coincide with the

components of those vectors [(w1; . . . ;wnÞ and

ðu1; . . . ; unÞ ] [28, 45, 46]. For that reason, those coordi-

nates can be considered as weights (bond-labels) of the

edge of the molecular graph. The coefficients keij and
kesij are the elements of the kth power of the matrix

E(G) and ES(G), correspondingly, of the molecular

pseudograph. The defining Eqs. 9 and 10 for bkð�w; �uÞ and
sbkð�w; �uÞ, respectively, may be also written as the single

matrix equation (see Eqs. 9 and 10), where [U] is a col-

umn vector (an n · 1 matrix) of the coordinates of �u in

the canonical basis set of<n, and [W]t is the transpose of

[W], where [W is a column vector (an n · 1 matrix) of the

Table 1 Values of the atom weights used for linear indices cal-
culation [54–57]

ID Atomic
mass

VdWa

Volume (Å3)
Mulliken
electronegativity

Polarizability
(Å3)

H 1.01 6.709 2.592 0.667
B 10.81 17.875 2.275 3.030
C 12.01 22.449 2.746 1.760
N 14.01 15.599 3.194 1.100
O 16.00 11.494 3.654 0.802
F 19.00 9.203 4.000 0.557
Al 26.98 36.511 1.714 6.800
Si 28.09 31.976 2.138 5.380
P 30.97 26.522 2.515 3.630
S 32.07 24.429 2.957 2.900
Cl 35.45 23.228 3.475 2.180
Fe 55.85 41.052 2.000 8.400
Co 58.93 35.041 2.000 7.500
Ni 58.69 17.157 2.000 6.800
Cu 63.55 11.494 2.033 6.100
Zn 65.39 38.351 2.223 7.100
Br 79.90 31.059 3.219 3.050
Sn 118.71 45.830 2.298 7.700
I 126.90 38.792 2.778 5.350

a VdW: van der Waals
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coordinates of �w in the canonical basis of <n. Here, Ek

and ESk denote the matrices of bilinear maps with

respect to the natural basis set.

It should be remarked that non-stochastic and sto-

chastic bilinear indices are symmetric and non-

symmetric bilinear forms, respectively. Therefore, if in

the following weighting scheme, M and V are used as

weights to compute theses MDs, two different sets

of stochastic bilinear indices, M�VsbH
k ð�w; �uÞ and

V�MsbH
k ð�w; �uÞ [because �wM-�uV 6¼ �wV-�uM] can be

obtained and only one group of non-stochastic bilinear

indices (M�VsbH
k ð�w; �uÞ ¼ V�MsbH

b ð�w; �uÞ because in this

case �wM-�uV ¼ �wV-�uMÞ can be calculated.

The local non-stochastic and stochastic bond-based

bilinear indices

Finally, in addition to total bond-based quadratic

indices, computed for the whole molecule, a local-

fragment (bond and bond-type) formalism can be

developed. These descriptors are termed local non-

stochastic and stochastic bilinear indices, bkLð�w; �uÞ and
sbkLð�w; �uÞ, respectively. The definition of these

descriptors is as follows:

bkLð�w; �uÞ ¼
Xm

i¼1

Xm

j¼1

keijLwiuj ¼ ½W�tEk
L½U� ð11Þ

sbkLð�w; �uÞ ¼
Xm

i¼1

Xm

j¼1

kesijLwiuj ¼ ½W�tESk½U� ð12Þ

where, m is the number of bonds and keijL½kesijL� is the

kth element of the row ‘‘i’’ and column ‘‘j’’ of the local

matrix Ek
L½kL�. This matrix is extracted from the k½ESk�

matrix and contains information referred to the edges

(bonds) of the specific molecular fragments and also of

the molecular environment in k steps. The matrix

Ek
L½ESk

L� with elements keijL½kesijL� is defined as follows:

keijL½kesijL� ¼ keij½kesijL� if both

ei and ej areedges

ðbondsÞcontained within the molecular fragment

¼ 1=2keij½kesijL� if ei andej areedges (bonds)

contained within the molecular fragment but not both

¼ 0 otherwise

ð13Þ

Is important to highlight that the scheme above

follows the spirit of a Mulliken population analysis

[61]. It should be remarked also that for every parti-

tioning of a molecule into Z molecular fragments there

will be Z local molecular fragment matrices. In this

case, if a molecule is partitioned into Z molecular

fragments, the matrices Ek½ESk� can be correspond-

ingly partitioned into Z local matrices Ek
L½ESk

L�,
L ¼ 1; . . . ;Z, and the kth power of matrix E [ES] is

exactly the sum of the kth power of the local Z

matrices. In this way, the total (both non-stochastic and

stochastic) bond-based bilinear indices are the sum of

the non-stochastic and stochastic bond-based bilinear

indices, respectively, of the Z molecular fragments:

bkð�w; �uÞ ¼
XZ

L¼1

bkLð�w; �uÞ ð14Þ

sbkð�w; �uÞ ¼
XZ

L¼1

sbkLð�w; �uÞ ð15Þ

Bond and bond-type bilinear fingerprints are specific

cases of local bond-based bilinear indices. The kth

bond-type bilinear indices of the edge-adjacency

matrix are calculated by summing up the kth bond

bilinear indices for all bonds of the same type in the

molecule. That is to say, this extension of the bond

bilinear index is similar to group additive schemes, in

which an index appears for each bond type in the

molecule together with its contribution based of the

bond bilinear index.

In the bond-type bilinear indices formalism, each

bond in the molecule is classified into a bond-type

(fragment). In this sense, bonds may be classified into

bond types in terms of the characteristics of the two

atoms that define the bond. For all data sets, including

those with a common molecular scaffold as well as

those with very diverse structure, the kth fragment

(bond-type) quadratic indices provide much useful

information. Thus, the development of the bond-type

bilinear indices description provides the basis for

application to a wider range of biological problems in

which the local formalism is applicable without the

need for superposition or a closely related set of

structures.

It is useful to perform a calculation on a molecule to

illustrate the steps in the procedure. For this, in the

next section we depict a pictorial representation of the

calculus of the non-stochastic and stochastic bilinear

indices of the bond matrix (both total and local) using a

simple chemical example.

Sample calculation

The bilinear indices of the bond matrix are calculated

in the following way. Considering the molecule of

3-hydroxy-2-butenenitrile as a simple example, we
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have the following labeled molecular graph and bond-

based adjacency matrices (E and ES). The second

(k = 2) and third (k = 3) power of these matrices and

bond-based molecular vector, �w, are also given:

The molecule contains five localized bonds (cor-

responding to five edges in the H-suppressed

molecular graph). To these we will associate the five

‘‘bond orbitals’’ w1;w2;w3;w4, and w5. Thus, �w ¼
½w1;w2;w3; w4;w5� ¼ ½wðC�CÞ;wðC¼CÞ;wðC�CÞ;wðC�NÞ;
wðC�OÞ� and each ‘‘bond orbital’’ can be computed by

Eq. 2 using, for instance, the atomic electronegativity

in Pauling scale (x) [54] as atomic weight (atom-la-

bel):

w1 ¼ xC=1þ xC=4 ¼ 2:55=1þ 2:55=4 ¼ 3:1875
w2 ¼ xC=4þ xC=3 ¼ 2:55=4þ 2:55=3 ¼ 1:4875
w3 ¼ xC=3þ xC=4 ¼ 2:55=3þ 2:55=4 ¼ 1:4875
w4 ¼ xC=4þ xN=3 ¼ 2:55=4þ 3:04=3 ¼ 1:650833
w5 ¼ xC=4þ xO=1 ¼ 2:55=4þ 3:44=1 ¼ 4:0775

and therefore, �w = [3.1875, 1.4875, 1.4875, 1.650833,

4.0775].

Besides other vector, �u must be calculated in the

same way that �w, but using other property, for

example the atomic masses [55] as atomic weight

(atom-label):

u1 ¼ yC=1þ yC=4 ¼ 12:01=1þ 12:01=4 ¼ 15:0125
u2 ¼ yC=4þ yC=3 ¼ 12:01=4þ 12:01=3 ¼ 7:005833
u3 ¼ yC=3þ yC=4 ¼ 12:01=3þ 12:01=4 ¼ 7:005833

u4 ¼ yC=4þ yN=3 ¼ 12:01=4þ 14:01=3 ¼ 7:6725
u5 ¼ yC=4þ yO=1 ¼ 12:01=4þ 16:00=1 ¼ 19:0025

and therefore, �u = [15.0125, 7.005833, 7.005833, 7.6725,

19.0025].

Each non-stochastic and stochastic total bilinear

index will have the form:

bkð�w;�uÞ¼ke11w1u1þke21w1u2þke31w1u3þke41w1u4

þke51w1u5þke12w1u2þke22w2u2þke32w2u3

þke42w2u4þke52w2u5þke13w1u3þke23w2u3

þke33w3u3þke43w3u4þke53w3u5þke14w1u4

þke24w2u4þke34w3u4þke44w4u4þke54w4u5

þke15w1u5þke25w2u5þke35w3u5þke45w4u5

þke55w5u5¼
X

ðiÞ

keiiw
iuiþ2

X

ði;jÞ

keijw
iuj ð16Þ

sbkð�w; �uÞ ¼ þ kes11w1u1 þ kes21w1u2 þ kes31w1u3

þ kes41w1u4 þ kes51w1u5 þ kes12w1u2

þ kes22w2u2 þ kes32w2u3 þ kes42w2u4

þ kes52w2u5 þ kes13w1u3 þ kes23w2u3

þ kes33w3u3 þ kes43w3u4 þ kes53w3u5

þ kes14w1u4 þ kes24w2u4 þ kes34w3u4

þ kes44w4u4 þ kes54w4u5 þ kes15w1u5

þ kes25w2u5 þ kes35w3u5 þ kes45w4u5

þ kes55w5u5

¼
X

ðiÞ

kesiiw
iuj þ 2

X

ði;jÞ

kesijw
iuj ð17Þ

HO
N1 2

3

4

5

E0 ¼ ES0 ¼

1

1

1

1

1

2

6666664

3

7777775
E1 ¼

0 1 0 0 1

1 0 1 0 1

0 10 1 0

0 0 1 0 0

1 1 0 0 0

2

6666664

3

7777775
E2 ¼

2 1 1 0 1

1 3 0 1 1

1 0 2 0 1

0 1 0 1 0

1 1 1 0 2

2

6666664

3

7777775
E3 ¼

2 4 1 1 3

4 2 4 0 4

1 4 0 2 1

1 0 2 0 1

3 4 1 1 2

2

6666664

3

7777775

ES1 ¼

0 0:5 0 0 0:5

0:33 0 0:33 0 0:33

0 0:5 0 0:5 0

0 0 1 0 0

0:5 0:5 0 0 0

2

6666664

3

7777775
ES2 ¼

0:4 0:2 0:2 0 0:2

0:16 0:5 0 0:16 0:16

0:25 0 0:5 0 0:25

0 0:5 0 0:5 0

0:2 0:2 0:2 0 0:4

2

6666664

3

7777775
ES3 ¼

0:18 0:36 0:090 0:090 0:27

0:28 0:14 0:28 0 0:28

0:12 0:5 0 0:25 0:12

0:25 0 0:5 0 0:25

0:27 0:36 0:090 0:090 0:18

2

6666664

3

7777775
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The keii ’s and kesii ’s can be considered a measure of

the attraction of an electron for a bond in the k step.

The keij ’s and kesij ’s are the terms of interaction

between two bonds in the k step. The keij ’s =keji ’s are

equal by symmetry (non-oriented molecular graph).

However, kesij 6¼ kesji. This is a logical result because

the kth esij elements are the transition probabilities

with the ‘electrons’ moving from bond i to j at the

discrete time periods tk and it should be different in

both senses. This result is in total agreement if the

electronegativity of the two atom types in the bonds

are taken into account.

In this way, Ek and ESk can be seen as graph-the-

oretic electronic-structure models [62]. In fact, quan-

tum chemistry starts from the fact a molecule is made

up of electrons and nuclei. The distinction here be-

tween bonded and non-bonded atoms is difficult to

justify. Any two nuclei of a molecule interact directly

and indirectly through the electrons present in the

molecule. Only the intensity of this interaction varies

in going from one pair of nuclei to another. In this

sense, the electron in an arbitrary bond i can move

(step-by-step) to other bonds at different discrete time

periods tk ðk ¼ 0; 1; 2; 3; . . .Þ through the chemical-

bonding network. That is to say, the E1 and ES1

matrices consider the valence-bond electrons in one

step and their power ðk ¼ 0; 1; 2; 3 . . .Þ can be consid-

ering as an interacting-electron chemical-network

model in k step. This model can be seen as an inter-

mediate between the quantitative quantum-mechanical

Schrödinger equation and classical chemical bonding

ideas [62].

On the other hand, the kth (k = 0–3) non-stochastic

total quadratic indices can be expressed as the sum of

the local (bond) quadratic indices for this molecule as

follows:

q0ð�w; �uÞ ¼q0Lð�w; �u1Þ þ q0Lð�w; �u2Þ þ q0Lð�w; �u3Þ
þ q0Lð�w; �u4Þ þ q0Lð�w; �u5Þ ¼ 47:85234

þ 10; 42118þ 10; 42118þ 12; 66602

þ 77; 48269 ¼ 158; 8434

q1ð�w; �uÞ ¼q1Lð�w; �u1Þ þ q1Lð�w; �u2Þ þ q1Lð�w; �u3Þ
þ q1Lð�w; �u4Þ þ q1Lð�w; �u5Þ ¼ 83; 22306

þ 61; 16852þ 21; 91033þ 11; 48915

þ 89; 30822 ¼ 267; 09929

q2ð�w; �uÞ ¼q2Lð�w; �u1Þ þ q2Lð�w; �u2Þ þ q2Lð�w; �u3Þ
þ q2Lð�w; �u4Þ þ q2Lð�w; �u5Þ ¼ 201; 2588

þ 93; 50003þ 71; 5897þ 24; 15517

þ 272; 6899 ¼ 663; 1936

q3ð�w; �uÞ ¼q3Lð�w; �u1Þ þ q3Lð�w; �u2Þ þ q3Lð�w; �u3Þ
þ q3Lð�w; �u4Þ þ q3Lð�w; �u5Þ ¼ 414; 6557

þ 265; 5164þ 115; 4104þ 78; 92521

þ 511; 0498 ¼ 1385; 5575

The terms in the summations for calculating the total

quadratic indices are the so-called local (bond) qua-

dratic indices. We have written these terms in the

consecutive order of the bond labels in the graph. For

instance, the non-stochastic bond quadratic indices of

order 0, 1, 2 and 3 for the bond labeled as 1 are

47.85234, 83.22306, 201.2588 and 414.6557, respectively.

The kth total stochastic quadratic indices values are

also the sum of the kth local (bond) stochastic qua-

dratic indices values for all bonds in the molecule:

sq0ð�w; �uÞ ¼sq0Lð�w; �u1Þ þ sq0Lð�w; �u2Þ þ sq0Lð�w; �u3Þ
þ sq0Lð�w; �u4Þ þ sq0Lð�w; �u5Þ
¼47; 85234þ 10; 42118þ 10; 42118

þ 12; 66602þ 77; 48269 ¼ 158; 8434

q1ð�w; �uÞ ¼sq1Lð�w; �u1Þ þ sq1Lð�w; �u2Þ þ sq1Lð�w; �u3Þ
þ sq1Lð�w; �u4Þ þ sq1Lð�w; �u5Þ
¼39; 75061þ 25; 47438þ 12; 93994

þ 8; 597788þ 42; 27359 ¼ 129; 0363
sq2ð�w; �uÞ ¼sq2Lð�w; �u1Þ þ sq2Lð�w; �u2Þ þ sq2Lð�w; �u3Þ

þ sq2Lð�w; �u4Þ þ sq2Lð�w; �u5Þ
¼40; 43786þ 18; 32877þ 16; 63249

þ 10; 15001þ 54; 77602 ¼ 140:3252
sq3ð�w; �uÞ ¼sq3Lð�w; �u1Þ þ sq3Lð�w; �u2Þ þ sq3Lð�w; �u3Þ

þ sq3Lð�w; �u4Þ þ sq3Lð�w; �u5Þ
¼39; 15194þ 22; 05334þ 13; 87389

þ 13; 8189þ 48; 32158 ¼ 137; 2196

Material and methods

TOMOCOMD-CARDD approach

The total and local (bond-type) bond-based bilinear

indices were calculate by the interactive program for

molecular design and bioinformatic research TO-

MOCOMD-CARDD [20]. The software was devel-

oped based on a user-friendly philosophy. That is to

say, this computer graphics software shows a great

efficiency of interaction with the user, without prior

knowledge of programming skills (e.g. practicing

pharmaceutic and organic chemist, teacher, university

student, and so on). CARDD subprogram allows

drawing the structures (drawing mode) and calculat-

ing 2D (topologic), 3D-chiral (2.5D) and 3D (geo-
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metric and topographic) non-stocahstic and stochastic

MDs (calculation mode).

The main steps for the application of this method in

QSAR/QSPR and for drug design can be briefly

summarized as follows:

1. Drawing of the molecular pseudographs for each

molecule in the data set, using the drawing mode.

2. Use appropriate weights in order to differentiate

the molecular atoms. The weights used in this

work are those previously proposed for the

calculation of the DRAGON descriptors [55–

57], i.e., atomic mass (M), atomic polarizability

(P), atomic Mullinken electronegativity (K) plus

the van der Waals atomic volume (V). The

values of these atomic labels are shown in

Table 1 [54–57].

3. Computation of the total and local (bond and

bond-type) bond bilinear indices of the bond

adjacency matrix can be carried out in the software

calculation mode, where one can select the atomic

properties and the descriptor family before calcu-

lating the molecular indices. This software gener-

ates a table in which the rows correspond to the

compounds, and the columns correspond to the

bond-based (both total and local) bilinear maps or

other MD family implemented in this program.

4. Development of a QSPR/QSAR equation by using

several multivariate analytical techniques, for

instance, linear discrimination analysis. That is

to say, one can find a quantitative relationship

between an activity A and the bond-based bilinear

fingerprints having, for instance, the following

appearance:

A ¼ a0b0ð�w; �uÞ þ a11ð�w; �uÞ þ a2b2ð�w; �uÞ
þ � � � þ akbkð�w; �uÞ þ c

ð18Þ

where A is the measured activity, bkð�w; �uÞ are the kth

non-stochastic total bond-based bilinear indices, and

the ak¢s are the coefficients obtained by the linear

regression analysis.

5. Test of the robustness and predictive power of the

QSPR/QSAR equation by using internal [leave-

one-out (LOO)] and external (using a test set and

an external predicting set) validation techniques.

The bond-based TOMOCOMD-CARDD descrip-

tors computed in this study were the following:

(1) kth (k = 15) total non-stochastic bond-based

bilinear indices not considering and considering

H-atoms in the molecular graph (G) [bbð�w; �uÞ and

bH
k ð�w; �uÞ, respectively].

(2) kth (k = 15) total stochastic bond-based bilinear

indices not considering and considering H-atoms

in the molecular graph (G) [sbbð�w; �uÞ and
sbH

b ð�w; �uÞ, respectively].

(3) kth (k = 15) bond-type local (group = heteroa-

toms: S, N, O) non-stochastic bilinear indices not

considering and considering H-atoms in the

molecular graph (G) [bkLð�wE; �uEÞ and bH
kL

ð�wE; �uEÞ, correspondingly]. These local des-

criptors are putative molecular charge, dipole

moment, and H-bonding acceptors.

(4) kth (k = 15) bond-type local (group = heteroa-

toms: S, N, O) stochastic bilinear indices not

considering and considering H-atoms in the

molecular graph (G) [sbbLð�wE; �uEÞ, and
sbH

bLð�wE; �uEÞ, correspondingly]. These local de-

scriptors are putative molecular charge, dipole

moment, and H-bonding acceptors.

Database construction

The database collected to our study of tyrosinase

inhibitory activity consists of 685 compounds in total.

The active compounds inside this set were of 246,

having reported activity against the enzyme tyrosinase.

The rest, 412 organic-chemicals were chosen as inactive

compounds. In both cases (active and inactive ones) we

consider the structural molecular variability as impor-

tant goal to assure the quality of our QSAR study.

In the case of tyrosinase inhibitor compounds

(actives) many different subsystems were included. An

example of the most representative tyrosinase refer-

ence drugs is illustrates in Fig. 1, together with some

tyrosinase inhibitors of different families.

The names of compounds in the active database to-

gether with their experimental data taken from the

literature are shown in Table 1 of Supporting Infor-

mation. In the same way, we depict in Table 2 (Sup-

porting Information) the molecular structures of these

246 tyrosinase inhibitors. This dataset provides a help-

ful tool for scientific research in many chemistry fields

related with the tyrosinase enzyme and its inhibitors.

By other way, the rest 412 compounds having dif-

ferent pharmacological uses were selected for the

inactive set. All these chemicals were taken from the

Negwer Handbook [63], where their names, synonyms

and structural formulas can be found.

Statistical techniques

The STATISTICA software [64] was used to develop

the different statistical methods used in this report. In
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first place we employed the cluster analysis as a

method that recognizes similarities among cases and it

contains them according to these criteria [65]. In our

case k-MCA (k-means cluster analysis) and k-NNCA

(k-nearest neighbors cluster analysis) algorithms were

used to design the training and prediction series

[64–67]. The dendrograms were obtained using the

Euclidean distance (X-axis) and the complete linkage

(Y-axis), and show the distance between the com-

pounds inside the clusters, that are grouped according

to its chemical similarity encoded by the MDs used as

variables. Linear Discriminant Analysis (LDA) a sim-

ple and very useful technique in drug design was car-

ried out to find the QSAR models [13, 16, 17, 19, 34, 35,

37, 38, 42–47, 68–73]. Here, the forward stepwise pro-

cedure was fixed as the strategy for variable selection

and taken into account the principle of parsimony

(Occam’s razor) for model selection.

The classification of cases was carried out by mean

of posterior classification probabilities. Tyrosinase

inhibitory activity was codified by a dummy variable

‘‘Class’’. This variable indicates the presence of ei-

ther an active compound (Class = 1) or an inactive

compound (Class = –1). By using the models, one

compound can then be classified as active, if

DP%[0, being DP% ¼ ½P(Active)� P(Inactive)��
100, or as inactive otherwise. P (Active) and P

(Inactive) are the probabilities with which the

equations classify a compound as active or inactive,

respectively.

The Randić’s method of orthogonalization was used

in this study as a way to avoid the interrelation among

the molecular fingerprints [45, 74–79]. This may pos-

sible a better statistical interpretation of the correla-

tion coefficient and to evaluate the role of individual

MDs in the QSAR model.
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Fig. 1 Random, but not
exhaustive, sample of the
molecular families of
tyrosinase inhibitors studied
here and some reference
drugs
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The data set was standardized before the orthogo-

nalization process, because the different MDs included

here used entirely ‘‘different types of scales’’. This

process to proportionate each variable has a mean of 0

and a standard deviation of 1.

Experimental methods

The synthesis and characterization of the 24 tetrake-

tones, their biological studies and cross references have

been reported by other of our research team [80].

Tyrosinase inhibition assay was performed with

kojic acid and L-mimosine as standard inhibitors for

the tyrosinase in a 96-well microplate format using a

SpectraMax 340 micro-plate reader (Molecular

Devices, CA, USA) according to the method

developed by Hearing [81]. Briefly, the compounds

were first screened for the o-diphenolase inhibitory

activity of tyrosinase using L-DOPA as substrate. All

the active inhibitors from the preliminary screening

were subjected to IC50 studies. Compounds were

dissolved in methanol to a concentration of 2.5%.

Thirty units of mushroom tyrosinase (28 nM from

Sigma Chemical Co., USA) were first preincubated

with the test compounds in 50 nM Na-phosphate

buffer (pH 6.8) for 10 min at 25 �C. Then the L-

DOPA (0.5 mM) was added to the reaction mixture

and the enzymatic reaction was monitored by mea-

suring the change in absorbance at 475 nm (at

37 �C) due to the formation of the DOPAchrome

for 10 min. The percentage of inhibition of the en-

zyme was calculated as follows, by using MS Ex-

celrTM 2000 (Microsoft Corp., USA) based program

developed for this purpose:

Percent inhibition ¼ ½ðB� SÞ=B� � 100 ð19Þ

Here, B and S are the absorbances for the blank and

samples, respectively. After the screening of the com-

pounds, 50% inhibitory concentrations (IC50) were

also calculated. Kojic acid and L-mimosine were used

as standard inhibitors for the tyrosinase and both of

them were purchased from Sigma Chem. Co., USA.

Results and discussion

Dividing the training and prediction series through

cluster analysis

In above section we describe the database selection

process, now the structural variability of such set must

be proved. This is a crucial aspect in any QSAR study

in order to explain its reliability. Following this main

reason, different cluster analysis techniques were car-

ried out. In first place was used a k-NNCA to prove the

structural diversity in the families presented in the

data. Two dendrograms, one for the active compounds

series and other for the inactive ones, were obtained

through hierarchical cluster analysis (Figs. 2, 3) were

can be observed different structural patterns which

demonstrate the chemical variability of the database.

Now the dataset should be partitioned in training

and prediction sets, to find the discriminant functions,

but due to the difficulty of evaluating the output

dendrograms other kind of CA must be do it, for the

selection of compounds in a ‘rational’ way.

Therefore we chose the k-MCA to solve this prob-

lem, and were applied to active and inactive subsets.

The first k-MCA for tyrosinase inhibitors divide this
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Fig. 2 A dendrogram illustrating the results of the hierarchical
k-NNCA of the set of tyrosinase inhibitors used in the training
and prediction set of the present work
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Fig. 3 A dendrogram illustrating the results of the hierarchical
k-NNCA of the set of inactive compounds (non-tyrosinase
inhibitors) used in the training and prediction set of the present
work
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set into 10 clusters. On other hand the k-MCA II split

the inactive set into 12 clusters. The variables used

were the kth non-stochastic bond-bilinear indices, and

the analyses of variance for these k-MCAs are depicted

in Table 2.

The following process using the cluster analysis

techniques to divide entire database in training and

prediction series is shown in shown in Fig. 4. How can

be observed in the same diagram there are 183 active

compounds and 295 inactive ones belonging to training

set (478 organic-chemicals). The prediction series of

180 compounds have 63 tyrosinase inhibitors and 117

non-inhibitors of tyrosinase.

Developing the discriminant functions

The representative selection of training set permit

continues to the next step, the finding of the classifi-

cation functions to discriminate between active and

inactive. For this we select the LDA as statistical

technique due to it’s broadly use and simplicity.

In total were obtained fourteen models, the first six

models developed with the non-stochastic bond-based

bilinear indices and the other first six perform with the

stochastic molecular descriptors, these equations are

depicted Table 3. Besides, below we shown the Eqs. 32

and 33 of the last seven models in both cases (non-

stochastic and stochastic molecular fingerprints)

resulting in a combination of all pairs of atom weights

(atomic labels):

Class ¼� 0:636� 8:422� 10�2MPbH
0Lð�wE; �uEÞ

þ 0:107MPb0Lð�wE; �uEÞ
þ 1:792� 10�2MKbH

1Lð�wE; �uEÞ
� 2:373� 10�2MKb1Lð�wE; �uEÞ
þ 3:287� 10�5VPbH

5 ð�w; �uÞ
� 9:590� 10�2VPb0Lð�wE; �uEÞ
þ 1:166� 10�2VPb1Lð�wE; �uEÞ
þ 2:277� 10�2VKbH

0 ð�w; �uÞ
þ 5:4� 10�3VKbH

1 ð�w; �uÞ
� 4:04� 10�3VKbH

2 ð�w; �uÞ
þ 2:34� 10�2VKb0Lð�wE; �uEÞ ð32Þ

N = 478 k = 0.45 D2 = 5.13 F = 51.6 Canonical

R = 0.74 v 2 = 374.8 QTotal = 91.00% C = 0.81

Class ¼ �0:302þ 5:290� 10�3MVbH
5Lð�wE; �uEÞ

þ 6:267� 10�3MPb0Lð�wE; �uEÞ

þ 1:262� 10�2MKb0ð�w; �uÞ � 3:458

� 10�2MKbH
0Lð�wE; �uEÞ � 1:734� 10�2VPb0ð�w; �uÞ

þ 1:286� 10�2VPb14Lð�w; �uÞ � 4:840

� 10�2VPb4Lð�wE; �uEÞ þ 0:129VKbH
2Lð�wE; �uEÞ

� 0:133VKbH
3Lð�wE; �uEÞ þ 1:067� 10�2VKb0L

ð�wE; �uEÞ ð33Þ

Table 2 Main results of the k-MCAs, for tyrosinase inhibitors
and inactives drug-like compounds

Analysis of variance

Variables Between
SSa

Within SSb Fisher
ratio (F)

p-levelc

Tyrosinase inhibitors clusters (k-MCA I)
VPb1LðxEÞ 187.01 20.29 241.65 0.00
VKbH

1 ðxÞ 301.99 34.58 228.98 0.00
VKb0LðxEÞ 298.30 56.31 138.91 0.00
VKbH

0 ðxÞ 309.23 33.40 242.77 0.00
VPbH

5 ðxÞ 213.04 25.90 215.68 0.00
VKbH

2 ðxÞ 265.14 35.70 194.73 0.00
VPb0LðxEÞ 157.80 25.41 162.86 0.00
MKbH

1LðxEÞ 164.30 29.24 147.37 0.00
MPb0LðxEÞ 50.63 9.54 139.12 0.00
MKb1LðxEÞ 192.77 25.84 195.60 0.00
MPbH

0LðxEÞ 26.04 8.80 77.64 0.00
VPb1LðxEÞ 187.01 20.29 241.65 0.00

Inactives clusters (k-MCA II)
VPb1LðxEÞ 455.59 126.84 130.62 0.00
VKbH

1 ðxÞ 312.80 60.56 187.83 0.00
VKb0LðxEÞ 406.45 74.23 199.12 0.00
VKbH

0 ðxÞ 365.14 75.46 175.96 0.00
VPbH

5 ðxÞ 259.67 208.61 45.26 0.00
VKbH

2 ðxÞ 298.04 50.65 213.97 0.00
VPb0LðxEÞ 679.51 85.82 287.93 0.00
MKbH

1LðxEÞ 412.22 125.66 119.29 0.00
MPb0LðxEÞ 1171.79 88.34 482.36 0.00
MKb1LðxEÞ 451.92 131.25 125.21 0.00
MPbH

0LðxEÞ 1215.08 106.85 413.53 0.00

a Variability between groups
b Variability within groups
c Level of significance

412
Non-Tyrosinase

Inhibitors

246
Tyrosinase
Inhibitors

k-MCA I k-MCA II

Training Data Set
478 chemicals in total

295 Inactive 
Compounds

183 Active
Compounds

63 Active
Compounds

117 Inactive
Compounds

Dataset of 658
 chemicals in total

12 Inactive
Clusters

10 Active
Clusters

Test Data Set
180 chemical in Total

Fig. 4 General algorithm used to design training and test sets
throughout k-MCA
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N = 478 k = 0.46 D2 = 5.00 F = 55.4 Canonical

R = 0.74 v 2 = 368.5 QTotal = 90.17% C = 0.79

Prediction performances of all the obtained models

including these last two equations are given in Table 4,

together with the Wilks’ statistics (k), the square of the

Mahalanobis distances (D2), and the Fisher ratio (F).

The models selected showed to be statistically signifi-

cant at p-level <0.0001.

The fitted models 32 and 33, resulting of the

combination of weighting schemes for the non-sto-

chastic and stochastic bond-level bilinear indices,

respectively, exhibit the best results, how can be

observed in Table 4. These best two equations cor-

rectly classified the 91.00% and 90.17% of the

training set, and showed values of the Matthews

correlation coefficients (C) of 0.81 and 0.79, respec-

tively. The most common parameters in medical

statistics for all the models are depicted in the same

Table 4.

Although these two best models exhibited good

results, the interpretation of the individual role of

every index in the model can become in a difficulty due

to the interrelation among them (data not shown). This

impelled us to use the Randić’s orthogonalization

process to avoid this problem, and eliminate the col-

linearity between the variables [74–78].

In Eqs. 34 and 35 are depicted the results of the

orthogonalization process for the best two models

of the non-stochastic and stochastic bilinear indices,

correspondingly.

Table 3 Discriminant models obtained with total and local non-stochastic and stochastic bond-based bilinear indices used in this study

LDA-based QSAR models obtained using non-stochastic bilinear indices
Class ¼ �0:333þ 6:296� 10�3MVbH

0 ð�w; �uÞ þ2:519� 10�3MVbH
1 ð�w; �uÞ � 1:062� 10�3MVbH

2 ð�w; �uÞ þ 5:213� 10�13MVbH
15ð�w; �uÞ

�1:018� 10�2MVbH
0Lð�wE; �uEÞ þ 1:592� 10�3MVbH

1Lð�wE; �uEÞ þ 1:877� 10�4MVbH
3Lð�wE; �uEÞ

þ4:316� 10�3MVb0Lð�wE; �uEÞ � 4:201� 10�3MVb1Lð�wE; �uEÞ þ 4:939� 10�4MVb2Lð�wE; �uEÞ � 1:303� 10�6MVb6Lð�wE; �uEÞ
�2:632� 10�2MVb14Lð�wE; �uEÞ (20)

Class ¼ �0:351þ 6:742� 10�2MPbH
0 ð�w; �uÞ þ 3:085� 10�3MPbH

1 ð�w; �uÞ � 1:727� 10�2MPbH
2 ð�w; �uÞ þ 2:900� 10�2MPb1ð�w; �uÞ

�1:381� 10�2MPb2ð�w; �uÞ þ 3:085� 10�3MPb3ð�w; �uÞ � 0:118MPbH
0Lð�wE; �uEÞ þ 1:584� 10�2MPbH

2Lð�wE; �uEÞ
þ5:058� 10�2MPb0Lð�wE; �uEÞ � 6:603� 10�2MPb1Lð�wE; �uEÞ þ 9:529� 10�3MPb2Lð�wE; �uEÞ
�3:077� 10�4MPb4Lð�wE; �uEÞ (21)

Class ¼ �1:577þ 6:753� 10�2MKbH
0 ð�w; �uÞ � 5:903� 10�4MKbH

4 ð�w; �uÞ þ 3:015� 10�8MKbH
10ð�w; �uÞ þ 1:585� 10�3MKbH

2 ð�w; �uÞ
�9:832� 10�2MKbH

0Lð�wE; �uEÞ þ 1:899� 10�2MKbH
1Lð�wE; �uEÞ þ 2:051� 10�3MKbH

3Lð�wE; �uEÞ � 2:572� 10�12MKbH
15Lð�wE; �uEÞ

þ3:148� 10�2MKb0Lð�wE; �uEÞ � 2:375� 10�2MKb1Lð�wE; �uEÞ � 2:385� 10�5MKb5Lð�wE; �uEÞ (22)
Class ¼ �0:630þ 3:534� 10�2VPbH

0 ð�w; �uÞ þ 3:696� 10�2VPbH
1 ð�w; �uÞ � 5:218� 10�3VPbH

3 ð�w; �uÞ þ 1:494� 10�4VPbH
5 ð�w; �uÞ

�6:702� 10�2VPbH
0Lð�wE; �uEÞ þ 1:834� 10�3VPbH

3Lð�wE; �uEÞ þ 2:303� 10�2VPb0Lð�wE; �uEÞ � 3:110� 10�2VPb1Lð�wE; �uEÞ
þ4:899� 10�3VPb2Lð�wE; �uEÞ � 1:810� 10�7VPb10Lð�wE; �uEÞ þ 1:188� 10�9VPb14Lð�wE; �uEÞ � 1:813� 10�10VPb15Lð�wE; �uEÞ (23)

Class ¼ �1:058� 10�2 � 2:314� 10�2VKbH
0 ð�w; �uÞ þ 2:108� 10�2VKbH

1 ð�w; �uÞ � 3:513� 10�3VKbH
2 ð�w; �uÞ þ 2:053� 10�12VKbH

15ð�w; �uÞ
þ5:867� 10�3VKb1ð�w; �uÞ � 1:494� 10�3VKb2ð�w; �uÞ þ 1:075� 10�2VKb0Lð�wE; �uEÞ � 2:066� 10�2VKb1Lð�wE; �uEÞ
þ4:864� 10�3VKb2Lð�wE; �uEÞ � 1:212� 10�6VKb8Lð�wE; �uEÞ þ 4:842� 10�10VKb14Lð�wE; �uEÞ
�8:174� 10�11VKb15Lð�wE; �uEÞ (24)

Class ¼ 0:182� 0:271PKbH
0 ð�w; �uÞ þ 0:311PKbH

1 ð�w; �uÞ � 6:625� 10�2PKbH
2 ð�w; �uÞ þ 2:712� 10�11PKbH

15ð�w; �uÞ þ 9:137� 10�2PKb1ð�w; �uÞ
�1:794� 10�2PKb2ð�w; �uÞ þ 1:452� 10�3PKbH

4Lð�wE; �uEÞ þ 0:162PKb0Lð�wE; �uEÞ � 0:289� 10�2PKb1Lð�wE; �uEÞ
þ5:107� 10�2PKb2Lð�wE; �uEÞ � 3:957� 10�4PKb5Lð�wE; �uEÞ (25)

LDA-based QSAR models obtained using stochastic bilinear indices
Class ¼ �0:303� 4:647� 10�3MVbH

0 ð�w; �uÞ � 2:557� 10�3MVbH
1 ð�w; �uÞ þ 8:831� 10�3MVbH

15ð�w; �uÞ þ 5:245� 10�3MVb1ð�w; �uÞ
�7:103� 10�3MVb2ð�w; �uÞ þ 2:955� 10�3MVb15ð�w; �uÞ þ 3:191� 10�2MVbH

4Lð�wE; �uEÞ � 2:634� 10�2MVbH
5Lð�wE; �uEÞ

�8:967� 10�3MVbH
15Lð�wE; �uEÞ þ 3:855� 10�3MVb0Lð�wE; �uEÞ � 4:915� 10�3MVb1Lð�wE; �uEÞ (26)

Class ¼ �0:696� 0:148MPbH
2 ð�w; �uÞ þ 6:719� 10�2MPbH

4 ð�w; �uÞ þ 0:102MPbH
15ð�w; �uÞ þ 4:644� 10�2MPb1ð�w; �uÞ � 6:597� 10�2MPb2ð�w; �uÞ

þ2:518� 10�2MPb14ð�w; �uÞ � 5:617� 10�2MPbH
0Lð�wE; �uEÞ þ 0:174MPbH

2Lð�wE; �uEÞ � 0:154MPbH
12Lð�wE; �uEÞ

þ5:6291� 10�2MPb0Lð�wE; �uEÞ � 6:346� 10�2MPb1Lð�wE; �uEÞ (27)
Class ¼ �0:269� 1:435� 10�2MKb0ð�w; �uÞ þ 1:412� 10�2MKb1ð�w; �uÞ � 3:842� 10�2MKb9ð�w; �uÞ þ 4:586� 10�2MKb14ð�w; �uÞ

�3:746� 10�2MKbH
0Lð�wE; �uEÞ þ 4:210� 10�2MKbH

2Lð�wE; �uEÞ þ 3:622� 10�2MKb0Lð�wE; �uEÞ � 2:421� 10�2MKb1Lð�wE; �uEÞ
�2:423� 10�2MKb8Lð�wE; �uEÞ (28)

Class ¼ �0:422� 3:200� 10�2VPbH
0 ð�w; �uÞ � 5:377� 10�2VPbH

2 ð�w; �uÞ þ 0:112VPbH
13ð�w; �uÞ � 1:711� 10�2VPb0ð�w; �uÞ

þ2:413� 10�2VPb14ð�w; �uÞ � 5:030� 10�2VPbH
1Lð�wE; �uEÞ þ 0:543VPbH

4Lð�wE; �uEÞ � 0:438VPbH
5Lð�wE; �uEÞ � 0:103VPbH

15Lð�wE; �uEÞ
þ2:156� 10�2VPb0Lð�wE; �uEÞ � 4:654� 10�2VPb4Lð�wE; �uEÞ þ 2:222� 10�2VPb14Lð�wE; �uEÞ (29)

Class ¼ �0:736� 5:040� 10�2VKbH
0 ð�w; �uÞ þ 5:701� 10�2VKbH

15ð�w; �uÞ � 1:007� 10�2VKb0ð�w; �uÞ þ 1:079� 10�2VKb1ð�w; �uÞ
þ1:004� 10�2VKb14ð�w; �uÞ � 2:952� 10�2VKbH

1Lð�wE; �uEÞ þ 0:153VKbH
2Lð�wE; �uEÞ � 7:459� 10�2VKbH

3Lð�wE; �uEÞ
�6:737� 10�2VKbH

9Lð�wE; �uEÞ þ 1:670� 10�2VKb0Lð�wE; �uEÞ � 2:333� 10�2VKb5Lð�wE; �uEÞ (30)
Class ¼ �0:401� 0:558PKbH

0 ð�w; �uÞ þ 0:605PKbH
1 ð�w; �uÞ � 0:502PKbH

2 ð�w; �uÞ þ 0:560PKbH
15ð�w; �uÞ � 0:161PKb0ð�w; �uÞ

þ0:180PKb1ð�w; �uÞ þ 0:118PKb14ð�w; �uÞ � 0:972PKbH
1Lð�wE; �uEÞ þ 1:747PKbH

2Lð�wE; �uEÞ � 1:016PKbH
7Lð�wE; �uEÞ þ 0:205PKb0Lð�wE; �uEÞ

�0:287PKb3Lð�wE; �uEÞ (31)
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Class ¼� 0:331� 1:5151OðVPbH
1Lð�wE; �uEÞÞ

þ 2:0372OðVKbH
1 ð�w; �uÞÞ2:4063OðVKb0Lð�wE; �uEÞÞ

� 3:1764OðVKbH
0 ð�w; �uÞÞ þ 0:8055OðVPbH

5 ð�w; �uÞÞ
� 6:5406OðVKbH

2 ð�w; �uÞÞ
� 1:9597OðVPb0Lð�wE; �uEÞÞ
� 1:0158OðMKbH

1Lð�wE; �uEÞÞ
þ 1:9139OðMPb0Lð�wE; �uEÞÞ
� 5:99710OðMKb1Lð�wE; �uEÞÞ
� 16:33711OðMPbH

0Lð�wE; �uEÞÞ ð34Þ

N = 478 k = 0.45 D2 = 5.13 F = 51.6 Canonical

R = 0.74 v 2 = 374.8 QTotal = 91.00% C = 0.81.

Class ¼� 2:414� 10�2 � 1:1971OðVPb4Lð�wE; �uEÞÞ
þ 4:3462OðVKb0Lð�wE; �uEÞÞ
þ 1:0753OðVPbH

14ð�w; �uÞÞ � 3:1964OðVPb0ð�w; �uÞÞ
þ 0:8995OðMPb0Lð�wE; �uEÞÞ
� 1:1976OðMKbH

0Lð�wE; �uEÞÞ
þ 5:4747OðMKb0ð�w; �uÞÞ
þ 2:0938OðVKbH

2Lð�wE; �uEÞÞ
� 7:3719OðVKbH

3Lð�wE; �uEÞÞ
þ 3:46110OðMVbH

5Lð�wE; �uEÞÞ ð35Þ

N = 478 k = 0.46 D2 = 5.00 F = 55.4 Canonical

R = 0.74 v 2 = 368.5 QTotal = 90.17% C = 0.79.

Here, we used the symbols mO½bkð�w; �uÞ�, where the

superscript m expresses the order of importance of the

variable bkð�w; �uÞ after a preliminary forward-stepwise

analysis and O means orthogonal. If we take a look to

the statistical parameter to every model before and

after of the orthogonalization process, can be observed

that they keep be the same for the non-orthogonal and

orthogonal descriptors.

Assessing the predictive power of the models

Validation external process or most commonly

namely test set is necessary to ensure the quality and

extrapolation power of the QSAR models found

in this report [82, 83]. Following this aim all the

equations were evaluated and results are shown in

Table 5. In the case of the best two discriminant

functions Eqs. 32 and 33, presented overall accuracies

of 93.33% (C = 0.85) and 88.89% (C = 0.77), respec-

tively. Likewise a plot of the DP% for the entire

dataset using models (32) and (33), is illustrates in

Figs. 5 and 6.

The results of the classification using the total

fourteen models, for all the active and inactive organic-

chemicals in the training and external series are shown

in Tables 3–10 of Supporting Information.

Table 4 Prediction performances and statistical parameters for LDA-based QSAR models in the training set

Modelsa Matthews
corr.
coefficient
(C)

Accuracy
‘QTotal’
(%)

Specificity (%) Sensitivity
‘hit rate’
(%)

False positive
rate (%)

Wilks’ k D2 F Chi-sqr
(v2)

Canonical
RðRcanÞb

LDA-based QSAR models obtained using non-stochastic bilinear indices
Equation 20 (12) 0.75 87.87 82.1 88.0 11.9 0.52 3.83 35.2 279.3 0.67
Equation 21 (12) 0.70 85.77 79.8 84.1 13.2 0.52 3.89 35.7 307.1 0.69
Equation 22 (11) 0.80 90.59 86.3 89.6 8.8 0.47 4.81 48.4 358.3 0.73
Equation 23 (12) 0.70 85.77 79.2 85.2 13.9 0.58 3.11 28.6 243.4 0.64
Equation 24 (12) 0.74 87.45 81.5 86.9 12.2 0.51 4.03 37.0 288.9 0.68
Equation 25 (12) 0.73 87.24 81.4 86.3 12.2 0.51 4.03 37.0 315.9 0.70
Equation 32 (11) 0.81 91.00 86.8 90.2 8.5 0.45 5.13 51.6 374.8 0.74

LDA-based QSAR models obtained using stochastic bilinear indices
Equation 26 (11) 0.71 86.19 79.7 85.8 13.6 0.54 3.52 35.4 286.0 0.67
Equation 27 (11) 0.70 85.98 82.6 80.3 10.5 0.57 3.23 32.5 267.8 0.66
Equation 28 (9) 0.71 85.98 79.6 85.2 13.6 0.52 3.85 47.5 306.2 0.69
Equation 29 (12) 0.67 84.31 77.6 83.1 14.9 0.57 3.13 28.8 260.9 0.65
Equation 30 (11) 0.73 87.24 81.8 85.8 11.9 0.52 3.94 39.6 310.6 0.70
Equation 31 (12) 0.76 88.28 82.6 88.0 11.5 0.53 3.75 34.5 299.2 0.69
Equation 33 (10) 0.79 90.17 85.8 89.1 9.2 0.46 5.00 55.4 368.5 0.74

a Between brackets the quantity of variables of the models
b Canonical correlation coefficient obtained from the linear discriminant canonical analysis
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Simulated virtual screening of new tyrosinase

inhibitors

The good behavior of the results obtained above,

encouraged us, to expand moreover the possibilities of

this novel approach for the in silico discovery of novel

tyrosinase inhibitor compounds. Virtual High

Throughput Screening (HTS) can become an important

tool capable to resolve the largely query of database of

thousands of compounds, and has the potential to

transform early-stage drug discovery. To prove the

ability of our models a simulated virtual screening to a

data of 104 organic-chemicals (Table 6) reported from

the literature as inactive/inactive (see the last column of

the same Table 6: Ref) was carried out. The molecular

structures of these compounds are shown in Table 11 of

Supporting Information.

Besides to assure the great possibility of our models

to identify several classes of compounds a k-NNCA to

this data was carried and the dendrogram obtained can

be observed in Fig. 7, where a great molecular diversity

can be visualized. In Table 6 are depicted the results of

the classifications of the 104 compounds. Additionally

the posterior classification probabilities (including

canonical scores) for all the equations are summarized

in Table 12 (Supporting Information). The percent of

globally good classification were of 85.57% and 84.61%

for the non-stochastic and stochastic molecular

descriptors, correspondingly.

This method could very useful, due that making use

of this many great databases of drug-like compounds

could be make it, and some compounds identified

Table 5 Prediction
performances for LDA-based
QSAR models in the test set

Models Matthews corr.
coefficient (C)

Accuracy
‘QTotal’ (%)

Specificity (%) Sensitivity
‘hit rate’ (%)

False positive
Rate (%)

LDA-based QSAR models obtained using non-stochastic bilinear indices
Equation 20 0.69 85.56 76.8 84.1 13.7
Equation 21 0.64 83.33 73.9 81.0 15.4
Equation 22 0.73 87.78 82.5 82.5 9.4
Equation 23 0.65 83.89 75.0 81.0 14.5
Equation 24 0.67 83.89 73.0 85.7 17.1
Equation 25 0.67 84.44 74.0 85.7 16.2
Equation 32 0.85 93.33 89.2 92.1 6.0
LDA-based QSAR models obtained using stochastic bilinear indices
Equation 26 0.68 85.00 75.0 85.7 15.4
Equation 27 0.69 86.11 81.7 77.8 9.4
Equation 28 0.74 86.67 74.7 93.7 17.1
Equation 29 0.65 83.33 72.6 84.1 17.1
Equation 30 0.71 86.11 75.7 88.9 15.4
Equation 31 0.68 85.00 75.7 84.1 14.5
Equation 33 0.77 88.89 79.5 92.1 12.8
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Fig. 5 Plot of the DP% from Eq. 32 (using non-stochastic bond-
based bilinear indices) for each compound in the training and
test sets. Compounds 1–183 and 184–246 are active (tyrosinase
inhibitors) in training and test sets, respectively; chemicals 247–
541 and 542–658 are inactive (non-tyrosinase inhibitors) in both
training and test sets, correspondingly
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Fig. 6 Plot of the DP% from Eq. 33 (using stochastic bond-based
bilinear indices) for each compound in the training and test sets.
Compounds 1–183 and 184–246 are active (tyrosinase inhibitors)
in training and test sets, respectively; chemicals 247–541 and 542–
658 are inactive (non-tyrosinase inhibitors) in both training and
test sets, correspondingly
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Table 6 Results of the virtual screening

Compounda Classb Ref.c Compounda Classb Referencesc

Active compounds (tyrosinase inhibitors)
1 p-Nitrophenol +–+++++ A 27 Dithiothreitol +++++++ O

+++++–+ B +++++++
2 3-(3,4-Dihydroxyphenyl)-l-alanine +++++++ C 28 Azelaic acid –+–+++ P

+++++++ +++–+++
3 3-Amino-4-hydroxybenzoic acid +++++++ C 29 Undecandioic acid –+–+++ P

+++++++ +++++++
4 4-Amino-3-hydroxybenzoic acid +++++++ C 30 Suberic acid –+–+++ P

+++++++ +++–+++
5 3,4-Diaminobenzoic acid +++++++ C 31 Sebacic acid –+–+++ P

+++++++ +++++++
6 3-Aminobenzoic acid +++++++ C 32 Dodecandioic acid -+–+++ P

+++++++ +++++++
7 4-aminobenzoic acid +++++++ C 33 Tridecandioic acid –++–+++ P

+++++++ +++++++
8 4,6-O-hexahydroxy –++—+ D 34 Traumatic acid –++–+++ P

+++++++ +++++++
9 Tunicamycin +++–+++ E 35 Pantothenic acid +++–+++ K

+++++++ +++++++
10 Methyl p-coumarate +++++++ F 36 5-(hydroxymethyl)-2-furfural +++++++ Q

+++++++ +++–+++ R
11 o-Phenylphenol +++++++ F 37 Hinokitiol +++++++ S

+++++++ ++++–++
12 Phenylhydroquinone +++++++ F 38 Penicillamine +++–+++ T

+++++++ +++++++
13 Chamaecin +++++++ F 39 Toluic acid +++++++ A

+++++++ G +–+++++
14 Stearyl glycyrrhetinate +++++++ H 40 +++++++ U

+–+++++ +++++++
15 2-(4-Methylphenyl)-1,3-selenazol-4-one ++–+++– I 41 +++++++ U

——– J +++++++
16 ++–+++– I 42 3,5-dihydroxy-4¢-O-methoxystilbene +++++++ V

——– +++++++
17 ++++–+– I 43 p-Hydroxybenzoic acid +++++++ W

——+ +++++++
18 ++–+++– I 44 o-Hydroxybenzoic acid +++++++ W

——– +++++++
19 3-Flurotyrosine +++++++ K 45 Cysteine +++++++ X

+++++++ +++++++
20 N-acetyltyrosine —–+++ K 46 Methimazole ++++++– X

——+ –+—–
21 N-formyltyrosine +++++++ K 47 BMY-28438 +++++++ X

+++++++ +++++++
22 Gentisic acid +++++++ L 48 Captopril +++++++ Y

+++++++ +++–++–
23 6-BH4 ——– M 49 Yohimbine +–++++ Z

+–+—+ +++++++
24 7-BH4 ——– M 50 4-(phenylazo)phenol +++++++ a

+–+—+ +++++++
25 Propylparaben +++++++ N 51 SACat +++++++ a

+++–+++ +++++++
26 Phenylalanine +++++++ K 52 NPACat +++++++ a

+++++++ +++++++
53 DNPACat +–+++++ a 70 27 +++++++ d

+++++++ +++++++
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Table 6 Continued

Compounda Classb Ref.c Compounda Classb Referencesc

54 EDTA ——– b 71 28 +++++++ d
——– +++++++

55 Dodecyl gallate +++++++ c 72 29 +++++++ d
+++++++ +++–+++

56 Gallic acid +++++++ c 73 30 +++++++ d
+++++++ +++++++

57 (±)–flavanone ++–++++ d 74 31 +++++++ d
++++++– +++++++

58 (–)-Pinocembrin +++++++ d 75 32 +++++++ d
+++++++ +++++++

59 (±)-Naringenin +++++++ d 76 34 +++++++ d
+++++++ +++++++

60 (+)-Dihydromorin +++++++ d 77 35 +++++++ d
+++++++ +++++++

61 Flavone +++++++ d 78 36 +++++++ d
++++++– +++++++

62 Myricetin +++++++ d 79 37 +++++++ d
+++++++ +++++++

63 Artocarpin +++++++ d 80 38 +++++++ d
+++++++ +–+–+++

64 Artocarpesin +++++++ d 81 39 +++++++ d
+++++++ +++++++

65 Isoartocarpesin +++++++ d 82 40 +++++++ d
+++++++ +++—+

66 (-)-Angolensin +++++++ d 83 41 +++++++ d
+++++++ +++–++

67 Pinosylvin +++++++ d 84 2¢-O-feruloylaloesin +++++++ e
+++++++ +++++++

68 4-Prenyloxyresveratrol +++++++ d 85 Barbaloin +++++++ e
+++++++ +++++++

69 26 +++++++ d
+++++++

Inactive compounds
86 +++++– f 95 2-Formyl-5-methoxyfuran +++++++ I

–++++–+ ——–
87 ++–+++– f 96 5-Methyluracil ——– k

——+ ——–
88 —+— f 97 Uracil ——– k

——– ——–
89 Caffeine –+—– g 98 Thiourea ——– l

——– ——–
90 Trimethylresveratrol +—–+ h 99 Veratric acid methyl ester +++++++ m

+—–+ i +++++++
91 4-Aminoazobenzene-4¢-sulfonic acid ++++++– j 100 6-Nitroquipazine ——– n

+++++++ ——–
92 2-Methoxy-4-isopropyl benzaldehyde +++++++ G 101 4-Methoxybenzaldehyde-O-ethyloxime +–+–+ o

+–+—+ ——–
93 Petroselinic acid –++–+++ P 102 +++++++ o

+++++++ +++++++
94 Crocusatins F –+—– k 103 +++++++ o

+–+–+– +++++++
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reported with the new biological activity, also taken

into account that this kind of chemicals have well-

established methods of synthesis, as well as their

toxicological, pharmacodynamical and pharmaceutical

properties are well known.

Biosilico identification of novel tyrosinase

inhibitors and experimental corroboration

The entire algorithm describes in the above sections,

was make up with the main objective to explore the

possibilities of the current in silico approach for the

identification of hits from largely databases. In this

sense an in silico screening of novel compounds

looking for the biological activity concern to this work

was performed. To make this, a pool of compounds

never described in the literature as tyrosinase inhibi-

tors was chosen. Later the in silico essays were done

using all the models developed inside this report, to

find bioactive chemicals that present tyrosinase inhib-

itory activity.

Here, 24 tetraketones were evaluated with the

LDA-based QSAR models, and the in vitro assays of

the synthesized compounds were done to corroborate

the in silico predictions. The values of the posterior

classification probabilities (DP%) obtained with all

the equations for the data are shown in Table 7.

Hence here we can see that exits a good concordance

among the theoretical predictions and the experi-

mental results for all the organic-chemicals, and all

were active against the tyrosinase enzyme in the in

vitro assays. It is important to stand out that the

majority of compounds showed values of activity

higher than Kojic acid (standard tyrosinase inhibitor:

IC50 = 16.67 lM) with the exception of TK2
(IC50 = 26.63 lM), TK4 (IC50 = 16.99lM), TK7

(IC50 = 19.73lM) and TK19 (IC50 = 71.47 lM). By

other way, four chemicals TK10 (IC50 = 2.09 lM),

Table 6 Continued

Compounda Classb Ref.c Compounda Classb Referencesc

104 Phytyl-1-hexanoate –++–+++ p
+++++++

a The molecular structures of these tyrosinase inhibitors is given as Supporting Information (see Table 11)
b Results of the classification of compounds in this set: (i) Above, classification of each compounds using the obtained models with
non-stochastic bond-based linear indices in the following order: Eqs. 20, 21, 22, 23, 24, 25 and 32; and (ii) Below; classification of each
compounds using the obtained models with stochastic bond-based linear indices in the following order Eqs. 26, 27, 28, 29, 30, 31 and 33
c References taken from the literature: ABubacco, L.; van Gastel, M.; Groenen, E. J. J.; Vijgenboom, E.; Canters, G.W. J. Biol. Chem.
2003, 278, 7381–7389. Bvan Gastela, M.; Bubaccob, L.; Groenena, E. J. J.; Vijgenboomc, E.; Cantersc, G. W. FEBS Lett. 2000, 474, 228–
232. CGasowskaa, B.; Kafarskia, P.; Wojtasek, H. Biochim. Biophys. Acta. 2004, 1673, 170–177. Dhttp://open.cacb.org.tw/index.php
(2005-03-03 09:09:51). ETakahashi, H.; Parsons, P. G. J. Invest. Dermatol. 1992, 98, 481–487. FKubo, I.; Niheia, K.; Tsujimoto, K.
Bioorg. Med. Chem. 2004, 12, 5349–5354. GNihei, K-I.; Yamagiwa, Y.; Kamikawab, T.; Kubo, I. Bioorg. Med. Chem Lett. 2004, 14, 681–
683. HUm, S-J.; Park, M-S.; Park, S-H.; Han, H-S.; Kwonb, Y-J.; Sin, H-S. Bioorg. Med. Chem. 2003, 11, 5345–5352. IBarlocco, D.;
Barrett, D.; Edwards, P.; Langston, S.; Pérez-Pérez, M. J.; Walker, M.; Weidner, J.; Westwell, A. Drug Disc. Today. 2003, 8, 372–373.
JKoketsu, M.; Choi, S.Y.; Ishihara, H.; Lim B. O.; Kim, H.; Kim, S., Y. Chem. Pharm. Bull. (Tokyo). 2002, 12, 1594–1596. http://
www.thecosmeticsite.com/formulating/959621.htlm (April-00). LCurto, E. V.; Kwong, C.; Hermersdorfer, H.; Glatt, H.; Santis, C.;
Virador, V.; Hearing, V. J.; Dooley, T. P. Biochem. Pharmacol. 1999, 57, 663–672. MWood, J. M.; Schallreuter-Wood, K. U.; Lindsey,
N. J.; Callaghan, S.; Gardner, M. L.G. Biochem. Biophys. Res. Commun. 1995, 206, 480–485. NHori, I.; Nihei, K-I.; Kubo, I. Phytother.
Res. 2004, 18, 475–479. ONaish-Byfield, S.; Cooksey, C. J.; Riley, P. A. Biochem. J. 1994, 304, 155–162. PNazzaro-Porro, M.; Passi, S. J.
Invest. Dermatol. 1978, 71, 205–208. QSharma, V. K.; Choi, J.; Sharma, N.; Choi, M.; Seo, S-Y. Phytotherapy Res. 2004, 18, 841–844.
RKang, H. S.; Choi, J. H.; Cho, W. K.; Park, J. C.; Choi, J. S. Arch Pharm Res. 2004, 7, 742–750. SSakuma, K.; Ogawa, M.; Sugibayashi,
K.; Yamada, K.; Yamamoto, K. Arch Pharm Res. 1999, 4, 335–339. TLovstad, R. A. Biochem. Pharmacol. 1976, 25, 533–535. UKubo, I.;
Kinst-Hori, I.; Yokokawa, Y. J. Nat. Prod. 1994, 57, 545–551. VRegev-Shoshani, G.; Shoseyov, O.; Bilkis, I.; Kerem, Z. Biochem. J.
2003, 374, 157–163. WBernard, P.; Berthon, J-Y. Int. J. Cosmetic Sci. 2000, 22, 219-226. XImada, C.; Sugimoto, Y.; Makimura, T.;
Kobayashi, T.; Hamada, N.; Watanabe, E. Fish. Sci. 2001, 67, 1151–1156. YEspı́n, J. C.; Wichers, H. J. Biochim. Biophys. Acta. 2001,
1544, 289–300. ZFuller, B. B.; Drake, M. A.; Spaulding, D. T.; Chaudry, F. J. Invest. Dermatol. 2000, 114, 2680–276. aBorojerdi, S. S.;
Haghbeen, K.; Karkhane, A. A.; Fazli, M.; Sabouryc, A. A. Biochem. Biophys. Res. Commun. 2004, 314, 925–930. bKong, K-H.; Hong,
M-P.; Choi, S-S.; Kim, Y-T.; Cho, S-H. Biotechnol. Appl. Biochem. 2000, 31, 113–118. cKubo, I.; Chen, Q-X.; Nihei, K-I. Food Chem.
2003, 81, 241–247. dShimizu, K.; Kondo, R.; Sakai, K. Planta Medica. 2000, 66, 11–15. eYagi, A.; Kanbara, T.; Morinobu, N. Planta
Medica. 1987, 515–517. fShiino, M.; Watanabe, Y.; Umezawa, K. Bioorg. Med. Chem. 2001, 9, 1233–1240. gNo, J. K.; Soung, D. Y.; Kim,
Y. J.; Shim, K. H.; Jun, Y. S.; Rhee, S. H.; Yokozawa, T.; Chung, H. Y. Life Sci, 1999, 65, 241–246. hShin, N-H., Ryu, S.; Choi, Y. E. J.;
Kang, S-H.; Chang, I-M.; Min, K. R.; Kim, Y. Biochem. Biophys. Res. Commun. 1998, 243, 801–803. iKim, Y. M.; Yun, J.; Lee, C-K.;
Lee, H.; Min, K. R.; Kim, Y. J. Biol. Chem. 2002, 277, 16340–16344. jKomori, K.; Yatagai, K.; Tatsuma, T. J. Biotechnol. 2004, 108, 11–
16. kLi, C-Y.; Wu, T-S. J. Nat. Prod. 2002, 65, 1452-1456. lGilly, R.; Mara, D.; Oded, S.; Zohar, K. J. Agric. Food Chem. 2001, 49, 1479–
1485. mMiyazawa, M.; Oshima, T.; Koshio, K.; Itsuzaki, Y.; Anzai, J. J. Agric. Food Chem. 2003, 51, 6953-6956. nMcEwan, M.; Garsons,
P. G. J. Invest. Dermatol. 1990, 89, 82-86. oLey, J. P.; Bertram, H-J. Bioorg. Med. Chem. 2001, 9, 1879–1885. pŞabudak, T.; Khan, M. T.
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TK11 (IC50 = 2.61 lM), TK21 (IC50 = 2.06 lM),

TK23 (IC50 = 3.19 lM), exhibited more potent activ-

ity compared with L-mimosine (IC50 = 3.68 lM) a

reference drug. In Table 8 are depicted the molecular

structures of these tetraketones and the rest used in

this study.

Table 7 Results of ligand-based in silico screening and tyrosinase inhibitory activities of new tetraketones

Com-
pound*

DP%a Scoresa DP%b Scoresb DP%c Scoresc DP%d Scoresd DP%e Scorese DP%f Scoresf DP%g Scoresg IC50
h

(lM)

TK1 10.55 –0.93 33.34 –0.56 –90.36 1.12 38.82 0.79 55.72 –0.48 54.98 –1.24 54.79 –0.84 6.55
69.36 1.17 53.11 –1.38 32.38 0.49 68.82 1.16 23.00 –0.49 49.88 –0.83 20.45 0.39

TK2 31.76 –1.39 47.50 –0.73 –74.91 0.65 44.82 0.96 78.49 –0.95 76.45 –1.33 82.68 –1.34 26.63
80.32 1.44 67.27 –1.76 65.16 0.94 75.34 1.32 46.12 –0.76 64.91 –1.07 61.12 0.84

TK3 57.51 –1.43 70.86 –1.11 –33.51 0.08 54.98 1.20 91.92 –1.52 89.28 –1.43 93.69 –1.81 12.31
90.83 1.88 81.98 –1.71 84.10 1.40 83.80 1.58 74.18 –1.21 81.96 –1.46 88.77 1.47

TK4 60.24 –0.48 67.74 –1.05 –53.03 0.30 60.76 1.19 83.15 –1.19 82.19 –1.15 88.76 –1.55 16.99
86.30 1.65 80.36 –0.71 65.81 0.95 78.84 1.41 46.24 –0.76 64.63 –1.06 63.96 0.89

TK5 –25.84 –1.06 0.10 –0.21 –89.43 1.08 –6.73 0.68 47.93 –0.50 40.24 –0.89 74.10 –1.14 11.77
47.75 0.82 20.29 –1.29 13.99 0.29 32.56 0.59 7.01 –0.32 29.11 –0.58 30.22 0.49

TK6 40.97 –1.04 41.10 –0.65 –82.24 0.82 56.92 1.02 65.66 –0.78 67.06 –1.09 71.08 –1.09 4.83
68.90 1.16 62.30 –1.38 32.81 0.50 67.19 1.13 12.91 –0.38 40.80 –0.72 13.07 0.33

TK7 37.33 –1.90 47.12 –0.73 –83.39 0.86 52.66 0.94 58.66 –0.63 61.93 –1.04 69.63 –1.06 19.73
74.69 1.29 67.26 –1.90 39.31 0.57 71.41 1.22 30.32 –0.57 51.86 –0.86 20.22 0.39

TK8 –24.98 –0.43 –28.18 0.08 –93.28 1.29 20.11 0.84 31.04 –0.43 23.21 –0.99 78.75 –1.24 4.80
74.56 1.29 60.52 –1.29 1.38 0.16 72.00 1.23 10.76 –0.36 9.83 –0.37 29.92 0.48

TK9 –24.98 –1.04 –27.37 0.07 –93.46 1.30 18.63 0.82 30.23 –0.40 23.87 –0.99 79.05 –1.25 6.77
76.54 1.34 62.61 –1.48 5.66 0.21 74.10 1.28 15.03 –0.41 14.98 –0.42 29.87 0.48

TK10 42.78 –0.38 58.77 –0.89 –77.13 0.69 48.29 0.99 80.41 –0.97 78.40 –1.33 75.89 –1.18 2.09
80.61 1.45 71.61 –0.49 64.72 0.93 76.04 1.33 46.53 –0.76 67.73 –1.12 44.42 0.64

TK11 41.85 –1.40 97.66 –2.46 –47.49 0.23 67.00 1.09 77.99 –1.22 92.82 –1.82 77.93 –1.22 2.61
73.79 1.27 60.16 –1.50 62.88 0.90 93.29 2.11 73.00 –1.19 93.07 –1.99 62.94 0.87

TK12 58.44 –1.90 98.33 –2.63 0.43 –0.24 70.84 1.26 90.06 –1.69 96.64 –1.91 92.26 –1.72 4.13
83.49 1.55 72.70 –1.83 82.63 1.35 94.81 2.26 82.82 –1.44 95.44 –2.21 84.61 1.32

TK13 77.69 –0.95 99.09 –2.95 36.69 –0.59 80.32 1.49 92.34 –1.94 97.53 –1.73 95.07 –1.92 14.58
88.53 1.75 83.81 –0.82 82.10 1.33 95.49 2.34 82.22 –1.42 95.23 –2.18 85.75 1.36

TK14 7.60 –1.52 95.38 –2.11 –43.62 0.19 32.29 0.98 73.55 –1.25 89.64 –1.47 88.12 –1.52 9.06
54.86 0.92 30.29 –1.41 47.19 0.67 82.02 1.52 62.59 –0.99 88.27 –1.70 68.57 0.96

TK15 65.00 –1.51 98.04 –2.55 –18.69 –0.07 78.10 1.31 83.48 –1.52 95.07 –1.67 86.60 –1.46 3.70
73.77 1.27 68.49 –1.45 63.03 0.90 92.85 2.07 67.32 –1.08 91.24 –1.86 58.07 0.80

TK16 65.07 –1.50 98.12 –2.57 –19.52 –0.06 77.06 1.29 83.20 –1.49 95.11 –1.68 86.78 –1.47 12.82
75.57 1.31 70.33 –1.50 65.71 0.95 93.39 2.12 68.88 –1.10 91.85 –1.90 57.34 0.79

TK17 62.54 –0.90 98.31 –2.63 –21.99 –0.04 75.65 1.24 79.84 –1.38 94.16 –1.62 85.87 –1.44 15.36
78.45 1.39 72.54 –1.38 66.83 0.97 93.72 2.15 75.09 –1.23 93.01 –1.98 62.32 0.86

TK18 8.48 –0.89 91.89 –1.82 –60.69 0.40 54.09 1.14 62.79 –1.17 85.20 –1.57 90.39 –1.62 6.59
78.56 1.39 66.97 –1.42 37.89 0.55 93.97 2.17 65.81 –1.05 83.43 –1.51 68.54 0.96

TK19 8.50 –1.52 92.03 –1.82 –61.56 0.42 53.02 1.12 62.30 –1.14 85.40 –1.57 90.54 –1.63 71.47
80.49 1.45 68.96 –1.55 41.58 0.60 94.52 2.23 67.95 –1.09 84.83 –1.56 68.58 0.96

TK20 66.56 –1.51 98.64 –2.74 –4.07 –0.20 74.46 1.31 91.23 –1.75 96.95 –1.90 88.87 –1.55 4.01
82.39 1.51 74.73 –1.59 81.85 1.32 94.86 2.26 82.89 –1.45 95.75 –2.25 76.97 1.12

TK21 66.26 –0.93 98.78 –2.79 –4.82 –0.20 73.00 1.29 91.01 –1.72 96.94 –1.91 89.00 –1.56 2.06
83.58 1.55 76.30 –1.02 82.44 1.34 94.93 2.27 83.01 –1.45 95.88 –2.26 76.46 1.11

TK22 5.03 –1.03 92.43 –1.85 –68.79 0.53 32.01 0.84 63.10 –1.21 81.04 –1.18 16.32 –0.45 13.40
53.07 0.89 45.36 –0.96 52.88 0.75 80.67 1.47 64.24 –1.02 89.76 –1.78 11.07 0.31

TK23 26.30 –0.81 96.34 –2.23 –68.06 0.52 65.77 1.20 79.24 –1.29 93.26 –1.94 65.97 –1.00 3.19
58.13 0.97 40.61 –0.46 36.66 0.54 86.45 1.69 42.84 –0.71 84.54 –1.55 18.29 0.37

TK24 –6.80 0.00 90.18 –1.71 –77.75 0.71 63.17 1.11 76.58 –1.23 92.04 –1.95 63.17 –0.96 12.68
7.57 0.34 –1.59 0.00 13.04 0.28 73.74 1.28 39.38 –0.67 82.72 –1.49 –56.33 –0.36

* The molecular structures of these chemicals are shown in Table 8
a,b,c,d,e,f,g DP% ¼ ½P(Active)� P(Inactive)� � 100 as well as canonical scores of each compound in this set: (i) Above in bold, classi-
fication of each compound using the obtained models with non-stochastic bond-based bilinear indices in the following order: Eqs. 20,
21, 22, 23, 24, 25 and 32; and (ii) Below in italic; classification of each compound using the obtained models with stochastic bond-based
bilinear indices in the following order: Eqs. 26, 27, 28, 29, 30, 31 and 33
h IC50 are the 50% inhibitory concentrations against the enzyme tyrosinase
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Table 8 Molecular structure of the new tetraketones

YO O

OO
X

X X

X

Compound X Y IC50(lM) Compound X Y IC50(lM)

TK1 –H 6.55 TK13 –CH3

HO

O 14.58

TK2 –H

HO

26.63 TK14 –CH3

HO

O 9.06

TK3 –H

HO

HO 12.31 TK15 –CH3

O

3.70

TK4 –H

HO

O 16.99 TK16 –CH3 O 12.82

TK5 –H

HO

O 11.77 TK17 –CH3

O

15.36

TK6 –H

O

4.83 TK18 –CH3

O2N

6.59

TK7 –H

O

19.73 TK19 –CH3

O2N

71.47

TK8 –H

O2N

4.80 TK20 –CH3

H2N

4.01

TK9 –H

O2N

6.77 TK21 –CH3 H2N 2.06

TK10 –H H2N 2.09 TK22 –CH3

N

13.40

TK11 –CH3 2.61 TK23 –CH3 Cl 3.19

TK12 –CH3

HO

4.13 TK24 –CH3 Br 12.68
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As a final point, a hierarchical cluster analysis was

performed for all the active compounds of the training,

test, virtual screening and the new tetraketones

(Fig. 8). The aim of this k-NNCA was compared if

there was any similarity between the novel bioactive

chemicals and some subsystems in the rest of the active

database. After an exhaustive analysis to each cluster,

we observed that these tetraketones were distributed in

many clusters, which is reasonable because this class of

compounds don’t have common structural features

with none of the compounds in the active database.

Therefore, they can be selected to make a structural

optimization with the objective to find a more potent

tyrosinase inhibitory activity, and afterward a complete

study of ADMET properties should be carried out to

entering these organic-chemicals discovered into the

pipeline of the drug market development.

Summary and outlook

Many studies in the area of tyrosinase inhibitory

activity are involved to finding novel inhibitors from

different sources, due to its wide applications as food

additives, depigmentation agents, in the treatment of

melanogenesis disorders, to control insect pests and so

on. The interest of pharmaceutical, cosmetic, and

agricultural sciences in this kind of chemicals is re-

ferred to its broad spectrum of applications, and wide

distribution through all the phylogenetic scale.

The advent of virtual High Through Screening

(vHTS) encompassing in silico techniques in the drug

discovery, are solutions that enable research to pro-

ceed faster and more efficiently. These new algorithms

starting from the convergence of information technol-

ogy and drug discovery, can be useful to resolve the

question of accelerate the pace of drug discovery in the

identification of higher quality compounds. Neverthe-

less, in this case, the process of searching of new

tyrosinase inhibitor compounds until now is through

trial-error traditional methods [84, 85].

Taken all these into consideration, we made use of

the non-stochastic and stochastic bond-based bilinear

indices, a new set of MDs, together with pattern rec-

ognition techniques to discriminate active compounds

from inactive ones. QSAR models found here were

used in a virtual screening to arising from the in silico

to ‘real’ world applications. Besides, is reported the

biosilico identification of a novel tetraketone family as

tyrosinase inhibitors using the new molecular finger-

prints. The experimental in vitro assays were also

carried out to prove the usefulness of the TOMO-

COMD-CARDD descriptors for the rational design of

new bioactive agents.

These kinds of works are in the light of new chal-

lenges for the pharmaceutical industries because a

research in modern drug discovery needs training and

experience in multiple life science domain areas as

well as in computer science [86]. Finally, the present

report could permit us to look forward to many

exciting new insights in the field of tyrosinase inhibi-

tor compounds research for the treatment of hyper-

pigmentation and melanogenesis disorders in the

years ahead.

Supporting information available

The complete list of compounds used in training and

prediction sets, as well as their structures, posterior

classification and scores according to LDA-based

QSAR models, chemistry and data analysis of the
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Fig. 7 A dendrogram illustrating the results of the hierarchical
k-NNCA of the set of active/inactive chemicals used for
evaluating the predictive ability of the QSAR models for
ligand-based virtual screening
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Fig. 8 A dendrogram illustrating the results of the hierarchical
k-NNCA of the set of all active chemicals (tyrosinase inhibitors)
included in training, test, virtual screening and new active
tetraketones discovery in the present work
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obtained chemicals is available free of charge via

Internet at ...
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22. Trinajstić N (1983) Chemical graph theory. CRC Press, Boca
Raton FL

23. Estrada E (1995) J Chem Inf Comput Sci 35:31
24. Estrada E, Ramirez A (1996) J Chem Inf Comput Sci 36:837
25. Estrada E (1996) J Chem Inf Comput Sci 36:844
26. Estrada E, Guevara N, Gutman I (1998) J Chem Inf Comput

Sci 38:428
27. Estrada E (1999) J Chem Inf Comput Sci 39:1042
28. Estrada E, Molina E (2001) J Mol Graph Model 20:54
29. Todeschini R, Consonni V (2000) Handbook of molecular

descriptors. Wiley-VCH, Germany
30. Ivanciuc O, Balaban AT (1999) In: Devillers J, Balaban AT

(eds) Topological indices and related descriptors in QSAR
and QSPR. Gordon and Breach, The Netherlands, 73 p

31. Edwards CH, Penney DE (1988) Elementary linear algebra.
Prentice-Hall, Englewood Cliffs, New Jersey, USA

32. Marrero-Ponce Y (2004) Bioorg Med Chem 12:6351
33. Marrero-Ponce Y, Castillo-Garit JA, Olazabal E, Serrano
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