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Abstract This paper describes the extension of our

earlier multiobjective method for generating plausible

pharmacophore hypotheses to incorporate partial

matches. Diverse sets of molecules rarely adopt exactly

the same binding mode, and so allowing the identifi-

cation of partial matches allows our program to be

applied to larger and more diverse datasets. The

method explores the conformational space of a series

of ligands simultaneously with their alignment using a

multiobjective genetic algorithm (MOGA). The prin-

ciples of Pareto ranking are used to evolve a diverse set

of pharmacophore hypotheses that are optimised on

conformational energy of the ligands, the goodness of

the overlay and the volume of the overlay. A partial

match is defined as a pharmacophoric feature that is

present in at least two, but not all, of the ligands in the

set. The number of ligands that map to a given phar-

macophore point is taken into account when evaluating

an overlay. The method is applied to a number of test

cases extracted from the Protein Data Bank (PDB)

where the true overlay is known.

Keywords Pharmacophore � Molecular alignment �
MOGA � Multiobjective optimisation � Multiobjective

genetic algorithm � Partial matches

Introduction

A pharmacophore describes the spatial arrangement of

chemical features required for a small molecule to bind

to a receptor. Pharmacophore identification methods

are usually applied to a series of molecules known to

bind to a receptor, when the three-dimensional struc-

ture of the receptor is unknown. The first generation of

pharmacophore identification programs have been

around for more than a decade [1–4]. However,

recently some of the limitations of these early methods

have been highlighted [5, 6] and several new

approaches are now beginning to appear that address

some of these limitations [7–10].

Pharmacophore identification involves identifying

common pharmacophoric features within the mole-

cules, that is, atoms or functional groups that can

interact with a receptor in a similar way, and then

aligning the bioactive conformations of the mole-

cules such that their corresponding features are

overlaid. The bioactive conformations of the mole-

cules are not usually known and so some form of

conformational analysis is usually carried out. For

many datasets, there are numerous plausible ways of

overlaying the molecules, due to the presence of

multiple features within the molecules and due to

the multiple accessible conformers that may exist for

each molecule. In such cases, it is important that the

chemist is presented with a range of alternative

hypotheses that can be validated further, for example,
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by database searching or by the synthesis of new

compounds.

The quality of a pharmacophore hypothesis is usually

judged on a number of criteria. For example, the GASP

program [2] evaluates a pharmacophore on the number

of pharmacophoric points it consists of, the quality of the

mapping of each molecule onto the pharmacophore

(which includes consideration of site points together

with their associated heavy atoms), the common volume

of the overlaid molecules and their conformational en-

ergy. GASP is based on a traditional optimisation

technique in which the multiple criteria are combined

into a single weighted-sum fitness function. Specifically,

the fitness function in GASP combines three compo-

nents that take account of the feature alignment, the

volume overlap and the conformational energy. This

approach reduces the problem to a single-objective

optimisation problem that can be handled by a single-

objective optimisation method, such as the genetic

algorithm (GA) in GASP.

There are, however, a number of limitations with

traditional optimisation methods. Typically the objec-

tives are in competition with one another so that a

better alignment (as measured by the volume score, for

example) can be achieved by conformers that are

strained away from their minimum energy conforma-

tions. Thus, a trade-off usually exists in the criteria to

be optimised. In the traditional approach, this is han-

dled through the use of relative weights which deter-

mine the relative importance given to the individual

objectives and the particular compromise solution that

is sought. However, it can be difficult to assign

appropriate weights, especially when the criteria are

non-commensurate, as is the case here. Default weights

in GASP were defined empirically by analysing a rel-

atively small number of test cases. However, there is no

reason to assume that a set of weights that is relevant

for one particular test case will also be relevant for

another. Furthermore, the result of a single-objective

optimisation is a single solution that maximises (or

minimises) the function, yet in the absence of the

receptor itself, it is unlikely to be possible to predict

unambiguously how to overlay a series of ligands

known to bind to the receptor.

In a previous study, we have explored the use of a

multiobjective optimisation method which aims to find

a diverse set of pharmacophore hypotheses that are all

plausible for a given set of ligands [9]. The algorithm

explores the conformational space of the ligands

simultaneously with their alignment. The same objec-

tives as in GASP are calculated, but they are treated

independently without the need to define relative

weights. The method is based on the Pareto principles

of multiobjective optimisation [11, 12]. According to

these principles, a solution is defined as Pareto-optimal

if none of the individual objectives can be improved

without worsening another objective. A representative

set of such solutions can then be extracted, chosen so

that they include a diverse range of individual objective

values and molecular alignments. Our method was

shown to be successful in identifying hypotheses that

are very similar to previously published hypotheses, for

test cases where the best solution identified by the

weighted-sum method in GASP was incorrect. To our

knowledge, Pareto ranking was first applied in the field

of Chemoinformatics by Handschuh et al. for the

flexible superposition of 3D structures [13]. The dif-

ferences between this first approach and our work are

described in our previous paper. More recently multi-

objective optimisation methods have also been applied

to combinatorial library design [14], derivation of

quantitative structure activity relationships [15] and to

the de novo design of molecules [16]. Multiobjective

optimisation techniques have also been applied to

pharmacophore identification in the GALAHAD

program; the full details of this method are not yet

published; however, the underlying approach appears

to be quite different to that described here [10].

In our previous work [9] we were able to demon-

strate the benefits of the multiobjective optimisation

approach over a traditional GA, however, we also

highlighted a limitation in the method which also ap-

plies to GASP. This is the restriction that each phar-

macophore point generated must be mapped to a

feature in every ligand. This effectively limits both

programs to handling very small numbers of carefully

chosen compounds [5]. In this paper, we build on the

previous work by increasing the functionality of the

multiobjective optimisation approach to allow partial

matches to be identified for a series of ligands. Other

programs exist that can find overlays involving partial

feature matches (e.g. Catalyst HipHop [17]), but we

believe our algorithm to be a novel method of incor-

porating partial matching into a multiobjective phar-

macophore search program. The result is to widen the

search so that solutions containing partial matches are

automatically considered alongside more restricted

solutions, with no necessity for any user input.

Implementation of partial matches has required

significant changes to be made to the chromosome

representation, the alignment method and to the fea-

ture score so that full matches are distinguished from

partial matches. Allowing partial matches to be iden-

tified increases the search space to be explored signif-

icantly and so we have introduced the use of distance

constraints which can be used to improve both the
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efficiency and the effectiveness of the algorithm. We

have also extended the definition of hydrophobes to

include aliphatic rings and to allow user-defined

hydrophobic features. Taken together, these enhance-

ments allow increased numbers of more diverse mol-

ecules to be handled. The method has been applied to

sets of ligands extracted from the Protein Data Bank

(PDB) [18] where the true pharmacophores are

known. Examples have been chosen where partial

matches are known to exist and the new methodology

is validated on the ability of the multiobjective genetic

algorithm (MOGA) to identify ligand overlays that are

close to those obtained by least-squares superposition

of the corresponding experimental protein–ligand

structures. However, it should be noted that in all cases

a range of different hypotheses are found.

Method

We have extended the MOGA described previously [9]

to allow the pharmacophore hypotheses identified to

include partial matches. A partial match is defined as a

pharmacophoric feature that is present in at least two,

but not all, of the ligands in the set. The algorithm is

described in detail below, with particular emphasis

given to the new methodology.

The ligands are input to the program as energy

minimised conformations. The first step is to identify

the pharmacophoric features within each ligand. Do-

nor and acceptor features are defined as in GASP,

however, the definition of a hydrophobe has been ex-

tended to include aliphatic rings and user-defined

groups, in addition to the aromatic rings defined pre-

viously. Each hydrophobic ring is represented by a

virtual point created at the centre of the ring and a

normal to the ring. A user-defined hydrophobe, such as

a t-butyl group, is specified as a list of atoms and a

virtual point is created at the centroid of the atoms.

Donors and acceptors are represented by virtual points

that correspond to the hypothetical positions of ac-

ceptors or donors in the receptor binding site. Thus, a

virtual point is created at 2.9 Å from the heavy atom

attached to each hydrogen-bond donor proton and at

2.9 Å from the heavy atom associated with each

acceptor lone pair.

Encoding conformation

The chromosome consists of a conformational part and

a mapping part which is described below. The confor-

mational part consists of a set of N strings to represent

the conformation of each of the N ligands. Each

rotatable bond in each ligand is encoded as an 8-bit

number, which gives a resolution of about 1.4�. This

encoding of conformation is unchanged from our

previous work [9].

Encoding partial mappings

The mapping part of the chromosome has been mod-

ified substantially from that described previously [9] to

encode both full and partial mappings in a mapping

table. The mapping table consists of one row per

molecule with each column representing a potential

pharmacophore point of a particular type. The cells in

a column represent the features in each molecule that

are mapped to the corresponding pharmacophore

point. The number of columns of each feature type is

user-defined and need not be larger than the maximum

number of features of that type in any molecule in the

set. If set to a smaller value, the search space is

reduced—making it more tractable—but there is a risk

that the reduced search space might not contain the

true solution. Partial mappings are encoded through

the use of dummy features which are added to the real

features in each molecule. Like real features, they are

of a specific type, i.e. donor, acceptor or hydrophobe.

Each cell of the mapping table may contain either a

real or a dummy feature of the relevant molecule.

Thus, the number of molecules which have a real fea-

ture contained within a given column may vary be-

tween zero and the number of molecules in the dataset.

A mapping column that contains real features in fewer

than two molecules has no physical significance. Thus,

the number of real mappings may vary depending on

how many columns contain real features in at least two

molecules.

A mapping table is illustrated in Fig. 1 for a hypo-

thetical set of molecules that bind at the same (hypo-

thetical) site but form different and overlapping sets of

interactions. The most plausible way of overlaying the

molecules is shown and a hypothetical chromosome

that would lead to this alignment is shown in Table 1.

Note that only the mapping part of the chromosome is

shown; it is assumed that the conformational part

contains appropriate torsion angles. The chromosome

refers to the features of each molecule using the labels

assigned to them in Fig. 1.

There are three mapping columns for each feature

type. The first donor column represents a donor

formed by H1 in molecule 1 and H1 in molecule 2.

Molecules 3 and 4 do not have features that map to this

pharmacophore point, as represented by the dummy

features. The second donor column represents a donor

that is mapped to a feature in every molecule
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(specifically H2 in 1, H2 in 2, H1 in 3 and H1 in 4). The

third donor column is not mapped to a real feature in

any of the molecules and hence does not represent a

pharmacophore point.

The population of chromosomes is initialised by

making random assignments of molecule features (real

and dummy) in the mapping table and by assigning

torsion angles at random. The genetic operators of

crossover and mutation are applied to the chromo-

somes in order to generate child chromosomes. Dum-

my features are treated in the same way as real features

by the genetic operators; however, they are not used in

the alignment procedure which is described below.

Generating an alignment

The information encoded in the chromosome is used

to generate an alignment of the molecules prior to

evaluation of the fitness of the chromosome. First, a

conformation is generated for each molecule by

applying the appropriate bond rotations encoded in

the conformation part of the chromosome. The

alignment is then built incrementally using the

mapping table and a ‘‘framework’’ method that is

similar to that described by Sutcliffe et al. for the

alignment of protein sequences [19] but has been

adapted to allow for partial mappings. Consider a

mapping table consisting of n rows (molecules) and

m columns (potential pharmacophore features).

Molecule k, represented in the mapping table by a

row consisting of m features, Pk1 to Pkm, (each of

which may represent a real feature or a dummy), is

fitted to a framework which has been derived from

the mappings of molecules 1,...,k – 1. In the descrip-

tion below, framework kF refers to the framework

that has been derived from molecules 1,...,k. The

framework data structure consists of m points, each

related to one of the mapping columns in the chro-

mosome. Each point represents a potential pharma-

cophore point, derived from real features in the

related mapping column, or it may be null, if the

column consists entirely of dummy features for mol-

ecules 1,...,k. The point in kF related to mapping

column a shall be denoted kFa.
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Fig. 1 An overlay of
hypothetical molecules 1–4
that corresponds to the
mapping shown in Table 1. 1
is white, 2 is blue, 3 is brown
and 4 is green. The donors are
shown in purple and
acceptors in orange. The
hydrophobic groups are not
highlighted to ease distinction
of the molecules

Table 1 A mapping table that leads to the overlay in Fig. 1

Donors (H) Acceptors (LP) Hydrophobes

Molecule 1 1 2 Du 1 2 Du 1 Du Du

Molecule 2 1 2 Du 1 Du Du 1 Du 2

Molecule 3 Du 1 Du 1 2 Du 1 2 Du

Molecule 4 Du 1 Du 1 2 Du 1 2 Du

The number of columns of each type is user-defined. The integers in the columns refer to the subscript labels used to identify donors
and acceptors and to the ring labels used to identify the hydrophobes. ‘‘Du’’ indicates a dummy feature. Dark shading indicates
mappings involving all molecules. Light shaded columns indicate partial mappings and the unshaded columns involve fewer than two
molecules and do not represent real mappings
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The framework is initialised with the first molecule.

For each mapping column a that maps to a real feature in

molecule 1, 1Fa is set to the co-ordinates of feature P1a.

For each column that maps to a dummy feature, 1Fa is a

null point. Then, for each subsequent molecule i, where

1\i � n, framework iF is calculated by least-squares

fitting of molecule i to framework i–1F as follows.

For each mapping a:

(i) If i–1Fa is null and Pia is a dummy feature, iFa is

null.

(ii) If i–1Fa is non-null and Pia is a dummy feature, iFa

is set equal to i–1Fa.

(iii) If i–1Fa is null and Pia is a real feature, iFa is set

equal to the co-ordinates of Pia.

(iv) If i–1Fa is non-null and Pia is a real feature, iFa

becomes the weighted centroid of i–1Fa and the

co-ordinates of Pia. The calculation is weighted

towards i–1Fa in the ratio r(i–1Fa):1 where r(i–1Fa)

is the number of real features which mapping a

maps in molecules 1,...,i–1, i.e. the number of

points from which i–1Fa was derived.

Only in case (iv) does mapping a represent an actual

mapping between molecule i and the preceding mole-

cules. Therefore the least-squares fitting between

framework i–1F and molecule i is restricted to the

mappings falling into case (iv) and it can only be

performed if the mapping involves at least three points.

Any chromosome which does not contain at least three

real mappings in every molecule is rejected. The least-

squares fitting is based on the Kabsch algorithm [20].

The sequential alignment of the molecules to a com-

mon framework results in the framework being adjusted

at each step to reflect all the molecules incorporated thus

far. However, the alignment that is generated is depen-

dent on the order in which the molecules are specified in

the configuration file. Specifically, while the mapping of

molecule k does influence the alignment of any molecule

l, where l > k, it cannot influence the alignment of

molecules i and j relative to each other, where i, j < k. In

Sutcliffe’s approach, a particular molecule is chosen at

random for the initial alignment; however, the bias

caused by this is minimised by iteratively refining the

alignment until the variation in the framework from one

iteration to the next is less than a specified threshold.

This has not been implemented here and development

of an order-independent method is currently being

investigated.

Fitness calculation

Once an alignment has been generated, it is then

possible to calculate the objective scores for the

solution. Our method uses three objectives: a feature

objective, a volume objective, and an energy objective.

The feature score is based on that implemented

previously but has been adapted here to reflect partial

mappings in the pharmacophore. Thus, it takes into

account the number of pharmacophoric points, the

number of molecules that are mapped to each phar-

macophore point and the quality of the overlay. Firstly,

a pharmacophore point only contributes to the score if

the mapped features are overlaid sufficiently closely.

Thus, even though a set of features may be mapped in

the chromosome, if it is not possible to overlay them

closely they do not contribute to the feature score. For

each valid pharmacophore point, a score that is a

function of the RMSD between the features involved

in the mapping and their centroid is calculated. This

score takes into account the overlay of both the heavy

atoms and the virtual points for hydrogen-bonding

features, and both the overlay of the ring centroids and

the alignment of the ring normals for the hydrophobic

features, as described in Jones et al. [2] Hence, phar-

macophore points that are formed from closely aligned

features make a larger contribution to the features

score than ones resulting from features that are poorly

aligned. A weighting factor of 2m–n is then applied,

where there are m molecules in the mapping and n is

the number of molecules in the dataset. Thus, a map-

ping that excludes one molecule from a set of four

would have a weight of 1/2, a mapping that excludes

two molecules would have a weight of 1/4, and so on.

Thus, more weight is given to features that are com-

mon to the entire dataset and which are therefore less

likely to have arisen by chance, than to features which

are found in only a subset of the dataset. Furthermore,

the weighting scheme ensures that a mapping involving

all of the molecules scores more highly than two

mappings which each consist of a subset of the mole-

cules, assuming that the qualities of the alignments are

similar.

The volume and energy scores are calculated as de-

scribed previously and are described here in brief. The

volume objective score is defined as the mean overlap

between the first molecule and each of the other mol-

ecules. Each atom is considered as a hard sphere whose

radius is the van der Waals radius for the atom type as

defined in the Tripos 5.2 force field. The volume

overlap between two molecules is a sum of the hard-

sphere overlap for each pair of atoms between the two

molecules, and is calculated using a simple geometric

formula. As for the alignment procedure, the volume

score is biased by the order in which the molecules are

specified. The energy score is the mean of the internal

van der Waals energy calculated for each molecule. It is
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the only one of the three objectives which is indepen-

dent of the alignment of the molecules. The energy of

each molecule is a sum of the energy calculated for each

pair of atoms within the molecule, using a Lennard–

Jones 6–12 potential based on the Tripos 5.2 force field.

Once the three objective scores have been calcu-

lated for each solution, Pareto ranking is applied to the

population. One solution is said to dominate another

solution if it is better in all three objectives. (For the

feature and volume objectives, the aim is to maximise

the scores, while for the energy objective the aim is to

minimise the score). The Pareto rank of each solution

is the number of other solutions in the population by

which it is dominated. Thus, the best solutions are

those which are not dominated by any other solutions

and hence have a rank of zero.

Evolution of the population

The population evolves by application of the crossover

and mutation genetic operators. The parent chromo-

somes for these operators are chosen by roulette-wheel

selection [11], with selection biased towards individuals

of lower rank. However, since a potentially infinite

number of solutions can exist on the Pareto surface it is

necessary to include a niching strategy to ensure that a

diverse set of solutions is found. Maintaining diversity in

a MOGA is often achieved through the use of objective

space niching, whereby individuals that are in crowded

regions of the search space are penalised relative to

those in sparsely populated regions. However, this

strategy did not prove effective in this application, as

described previously [9], due to the weak correspon-

dence between diversity in objective space and diversity

in the pharmacophores represented by the individual

solutions. Therefore, an alternative mapping-based

niching scheme was employed which has been modified

here to account for partial mappings.

The first step is to cluster the individuals based on the

mappings they represent. The clustering step considers

mappings that involve all of the molecules and does not

take into account differences in partial mappings. This is

because differences in the partial mappings usually only

reflect small variations to the alignment of local regions

of the molecules with the overall alignments being

similar. Furthermore, the clustering compares all per-

mutations of one mapping with another since there is no

order imposed on the columns included in the mapping

table. The probabilities of selecting the chromosomes

for reproduction are adjusted as shown schematically in

Fig. 2.

Distance constraints

Allowing partial mappings to exist within a pharma-

cophore greatly increases the size of the search space,
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Fig. 2 ‘‘Roulette-wheel’’ segments for two hypothetical MOGA
populations, each containing three distinct feature mappings or
clusters (shown in different shades). (a) Each individual is non-
dominated, and so, initially, has an equal probability of being
chosen (left). After adjusting for the number of individuals in
each cluster, there is an equal probability of choosing a
chromosome from each cluster (centre). (b) Some individuals
are dominated with the rank of each chromosome as shown

(left). If two clusters have the same density, the one containing
individuals of lower mean rank is more likely to be chosen. The
relative probabilities of selecting the different individuals within
each cluster remain the same (centre). In both cases, the
probabilities are then further adjusted through objective-space
niching, but keeping the overall probability of selecting an
individual from each cluster the same (right)
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compared to the more restrictive case when all features

must be present in all molecules. Although the aim of

the partial matching methodology is to increase the

size and diversity of the datasets that can be handled,

in practice, the greatly enlarged search space limits the

number of molecules that can be handled, especially

when the molecules are feature rich. However, a sig-

nificant reduction in the search space can be achieved

through the use of distance constraints which can be

used to eliminate solutions containing geometrically

infeasible mappings from the population.

For example, consider the two CDK2 inhibitors in

Fig. 3. The donor arising from the sulphonamide group

and acceptor highlighted in 5 are constrained to lie

much further apart than the highlighted donor and

acceptor in 6 (for which there is no flexibility at all),

and it is therefore not possible to overlay both sets of

mapped features simultaneously. Upper and lower

bounds on the distance between each pair of features

within each molecule can be calculated, for example,

using distance geometry techniques [21]. A chromo-

some is rejected if it contains a mapping between

feature X1 and X2 in molecule X and feature Y1 and

Y2, respectively, in molecule Y and:

min dX1;X2

� �
[ max dY1;Y2

� �
þ TOLERANCE

or max dX1;X2

� �
\ min dY1;Y2

� �
� TOLERANCE

where dX1,X2 is the intramolecular distance between X1

and X2, etc. and the TOLERANCE is set to 2.0 Å.

Results

The partial match methodology has been applied to

two sets of ligands extracted from the PDB [18]. The

ligands were extracted from their respective complexes

and energy minimised using the Tripos 5.2 force field

with Gasteiger–Marsili charges assigned. The MOGA

was then used to identify plausible pharmacophores. In

the following experiments, all five- and six-membered

rings were identified as possible hydrophobic features.

Unless otherwise stated, the runs were performed on a

2.8 GHz Linux PC using the parameters shown in

Table 2. The number of operations and the number of

mapping columns in the chromosome varied between

experiments and are specified in the details of each

experiment.

Carbonic anhydrase dataset

The carbonic anhydrases are a family of enzymes

which catalyse the conversion of water and carbon

dioxide to bicarbonate and a proton. Inhibitors of

carbonic anhydrase, particularly carbonic anhydrase II

(CAII), have been successfully used to treat elevated

intraocular pressure, the main cause of glaucoma [22].

The MOGA has been applied to a set of four inhibitors

of human CAII, shown in Table 3. The true alignment

of the ligands in the binding pocket was obtained by

overlaying the protein structures using Relibase+ [23].

The interactions between the ligands and the protein

were deduced by visual examination of the complexes

and by referring to the literature references given for

each entry in the PDB and are shown in Table 4. The

features of the ligands have been labelled according to

the interactions that they make with the protein.

The carbonic anhydrase binding site contains a zinc

ion which is important to the mode of action of the

enzyme [24]. Many carbonic anhydrase inhibitors,

including all four in this dataset, coordinate to this zinc

ion through a sulphonamide group [25]. Our program

has not been specifically designed to characterise

interactions with metal ions. However, the same types

of functional group that are able to act as hydrogen

bond acceptors tend to also coordinate to metal atoms.

Therefore, the MOGA is able to generate pharmaco-

phore points relating to the metal interactions, but

gives these points acceptor type.

In view of its size, the butyl fragment in 1okm was

treated as a hydrophobe. In fact, it forms hydrophobic
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Fig. 3 Two CDK2 inhibitors with a donor and acceptor
highlighted in each. The intrafeature distances are such that it
is geometrically impossible to align the molecules with both
features overlaid. Distance constraints are used to eliminate such
unfeasible solutions from the population

Table 2 MOGA parameters

Parameter Value

Selection pressure 1.05
Crossover rate 50%
Mutation rate 50%
Features niche radius 2
Volume overlap niche radius 100 Å3

Energy niche radius 42 kJ mol–1
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interactions with the same protein residues as the

terminal aromatic ring in 1g4o, and is very closely

superimposed on that ring in the overlay of the crystal

structures, as shown in Fig. 4a.

The interactions of the sulphonamide group and the

adjacent hydrophobic ring are common to all four

molecules, whereas the other interactions are present in

only a subset of the dataset. When GASP is applied to

this dataset, it consistently aligns the sulphonamide and

H1 features correctly, and generates associated phar-

macophore points. However, since there are no features

in the other parts of the molecules that are common to

the whole dataset, there is no incentive in terms of an

improved fitness score for these parts of the molecules

(such as the flexible tails of 1g4o and 1okm) to be

aligned, and their relative conformations are arbitrary.

Figures 4b and c show typical solutions generated

from a MOGA run with the CAII dataset. This run

used a population size of 500 and was run for 200,000

operations, taking about 1 h. Three donor, six acceptor

and two hydrophobe mapping columns were used in

the chromosome. The other parameters were set as in

Table 2. In both cases, it can be seen that the MOGA

has correctly aligned the sulphonamide groups and H1

hydrophobic rings, and generated associated pharma-

cophore points. In overlay 4(b), a hydrophobic phar-

macophore point has also been generated that

corresponds to the partial match involving the aro-

matic H2 ring in 1g4o and the butyl hydrophobe in

1okm. In solution 4(c), a donor point has been gener-

ated that represents a partial match in 1g4o, 1okm and

2h4n. Solution 4(c), however, illustrates a limitation of

our current method, since the H2 hydrophobic features

have been overlaid but the mapping is not present

within the mapping table so that no pharmacophore

point has been generated. The diversity of the solutions

produced for this dataset is limited due to the relatively

small size and inflexibility of the ligands, however,

slight differences are seen in the alignment and con-

formations of the two larger molecules.

Cyclin dependent kinase 2 datatset

The cyclin-dependent kinases are a class of proteins

which play a vital role in the cell cycle, the mechanism

by which eukaryotic cell division occurs [26]. Under

Table 3 CAII dataset

The interactions each ligand
makes with the protein are
shown

Molecule PDB code D1 A1 A2 A3 A4 H1 H2

N

O

O

O

N

H

H

H D1 

H1 H2 

A1 

A3 

A2 

1g4o � � � � � �

N

O

O

O

N

H

H

H

N
+H
H

H

D1 

H1 

A1 

A3 

A2 

H2 1okm � � � � � �

N

O

O
H

H

N
S

O
D1

H1 

A1 

A3 

A2 
A4 

1kwr � � � � � �

N

O

O
H

HS

NN

H
N

O

D1
H1 

A1 

A3 

A2 

A4 

2h4n � � � � � �

Table 4 The key interactions involved in binding to CAII

Type Label Interacting protein residue(s)

Donor D1 THR199
Acceptor A1 ZN262

A2 ZN262
A3 THR199
A4 GLN92

Hydrophobe H1 LEU198
H2 PHE131, VAL135, PRO202, LEU204
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normal circumstances, cell cycle progression is highly

regulated. Dysfunction of the normal regulatory pro-

cesses is a critical feature of human cancers; therefore,

the development of therapies which inhibit uncon-

trolled cell reproduction is currently an important area

of pharmaceutical interest. Numerous crystal struc-

tures of complexes of ligands bound in the ATP

binding pocket of Cyclin Dependent Kinase 2 (CDK2)

are available in the PDB.

The ligands are shown in Table 5 and include some

from the comparative study of pharmacophore gener-

ation programs carried out by Patel et al. [5]. As for the

CAII dataset, the true alignment of the ligands in the

binding pocket was obtained by overlaying the protein

structures using Relibase+ [23] and the interactions

between the ligands and the protein were deduced by

visual inspection and by referring to the literature

references given for each entry in the PDB. The fea-

tures of the ligands have been labelled according to the

interactions they make with the protein (Table 6),

using the labelling scheme of Patel et al., which has

been extended to include additional interactions not

relevant to their dataset.

The CDK2 dataset is of interest in evaluating the

identification of partial matches since several of the

ligands, including the natural substrate, ATP, contain a

purine ring system or another ring system of identical

shape, but the ring systems adopt different alignments

in different complexes. In the 2D diagrams in Table 5,

the molecules are drawn so that their relative orien-

tations correspond as closely as possible to the actual

binding modes. Only three of the eight interactions are

common to all seven molecule and even if the dataset

is divided into subsets, there is only one pair of mole-

cules (1ke5 and 1fvv) which form exactly the same set

of interactions. Thus, it would not be easy to analyse

this dataset using a pharmacophore program that is

restricted to finding interactions that are present in all

molecules.

The dataset was initially divided into two subsets as

shown below, both of which involve the identification

of partial matches. Finally the MOGA was run on the

full dataset.

Subset 1: 1h1q, 1e1v, 1ckp

Molecules 1h1q, 1e1v and 1ckp were chosen for the

initial experiment as they are relatively simple, but the

purine rings bind in different orientations and all three

molecules form interactions not common to the whole

dataset. The overlay generated from the PDB struc-

tures is shown in Fig. 5a; the actual interactions formed

with the protein are D2, A1 and H1 (by all molecules),

Fig. 4 The carbonic
anhydrase dataset. 1g4o is
white, 1okm is blue, 1kwr is
brown and 2h4n is green. (a)
PDB overlay of the CAII
inhibitors; (b) and (c) show
typical MOGA solutions
together with their objective
scores. Donors are
highlighted in purple,
acceptors in orange and
hydrophobes in cyan
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D1 and H2 (by 1h1q and 1e1v only), and H3 (by 1h1q

and 1ckp only).

The MOGA was run with a population size of 1000

for 100,000 operations and took around 1.5 h. Two

donor, one acceptor and three hydrophobe mapping

columns were used in the chromosome. A representa-

tive set of solutions generated in a typical run, together

with their objective scores, is shown in Figs. 5b–e. The

MOGA consistently generated solutions very similar

to the true overlay, such as that shown in Fig. 5b. This

Table 5 CDK2 dataset

The interactions that each
ligand makes with the protein
are shown

Molecule PDB code D1 D2 D3 A1 A2 H1 H2 H3
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solution contains six pharmacophore points (as many

as are possible given the number of mapping columns

used), three of which are common to all three mole-

cules. The MOGA correctly identified the partial

interactions D1 (present in 1h1q and 1e1v only), D2

(present in all three molecules) and H3 (present in

1h1q and 1ckp only). Two pharmacophore points were

generated for interaction H1. This illustrates a further

limitation of the current feature detection methodol-

ogy, whereby each ring is treated as an individual

hydrophobe so that fused ring systems cannot be

Fig. 5 CDK2 subset 1. 1h1q
is white; 1e1v is blue; and
1ckp is brown. (a) The PDB
overlay; (b)–(e) A typical set
of solutions together with
their objective scores
generated for CDK2 subset 1.
Donors are highlighted in
purple, acceptors in orange
and hydrophobes in cyan

Table 6 The key interactions involved in binding to CDK2

Type Label Interacting protein residue(s)

Donor D1 GLU81
D2 LEU83
D3 ASP86

Acceptor A1 LEU83
A2 ASP86

Hydrophobe H1 VAL18, ALA31, LEU134
H2 VAL18, GLY11
H3 ILE10, PHE82
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recognised as a single hydrophobe. Although the cy-

clohexyl rings in 1h1q and 1e1v were overlaid, there

were insufficient mapping columns to generate a point

from these features as well as the two points generated

for H1.

No pharmacophore point was generated in relation

to interaction A1. Instead, the single acceptor mapping

column was used to generate a point from a different

set of nitrogen atoms on a different part of the ring

systems. This illustrates a fundamental limitation of

pharmacophore elucidation, which is not specific to our

method, that if features of the same type are present at

a common position in every molecule, then a phar-

macophore point will generally be generated from

these features, even if they do not actually make an

interaction with the protein. In fact, the acceptors that

have been mapped are slightly better aligned than the

features that are overlaid in the true alignment, which

partially explains why the MOGA generated a point

from these features instead.

Other plausible solutions, such as those shown in

Fig. 5c–e were also generated. Because 1h1q has an

almost symmetrical arrangement of two donors and

one acceptor, it was very common for 1e1v to be flip-

ped relative to the true overlay, so that the opposite

combination of donors is mapped between 1h1q and

1e1v. This is illustrated in overlay 5(c), which is

otherwise fairly similar to the true overlay. Overlays

5(d) and 5(e) show two alternative overlays, in which

the molecules are aligned such that a much larger

volume is common to all three molecules. In both of

these cases, four of the five pharmacophore points

generated result from a mapping between all three

molecules. Molecule 1ckp is flipped in solution 5(d) so

that a hydrophobic feature is identified that is common

to all three of the ligands and in solution 5(e) molecule

1e1v is flipped.

Subset 2: 1h1s, 1jsv, 1ke5, 1fvt

1h1s is identical to 1h1q except for the addition of a

sulphonamide group on the benzene ring, and it makes

the same interactions as 1h1q, together with additional

interactions via the sulphonamide group. In fact, the

presence of the sulphonamide group leads to a 150-fold

greater affinity of 1h1s relative to 1h1q, due to the

formation of hydrogen bonds by one of the sulphona-

mide hydrogens and one of the oxygens to the ASP86

residue of the protein [27]. All of the other molecules

in this subset also possess sulphonamide groups which

overlay very closely on the sulphonamide group of

1h1s, as shown in the PDB overlay in Fig. 6a. The

common interactions formed by this subset are D2, D3,

A1, A2, H1 and H3 (all molecules) and D1 (1h1s, 1ke5

and 1fvt only).

The MOGA was run with a population size of 1000

for 100,000 operations and took around 1.4 h. Four

donors, five acceptors and two hydrophobe mapping

columns were used in the chromosome, to allow for the

possibility of mapping multiple features within the

sulphonamide groups. Almost all of the solutions

generated by the MOGA comprised approximately the

same alignment as the true overlay. However, two

solutions showing some variation in the exact align-

ment are shown in Figs. 6b and c. The correct inter-

actions have mostly been identified. However, there is

no pharmacophore point relating to interaction H1. As

discussed for the CAII dataset, a limitation of the

current method is that features can be overlaid even

though they are not included in the mapping encoded

in the chromosome, and hence they do not result in the

generation of a pharmacophore point. Similarly, where

several features are overlaid, it is possible that only a

subset of these features is mapped. In this case, a

pharmacophore point would be generated, but its fea-

ture score would be based only on the features that are

mapped. Hence, the score would be smaller than if all

the features were mapped. This explains the relatively

low feature score of these solutions.

Pharmacophore points have been identified within

the sulphonamide groups; however, the MOGA can-

not be expected to correctly identify the rotation of

the sulphonamide groups relative to the adjacent

aromatic rings, since any rotation consistently applied

to each molecule would lead to an overlay of the

features. Although only one of the sulphonamide

hydrogens and one lone pair actually makes an inter-

action with the protein, the other hydrogens and lone

pairs are still overlaid. Therefore, the MOGA has

generated additional points related to the sulphona-

mide features.

Full dataset

The MOGA was applied to the full set of molecules,

excluding 1fvt which was not included since it is iden-

tical to 1ke5 apart from the addition of a bromine

atom. Distance constraints were derived following a

systematic search and were used to reduce the search

space explored by the MOGA.

The MOGA was run with a population size of 2000

for 200,000 operations, five donor, six acceptor and

three hydrophobe columns were specified and the run

took around 15 h. The population size and number of
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operations were increased due to the increase in search

space for this larger set of feature rich molecules. The

true overlay is shown in Fig. 7a and a MOGA solution

that is close to the PDB-derived solution is shown in

Fig. 7b. All of the molecules except 1ke5 are aligned

approximately correctly. However, 1ke5 is flipped rel-

ative to the true overlay so that its sulphonamide group

is facing in the opposite direction to those of 1h1s and

1jsv. In fact, the true overlay does not show a partic-

ularly close alignment of 1ke5 to the other molecules.

Although the alignment shown does not enable the

sulphonamide group of 1ke5 to map to the other sul-

phonamides, the contribution of any potential sulph-

onamide mappings to the total feature score must be

small because they can involve at most three out of the

six molecules. Any potential improvement in the fea-

ture score that would result from mapping the three

sulphonamide groups is probably outweighed by the

closer alignment of the molecular backbones compared

to the true overlay.

Fig. 7 The full CDK2
dataset. 1h1q is shown in
white, 1e1v in blue, 1ckp in
brown, 1h1s in yellow, 1jsv in
green and 1ke5 in grey. (a)
The PDB overlay and (b) an
overlay generated by the
MOGA. Donors are
highlighted in purple,
acceptors in orange and
hydrophobes in cyan

Fig. 6 CDK2 subset 2. (a) the
PDB overlay. (b) and (c)
show example solutions
together with their objective
scores. Donors are
highlighted in purple,
acceptors in orange and
hydrophobes in cyan
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Conclusions

The paper has described the extension of our earlier

work [9] to incorporate partial matches within a mul-

tiobjective optimisation approach to pharmacophore

identification. Pharmacophore methods are particu-

larly useful if they can be applied to datasets of struc-

turally diverse molecules, where they may be able to

suggest overlays that are not obvious to the chemist.

However, diverse sets of molecules rarely adopt ex-

actly the same binding mode. Hence, programs that

make the assumption of a common binding mode are

not able to handle diverse datasets effectively. Allow-

ing the identification of partial matches removes the

restriction that every molecule must match every

pharmacophore point, which allows the program to be

applied to larger and more diverse datasets.

The datasets investigated here were extracted from

the PDB so that the true solution is known and hence

the program can be validated. However, pharmaco-

phore identification is typically used when structural

information on the binding site is unavailable and in

the absence of such data, it is unlikely that a single

solution could be predicted unambiguously. Incorpo-

rating the improved functionality within a multiobjec-

tive framework results in the identification of a family

of plausible solutions where each solution represents a

different overlay involving different mappings between

the molecules, and where the solutions taken together

explore a range of different compromises in the

objectives. The solutions are not ranked but are pre-

sented as equally valid compromises between three

objectives, according to the principles of Pareto dom-

inance. Importantly, the MOGA also takes into ac-

count the chemical diversity of the solutions, thus

ensuring that the solutions represent a diverse range of

structure-activity hypotheses which could be presented

to a medicinal chemist for further consideration. In

cases where a large number of plausible hypotheses

exist it would be beneficial to provide the user with a

browsing tool to facilitate navigation through the dif-

ferent possibilities. Such a tool might incorporate

clustering techniques similar to the mapping-based

clustering which is applied during the search process

itself or clustering based on geometric criteria.

The presence of partial matches also has implica-

tions on how such a pharmacophore hypothesis would

be used in database searching since it represents the

union of the set of features common to each pair of

molecules. While a molecule which matches every

feature in the set is likely to be active, the hypothesis

represents an over-restrictive specification of the

requirements for activity, since many or all of the

known active molecules possess only a subset of the

features. Hence, when performing pharmacophore-

based virtual screening using a query generated with

the partial matching methodology, it would be useful to

allow the identification of molecules which match only

a subset of the points in the query. The hits would then

be likely to contain molecules representing a range of

binding modes, and the plausibility of each of these

could then be evaluated visually or experimentally by

the user.

A number of areas for further improvement have

been identified and are currently under investigation.

For example, as discussed, the implementation of the

partial match methodology required the development

of a new alignment method whereby the molecules are

aligned sequentially to a common framework. When a

molecule is incorporated into the framework, the

framework is adjusted to take account of all molecules

already aligned. However, the alignment method cur-

rently implemented is dependent on the order in which

the molecules are specified in the configuration file.

Future work will investigate the implementation of an

order-independent method for the multiple-molecule

alignment with several methods having been described

in the literature [19, 28–30], Similarly, the volume

objective function is order dependent which is also

unsatisfactory, since volumes that are common to most

of the molecules but not the first molecule currently

make no contribution to the volume score. Thus, we

are focussing on taking into account any volume that is

occupied by two or more molecules, but with the

contribution from each point in space weighted so that

points occupied by more molecules make a larger

contribution to the overall score.
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