
Abstract G-Protein coupled receptors (GPCRs) are

important targets for drug discovery, and combinatorial

chemistry is an important tool for pharmaceutical devel-

opment. The absence of detailed structural information,

however, limits the kinds of combinatorial design tech-

niques that can be applied to GPCR targets. This is par-

ticularly problematic given the current emphasis on

focused combinatorial libraries. By linking an incremen-

tal construction method (OptDesign) to the very fast

shape-matching capability of ChemSpace, we have cre-

ated an efficient method for designing targeted subli-

braries that are topomerically similar to known actives.

Multi-objective scoring allows consideration of multiple

queries (actives) simultaneously. This can lead to a dis-

tribution of products skewed towards one particular

query structure, however, particularly when the ligands of

interest are quite dissimilar to one another. A novel piv-

oting technique is described which makes it possible to

generate promising designs even under those circum-

stances. The approach is illustrated by application to

some serotonergic agonists and chemokine antagonists.
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Abbreviations
5HT1F 5-Hydroxytryptamine (serotonin) receptor,

subtype 1F

Boc tert-Butoxycarbonyl

CCR1 Chemotactic cytokine receptor 1

GPCR G-protein coupled receptor

Introduction

The G-protein coupled receptor (GPCR) superfamily

is the largest class of transmembrane receptors. They

are characteristically comprised of seven membrane-

spanning a-helices, which are joined and stabilized by

intra- and extra-cellular loop regions. Many natural

ligands contain a basic amine, which is often involved

in binding and agonistic effect. GPCRs are typically

involved with signaling pathways, converting an

extracellular signal represented by ligand binding into

an intracellular signal in the form of G-protein acti-

vation. Such signaling is known to be involved in many

critical physiological pathways, and these receptors are

targeted by 40–50% of the new drugs developed in

recent years [1].

There is considerable structural variation among the

receptor families, with the transmembrane helices

being more conserved within and between families

than are the intervening loop regions. Few crystal

structures of GPCRs are available, so scientists

interested in applying structure-based techniques

must resort to constructing homology models. Such

models were originally constructed based on the

structure of bacteriorhodopsin, which had been char-

acterized by electron microscopy and, later, by X-ray

F. Soltanshahi � T. E. Mansley � S. Choi � R. D. Clark (&)
Informatics Research Center, Tripos, Inc., 1699 S. Hanley
Road, St Louis, MO 63144, USA
e-mail: bclark@tripos.com

Present Address:
S. Choi
College of Pharmacy and Division of Molecular Life
Sciences, Ewha Womans University, Seoul 120-750,
South Korea

J Comput Aided Mol Des (2006) 20:529–538

DOI 10.1007/s10822-006-9076-9

123

GPCR SYMPOSIUM

Balancing focused combinatorial libraries based on multiple
GPCR ligands

Farhad Soltanshahi Æ Tamsin E. Mansley Æ
Sun Choi Æ Robert D. Clark

Received: 26 June 2006 / Accepted: 29 August 2006 / Published online: 13 October 2006
� Springer Science+Business Media B.V. 2006



crystallography. The mammalian bovine rhodopsin has

been the preferred template since its crystal structure

was determined in 2000 [2]; it is the only mammalian

GPCR whose crystal structure has been published to

date.

Unfortunately, the structural homology of rhodop-

sin to most GPCRs is still less than ideal for develop-

ment of homology models with the degree of

confidence needed for docking studies. Hence focused

combinatorial design methods that depend upon

docking and scoring for product selection [3] are not

applicable in this case. This makes ligand-based drug

design particularly important for GPCR targets, using

known agonists and antagonists to characterize the

binding pocket and identify features involved in ligand

binding and receptor activation.

We used an incremental construction method

(OptDesign [4, 5]) to design focused combinatorial li-

braries targeted to two GPCRs—the serotonergic

receptor 5HT1F and the chemokine receptor CCR1.

The program is an extension of optimizable K-dissim-

ilarity selection (OptiSim [6–8]) that generates prod-

uct-based designs, in that reagents are chosen at each

step based on the properties of their virtual products.

A small random sample of qualified candidate reagents

is considered at each step, and the one that yields the

best virtual products is selected for inclusion in the

library. Only a fraction of the possible products need

be considered, which makes the method very efficient

as well as making it practical to calculate quite complex

product properties without consuming the large

amounts of CPU time that would be required to carry

out such calculations on all possible products.

For diverse libraries, the goal is to sample the pop-

ulation space so as to produce libraries that are rep-

resentative of the full combinatorial population as well

as being structurally diverse. This is achieved by

defining the ‘‘best’’ candidate as the one whose prod-

ucts are most dissimilar to those products selected for

inclusion in the library in previous steps [9] For the

focused design work described here, we have intro-

duced a multi-objective scoring function based on Pa-

reto ranking [10] that allows simultaneous

consideration of similarity to queries based on multiple

ligands. ‘‘Similarity’’ in this case is based on topomer

distances [11], a measure of shape similarity that has

proven useful for identifying individual products of

interest in very large virtual libraries in prospective

studies [12].

Both targets considered here are pharmaceutically

relevant and timely. 5HT1F is located in the CNS where

it is thought to play a role as a serotonin autoreceptor.

Agonists of 5HT1F (e.g., LY334370 (1)) are effective

against migraine [13–15]. CCR1, on the other hand, is

involved in immune responses and has been implicated

in inflammatory diseases, such as asthma and allergy,

psoriasis, multiple sclerosis, rheumatism, arthritis and

inflammatory bowel disease [16]. Antagonists of CCR1

are therefore of pharmacological interest for their anti-

inflammatory activity. Structures of numerous drug

candidates targeting it have been published and pat-

ented, and several are in some phase of discovery and

clinical research, although none are yet approved

drugs.

Though we only describe applications to these two

GPCRs here, the method should be equally applicable

to other targets where crystal structures or extremely

robust homology models are not available.

Methods

The combinatorial constraint involved in full-matrix

library designs can unduly restrict the range of acces-

sible products and force the designer to sharply limit

the range of reagents used. Hence OptDesign supports

generation of either full or sparse matrix designs in

either single or multi-block modes [5, 9]. A sparse

design permits products to be skipped, allowing

‘‘holes’’ in the design. If reagents Xi and Yj each con-

tribute 25 heavy atoms to a product, for example, both

can be included in a sparse design without having to

violate a constraint that no product consist of more

than 40 heavy atoms; that particular product simply

doesn’t appear in the library. Allowing design densities

to fall below 1.0 increases the structural diversity of the

design produced.

OptDesign ordinarily uses a one-by-one pivoting

scheme wherein reagent selection alternates between

reagent classes at each step, adding one of K qualified

Xi reagents, then one Yi, then Xi+1 (or Zi, and then

Xi+1, etc). A block is complete once the number of

products in the (sub)design meets or exceeds the

number requested, or all reagent quotas have been

met, or no viable candidate reagents remain to choose

from, whichever comes first [9].

Slice pivoting strategy

Sublibraries of practical interest are usually not square,

however, so one must allow for the fact that more re-

agents may be desired from population X than from

population Y. For combinatorial designs that involve a

di-substituted scaffold, for example, intermediates

generated in the first reaction step are often synthe-

sized and purified in bulk (i.e., on a multi-gram scale),
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then parallel synthesis and high-throughput micro-

scale chromatography are used to synthesize and purify

products obtained from secondary reactions [17].

Hence cost considerations lead to unsymmetrical de-

signs in which m (the number of primary reagents re-

quired) is considerably smaller than m¢ (the number of

secondary reagents). Which primary reagent is selected

at each step is influenced by the selection of secondary

reagents from previous iterations, since those dictate

which products are considered.

The simplest way for OptDesign to handle this sit-

uation is to pivot evenly between X and Y until a

square m · m sublibrary is in hand, then stop pivoting

and simply add Ym+1, Ym+2 and so forth until the de-

sired m · m¢ design is complete [9]. This strategy

generally works well, but it is not usually optimal.

Early on in the design process, it is often wiser to select

reagents more frequently from Y so that each sub-

sequent candidate X is judged against reaction with a

bigger set of Ys. Consider, for example, a 3 · 9 matrix

design. If a one-by-one pivoting strategy is used, only

Y1, Y2 and Y3 affect the selection of the three Xs,

thereby disproportionately influencing the design as a

whole. It is more reasonable to balance the frequencies

of selection, picking three Ys for every X chosen.

Doing so spreads influence across more secondary re-

agents, thereby reducing the chance that picking a

‘‘bad’’ Y will unduly restrict the scope of the design.

This alternative slice pivoting scheme is illustrated in

Fig. 1.

Library construction and product filtering

Virtual libraries were generated by entering a scaffold

and then defining the types of reagents ‘‘reacting’’ at

each variation site. The core structure (scaffold) for

each target library was created separately, but the

initial lists of commercially available reagents defin-

ing the extent of the full combinatorial libraries

were shared. These lists were drawn from ChemSpace

[18], which is a discovery research platform developed

at Tripos for building, managing, filtering and

searching sets of large combinatorial libraries [12, 19,

20].

Virtual libraries built in ChemSpace are searched as

combinatorials—i.e., without enumeration. In particu-

lar, 3D searches are carried out based on topomeric

distances [11]. These are obtained by cleaving the

query structure at all combinations of exocyclic single

bonds that yield two or three fragments, depending on

the complexity of the library being searched. The

various alternative core and substituent substructures

constitute subqueries that are standardized, put into a

characteristic conformation and aligned to a reference

lattice. The molecular field for each core and sub-

stituent generated from the query is then calculated

and compared to the core and synthon fields for li-

braries stored in ChemSpace [21] (Fig. 2). Distances

are computed from the squared field differences across

the lattice, summed across the cores and all substitu-

ents. The piecemeal distances are relatively large in

most cases, so great swaths of the product space can

quickly be excluded from further consideration: if the

difference between a core subquery and a library core

is larger than the designated search radius rp, there is

no reason to consider any product from the corre-

sponding library for that particular query fragmenta-

tion pattern [19, 20].

In practice, topomer searching is so fast that it is

usually applied as the first step in an analysis. Prod-

ucts that ‘‘hit’’ are then filtered for properties on the

basis of physical properties such as ClogP [22];
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Fig. 1 Slice pivoting scheme for designing a 3 · 9 library with a
reagent subsample size of K = 3. Uppercase letters indicate
selected reagents, whereas lowercase letters indicate candidate
reagents. The 1 · 3 block outlined in red is generated first. This
is then expanded first into a 2 · 6 sublibrary outlined in blue and

finally into the full 3 · 9 pattern outlined in orange. The
particular design is characterized in terms of the block
dimensions at the end of each stage. Hence the procedure
shown here corresponds to a 1 · 3; 2 · 6; 3 · 9 design
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hydrogen bond donor and acceptor atom counts; and

molecular weight. For the GPCR studies described

here, we searched the full virtual libraries using to-

pomer queries derived from sets of ligands known to

be active against 5HT1F or CCR1. The products

identified were then filtered for drug-likeness and

‘‘Rule of Five’’ compliance [23]. Products having

more than eight rotatable bonds were also removed,

as were products with more than one chiral center;

the latter produce diastereomeric mixtures that may

be difficult to purify

Reagent filtering

There is no point in considering any reagent that

yields no product satisfying all constraints. Hence

combinatorial sublibraries were defined by extracting

the relevant synthons from the filtered topomer ‘‘hits’’

for the target libraries. These lists of reagents were

further trimmed by applying substructural filters to

remove reagents that would introduce alkylating or

other potentially toxicophoric groups into the prod-

ucts. Reagents containing a nitro group, for example,

were dropped. The substitution reactions involved

alkylation and acylation reactions, so compatibility

filters were applied to remove reagents containing

nucleophilic centers (e.g., –NH2, –OH, –SH) and

extraneous electrophilic centers (e.g., –CO2H, –COCl,

–SO2Cl, –N=C=O, –N=C=S, halides). These filters

operate through substructure searches based on the

SYBYL line notation (SLN [24]).

Multi-objective scoring

OptDesign operates iteratively, selecting the best

candidate from a qualified subsample of K reagents at

each step. It has two competing objectives when used

to generate diverse libraries. Representativeness is

conferred by drawing the subsamples randomly at each

iteration. Diversity, on the other hand, is conferred by

the scoring function, which defines the ‘‘best’’ candi-

date reagent in each step’s subsample as being the one

that yields products most distinct from those included

in the design during previous iterations [19]. The

experiments described here make use of a new Pareto

ranking scheme designed to favor candidates that will

yield products similar in shape to several query ligands.

Similarity was maximized by choosing reagents that

minimized the topomer distances between queries and

products.

Figure 3 illustrates how Pareto ranking guides re-

agent selection when the goal is to optimize similarity

to multiple queries. A sparse matrix design is shown

with a minimum stepwise product density of 0.50 and a

subsample size K = 3. X1, X2 and X3 have already been

selected, as have Y1 and Y2. Four of the six possible

combinations have been included in the subdesign. The

figure illustrates how the program picks Y3 from among

three candidates—y3a, y3b and y3c. Each candidate y

can produce up to three products, but the minimum

density of 0.50 means that each candidate needs to

contribute two valid products to the design [25]. The

goal is to maximize the shape similarity to the queries
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Q1 and Q2 by minimizing the corresponding topomer

distances, which are shown in Table 1.

The Pareto rank of each candidate product is de-

fined as the number of products that dominate it [10].

In Fig. 3, the non-dominated products p5 and p6 are

given a rank of zero, because there are no products that

are more similar (closer) to both queries. Product p7,

on the other hand, receives a rank of four because it is

dominated by p5, p6, p8 and p9. Given the target density

of 0.50, each candidate reagent y needs to contribute

only two products. Hence to rank each reagent can-

didate y we take the best two product Pareto rankings

and use the worst of that pair to rank the reagent. In

this example y3b is the best candidate since its two

best products both have a Pareto rank of zero. Since

p5 and p6 have lower Pareto ranks than p4, they are

the products that get incorporated into the growing

library.

Ties in Pareto rank were resolved firstly by favoring

reagents whose products ‘‘hit’’ more targets and, sec-

ondarily, by favoring those reagents whose products lie

closer to the target molecules in terms of topomer

distance.

Note that here, each candidate reagent is repre-

sented by an ensemble of points in the Pareto space,

one for each expected product. This is fundamentally

different from methods in which there is a one-to-one

correspondence between candidates and points in the

Pareto space [10].

Analysis details

OptDesign was run with several additional constraints:

• The target design consisted of a single block with a

density greater than 0.50.

• No reagent xij (or yij) was included in the respective

reagent subsample if it was too similar in terms of

its substructural fingerprint to any reagent already

included in the design—i.e., for any Xj (or Yj) for

j < i. The exclusion radii rx and ry were expressed as

a maximum allowed Tanimoto similarity.

• Only products that ‘‘hit’’ at least two of the four

queries were considered valid. The product inclu-

sion radius specified in each case rp took both steric

and feature differences into account.
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Fig. 3 Scoring based on Pareto ranking. (a) Plot relating the
Pareto ranks (shown in parentheses) to the degree of domi-
nance—i.e., the number of products better by both criteria than
the one being ranked. (b) Sparse block subdesign resulting from
incorporation of the new products having the lowest maximum
Pareto rank. Pareto ranks are shown in parentheses. Selected
products are shaded in gray

Table 1 Product correspondences and topomer distances for the Pareto rankings used in Fig. 3

Secondary candidate Primary reagent Candidate product Distancea to Q1 Distancea to Q2 Pareto rank MiniMaxb Pareto

y3a X1 p1 251 272 4b 4
X2 p2 254 269 4
X3 p3 239 260 2

y3b X1 p4 246 266 3 0
X2 p5 230 251 0
X3 p6 225 253 0

y3c X1 p7 261 256 4 2
X2 p8 259 254 2
X3 p9 256 255 2

a Topomer distances [11] were calculated on a 2 Å lattice
b Smallest maximum Pareto score across all possible pairs of products from each reagent y at the given density (0.50). The corre-
sponding best product pairs are highlighted in boldface type
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Results

Focused 5HT1F designs

The virtual reaction scheme behind the 5HT1F library

is shown in Fig. 4. Pyrrole carboxylates are subject to

elaboration into a protected pyrroloazepinone by

reaction with benzylamine-N,N-diacetate. The inter-

mediate diester can be hydrolyzed and decarboxylated

in acid [26], followed by catalytic hydrogenation to

remove the benzylic blocking group. Addition of a Boc

protecting group allows alkylation to proceed selec-

tively at the pyrrole nitrogen, and subsequent acid-

catalyzed deprotection clears the way for acylation of

the nitrogen in the azepinone ring.

The full virtual library was created in ChemSpace

and searched against a set of known 5HT1F receptor

agonists [27, 28] to identify topomerically similar

structures. Due to the lack of structural diversity

among known potent agonists, those chosen as queries

are quite structurally similar to one another, and the

‘‘hit’’ lists obtained overlapped to a large degree. Note,

however, that the queries are very different from the

pyrroloazepinone scaffold itself. Figure 5 lays out the

structures of the queries, and Table 2 indicates the

number of ‘‘hits’’ found for each query and how many

survived subsequent filtering steps.

The reagent exclusion thresholds were set to

rx = 0.90 and ry = 0.90, and the maximum topomer

distance rp was set to 270. Two different 30 · 100 de-

signs were run: one using one-by-one pivoting and a

second using a slice pivoting scheme—1 · 10; 2 · 20;

3 · 30; 4 · 40; 5 · 50; 6 · 60; 7 · 70; 8 · 80; 9 · 90;

30 · 100. The goal was to try to design sublibraries

made up predominantly of products similar to all four

queries. Table 3 shows the pairwise and all-way over-

laps among the hitlists obtained.

Both approaches produced a sublibrary where the

products selected had good search scores across all four

queries. This is mainly due to the fact that the topomer

hitlists overlap so substantially. Changing the pivoting

scheme did not have any appreciable effect on the

outcome. This can also be seen by examination of

Fig. 6, which shows the distribution of product simi-

larities to each query in the form of a bar chart.

Focused CCR1 designs

The virtual reaction scheme used to define the full

CCR1 library was based on the commercially available

4-aminopiperazine (Fig. 7). Note that the order in

which the two classes of electrophile are applied is

switched from that described above for the 5HT1F li-

brary. The Boc protected starting material is acylated
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at the secondary nitrogen, then the distal primary

amino group is deprotected and alkylated.

The full virtual library was created in ChemSpace

and searched against the set of antagonists [29–33]

shown in Fig. 8. These query molecules are much more

structurally diverse than were the 5HT1F agonists, and

the intersections of their topomer hitlists were much

more sparsely populated as a result. The searches were

carried out taking both shape and feature similarity

into consideration. The results from the individual

searches were filtered for drug likeness, reaction

compatibility and physical properties. The results are

shown in Table 4.

Searching was done at an rp of 300 topomer units

and the maximum pairwise similarity allowed between

reagents were set to rx = 0.95 and ry = 0.95.

The pooled filtered results were submitted to Opt-

Design, specifying creation of 20 · 50 sublibraries at a

density in excess of 50%. Two different designs were

generated. Reagent pivoting was carried out using ei-

ther ‘‘classic’’ one-by-one pivoting or using the slice

pivoting scheme defined by: 1 · 5; 2 · 10; 3 · 15;

4 · 20; 5 · 25; 6 · 30; 7 · 35; 8 · 40; 9 · 45; 20 · 50.

Table 2 Topomeric product
similarity to individual
queries across the full 5HT1F

virtual library and effect of
filtering steps

Filtering step

Query
structure

Similarity to
query (rp = 270)

Drug-likeness Reaction
compatibility

Physical
properties

1 1,733,068 1,389,218 (80%) 585,515 (34%) 264,101 (15%)
2 3,493,541 2,361,822 (68%) 804,864 (23%) 544,487 (16%)
3 3,359,834 2,048,031 (61%) 675,289 (20%) 499,994 (15%)
4 1,892,252 1,271,493 (67%) 470,729 (25%) 349,996 (18%)

Table 3 Relationships among individual 5HT1F topomer hitlists

FullLibrarya One-by-one
pivot designb

Slice pivot
designb

Full Design 554,579
(4382 · 8186)

1515
(30 · 100)

1531
(30 · 100)

1 \ 2 109,519 1,265 1,125
1 \ 3 97,617 1,131 978
1 \ 4 96,351 1,268 1,133
2 \ 3 412,932 1,362 1,330
2 \ 4 291,399 1,483 1,477
3 \ 4 274,103 1,348 1,299
1 \ 2 \ 3 \ 4 86,554 1,122 973

a Number of products that pass all filters
b Number of products included in the design at a density of 50%
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One-by-one pivoting yielded a very skewed distri-

bution of products (Table 5 and Fig. 9). A very similar

distriution was seen in the design when a different

random number seed was used, so it is not an accident

of the ‘‘greedy’’ nature of the design algorithm.

Changing to a slice pivoting scheme allowed the pro-

gram to guide the design towards a solution where

more products are topomerically similar to at least two

of the queries. These results are presented graphically

in Fig. 9 and are shown schematically in Fig. 10. Note

that the increase in the number of products similar to 8

is most evident in the reduction in the number of hits

falling beyond rp. Again, similar results were obtained

when a different random number seed was used.

Discussion

Combinatorial chemistry has become a major force in

drug discovery and development, with attention in re-

cent years shifting from generalized libraries [17] to

ones focused on particular target proteins [3]. Docking

and scoring against the target is a viable approach

when enough structural information is available, but

this is generally not the case for GPCRs such as sero-

tonergic and chemokine receptors. Here we have de-

scribed how coupling the incremental construction

approach used in OptDesign to a rapid means for

assessing shape similarity can provide an alternative,

ligand-based strategy for designing focused sublibraries

that target specific GPCRs.

A library focused on any single ligand is likely to be

overly specific, so it is generally desirable to incorpo-

rate multiple reference ligands (queries) into a design.

A direct way to accomplish this is by using a weighted

average of the similarities to each individual query

structure. The appropriate weights to use can be very

dependent on details of the distribution of the products

of interest, however, and it is hard to know how the

weights should be set a priori. An alternative, less di-

rect approach is to extract a consensus query such as a

Table 4 Topomeric product
similarity to individual
queries across the full CCR1
virtual library and effect of
filtering steps

Filtering step

Query
structure

Similarity to
query (rp = 300)

Drug-likeness Reaction
compatibility

Physical
properties

5 3,355,771 2,561,582 (76%) 1,647,359 (49%) 795,908 (24%)
6 4,707,801 3,442,682 (73%) 1,934,608 (41%) 949,910 (20%)
7 163,217 133,444 (82%) 82,788 (51%) 24,849 (15%)
8 502,316 372,897 (74%) 137,886 (27%) 51,262 (10%)

Table 5 Relationships among individual CCR1 topomer hitlists

FullLibrarya One-by-one
pivot designb

Slice pivot
designb

Full de-
sign

1,701,332
(2631 · 6700)

601
(14 · 50)

470
(13 · 50)

5 \ 6 23,420 555 224
5 \ 7 5,028 0 239
5 \ 8 695 0 8
6 \ 7 0 0 0
6 \ 8 0 0 0
7 \ 8 3,226 46 9
5 \ 7 \ 8 51 0 5

a Number of products that pass all filters
b Number of products included in the design at a density of 0.50
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pharmacophore. Unfortunately, this strategy will focus

primarily on products falling in the midst of all queries,

and may miss important candidates that are similar to

some—but not all—of them.

Introduction of a multi-objective scoring function

makes it possible to optimize against multiple ligands

simultaneously while specifying a minimal number of

parameters. In the multiple objective genetic algorithm

(MOGA) approach, each library is scored as a whole

[10]. In contrast, the Pareto scoring scheme used here

scores each candidate product separately; this makes

the method much more suitable for generating sparse-

and multi-block designs.

OptDesign is a stochastic method. Indeed, that is

key to the representativeness of the designs it pro-

duces. It follows that if the valid product space is very

sparse—if, for example, there are too few products in

the target library that are sufficiently similar to the

queries provided—it will usually be difficult to build a

good library. In particular, it is easy to pick starting

points that lead to premature termination even under

very loose density constraints. Worse, ‘‘classic’’ one-

by-one pivoting will often produce very unbalanced

designs wherein most products are similar to a single

query.

The CCR1 library is a case in point. It is probably

possible to obtain a useful library by looking at many

runs using different random number seeds, but that is

not a very efficient strategy. Instead, the balance in

designs created from such sparse libraries was im-

proved substantially by using slice pivoting in place of

OptDesign’s standard one-by-one pivoting technique,

evidently because doing so leads to a more equitable

distribution of influence between the primary and

secondary reagents. In particular, it enhanced the

representation for products similar to query structure 7

well above the proportion seen in the full library

(compare Table 4 with Fig. 9).

It bears noting that the approach described here is

quite general, and could also be carried out using fast

combinatorial docking scores [34] in lieu of topomer

similarities from ChemSpace. Indeed, although these

particular designs have yet to be synthesized or eval-

uated for biological activity, variations on the strategy

employed have been successfully used to create fo-

cused GPCR and kinase screening libraries with con-

firmed activity against the respective target classes [35].
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3. Krier M, de Araújo-Júnior JX, Schmitt M, Duranton J,
Justiano-Basaran H, Lugnier C., Bouruignon J-J, Rognan D
(2005) J Med Chem 48:3816

4. OptDesign� is distributed by Tripos, Inc., 1699 S. Hanley
Road, St. Louis, MO 63144, USA (http://www.tripos.com)

5. Clark RD, Patterson DE, Soltanshahi F, Blake JF, Matthew
JB (2000) J Mol Graph Model 18:404

6. Clark RD (1997) J Chem Inf Comput Sci 37:1181
7. Clark RD, Langton WJ (1998) J Chem Inf Comput Sci

38:1079
8. Clark RD, US Patent No. 6,535,819 (2003) OptiSimTM is

licensed by Tripos, Inc., 1699 S. Hanley Road, St. Louis, MO
63144, USA (http://www.tripos.com)

9. Clark RD, Kar J, Akella L, Soltanshahi F (2003) J Chem Inf
Comput Sci 43:829

10. Gillet VJ, Willett P, Fleming PJ, Green DVS (2002) J Mol
Graph Model 20:491

11. Patterson DE, Cramer RD, Ferguson AM, Clark RD,
Weinberger LE (1996) J Med Chem 39:3049

12. Cramer RD, Poss MA, Hermsmeier MA, Caulfield TJ,
Kowala MC, Valentine MT (1999) J Med Chem 42:3919

13. Pauwels PJ, 5-HT Receptors and Their Ligands, www.to-
cris.com

14. Horuk R, Ng HP, (2000) Med Res Rev 20:155
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