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Abstract We report on the development and valida-

tion of a new version of DOCK. The algorithm has been

rewritten in a modular format, which allows for easy

implementation of new scoring functions, sampling

methods and analysis tools. We validated the sampling

algorithm with a test set of 114 protein–ligand com-

plexes. Using an optimized parameter set, we are able to

reproduce the crystal ligand pose to within 2 Å of the

crystal structure for 79% of the test cases using our rigid

ligand docking algorithm with an average run time of

1 min per complex and for 72% of the test cases using

our flexible ligand docking algorithm with an average

run time of 5 min per complex. Finally, we perform an

analysis of the docking failures in the test set and

determine that the sampling algorithm is generally suf-

ficient for the binding pose prediction problem for up to

7 rotatable bonds; i.e. 99% of the rigid ligand docking

cases and 95% of the flexible ligand docking cases are

sampled successfully. We point out that success rates

could be improved through more advanced modeling of

the receptor prior to docking and through improvement

of the force field parameters, particularly for structures

containing metal-based cofactors.
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Introduction

Transient non-covalent interactions are critical for bio-

logical processes. The sequencing of a variety of ge-

nomes and the development of proteomics techniques

have enabled scientists to study these interactions on the

widest scales [1]. Advances in X-ray crystallography,

nuclear magnetic resonance spectroscopy, and other

experimental structure techniques provide the ability to

study these interactions at an atomic level of detail [2].

One important application of these advances is the de-

sign of small molecules that interact with cellular pro-

cesses to modify biological activity and treat disease.
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The drug discovery process typically requires be-

tween 10 years and 15 years from early discovery until

FDA approval [3]. Computational tools—such as vir-

tual screening, homology modeling and cheminfor-

matics—are applied both to facilitate various stages of

research and to create models that explain experi-

mental data [4–6]. Molecular docking, which can

broadly be defined as the prediction of the orientation

of two molecules with respect to one another, is a

computational technique that has been successfully

used in both of these capacities [7]. In drug design

applications, one molecule is typically a protein or

nucleic acid drug target—the receptor—and the other

is a potential ligand. In these applications, docking is

used to identify novel ligands that interact with a bio-

molecular target and to predict the geometric position

(binding mode) of ligands with respect to the target of

interest.

DOCK background

DOCK is one example of a family of molecular

docking packages available, which includes Glide,

FlexX, and GOLD (Table 1) [8–11]. Each of these

programs consists of two key parts: a search algorithm

and a scoring function. The search algorithm samples

both the relative orientations of the two objects as well

as their conformations. It must be thorough enough to

ensure adequate coverage of the binding free energy

landscape in order to find the global minimum of the

scoring function. The scoring function ranks the vari-

ous geometries generated by the search algorithm,

proposing the top-scoring pose as the global minimum.

It must rapidly evaluate receptor–ligand complex sta-

bility with sufficient accuracy such that the global

minimum of the scoring function agrees with experi-

mental data.

The number of degrees of freedom in recep-

tor–ligand interactions is very large, and several

approximations must be made to ensure that the

docking problem is tractable. Many different

approaches, ranging from freezing non-essential mo-

tions to the use of preferred conformations, have been

developed to reduce the number of degrees of freedom

sampled [12]. In the DOCK algorithm, for example,

the receptor is considered to be conformationally rigid,

requiring only the ligand conformational, translational

and rotational degrees of freedom to be sampled dur-

ing complex formation. This assumption is reasonable

in docking applications in which either the receptor

conformation does not change dramatically upon li-

gand binding or in which the aim is to stabilize a par-

ticular receptor conformation.

In order to guide the search for ligand orientations

with respect to the receptor, a negative image of the

active site volume is created by placing spheres on the

solvent accessible surface area of the receptor, thus

restricting the ligand orientational sampling to the

most relevant region on the surface of the receptor

[13]. To sample the internal degrees of freedom of the

ligand, DOCK uses the incremental construction

algorithm, anchor-and-grow, which separates the li-

gand flexibility into two steps [14, 15], (Fig. 1). First,

the largest rigid substructure of the ligand (anchor) is

identified and rigidly oriented in the active site by

matching its heavy atoms centers to the receptor

sphere centers (orientation). The anchor orientations

are evaluated and optimized using the scoring func-

tion and the energy minimizer. The orientations are

then ranked according to their score, spatially clus-

tered by heavy atom root mean squared deviation

(RMSD), and prioritized (pruning). Next, the

remaining flexible portion of the ligand is built onto

the best anchor orientations within the context of the

receptor (grow). It is assumed that the shape of the

binding site will help restrict the sampling of ligand

conformations to those that are most relevant for the

receptor geometry.

Table 1 Summary of scoring functions and sampling algorithms for commonly used docking programs

Method Ligand sampling methoda Receptor sampling methoda Scoring functionb Solvation scoringc,d

DOCK 4/5 IC SE MM DDD, GB, PB
FlexX/FlexE IC SE ED NA
Glide CE + MC TS MM + ED DS
GOLD GA GA MM + ED NA

a Sampling methods are defined as Genetic Algorithm (GA), Conformational Expansion (CE), Monte Carlo (MC), incremental
construction (IC), merged target structure ensemble (SE), torsional search (TS)
b Scoring functions are defined as either empirically derived (ED) or based on molecule mechanics (MM)
c If the package does not accommodate this option, the symbol NA (Not Available) is used
d Additional accuracy can be added to the scoring function using implicit solvent models. The most commonly used options are
distance dependent dielectric (DDD), a parameterized desolvation term (DS), generalized Born (GB) and linearized Poisson
Boltzmann (PB)
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In order to evaluate a large number of ligand poses

in a reasonable amount of time, approximate scoring

functions must be used. Once again, numerous solu-

tions to this problem have been proposed, including a

variety of empirical and physics-based terms [12].

DOCK uses an energy scoring function based on the

AMBER molecular mechanics force field [14, 16].

Only the interactions between the ligand and protein

are considered, leaving only intermolecular van der

Waals (VDW) and electrostatic components in the

function. Since the receptor is considered to be rigid,

the receptor contribution to the potential energy can

be pre-calculated and stored on a grid [16]. These

approximations enable the program to evaluate large

libraries of small molecules against a receptor in a

reasonable period of time.

This paper describes a new version of the DOCK

program and explores the critical variables that con-

trol its ability to find correct binding modes in a suite

of test problems. Our motivation is to provide a

modular docking package that permits the easy

development of new scoring functions, search algo-

rithms, and analysis tools. Thus, each functional unit

of the DOCK algorithm was implemented as a self-

contained and portable module that interacts with the

user through a well-defined interface (Fig. 2). The

object-oriented language C++ was chosen to allow

each component of the DOCK algorithm to be

implemented as a class, which encapsulates both the

data structures and functions [17]. DOCK 5 incorpo-

rates several new routines, including parallelization of

the algorithm through an external library, modifica-

tion of the ligand structural class to enable greater

user control over sampling, and clustering of the final

results by root mean square deviation. The implica-

tions of these additions will be discussed in this

paper. Additional scoring functions and alternate

sampling techniques have been implemented as

well and will be discussed in future papers (http://

dock.compbio.ucsf.edu).

Previous studies have examined the scoring function

and the matching algorithm of DOCK in detail ([14]

and equations 1–6 in [16]). In this paper, we pay par-

ticular attention to the robustness of the anchor-and-

grow portion of the DOCK algorithm. We seek to

maximize the success of complex structure prediction

by independently optimizing the various steps in the

anchor-and-grow algorithm. In the process, we also

quantify and bound the errors for cases in which flex-

ible docking fails and provide direction for potential

areas of improvement.

Fig. 1 The ‘‘anchor-and-grow’’ conformational search algo-
rithm. The algorithm performs the following steps: (1) DOCK
perceives the molecule’s rotatable bonds, which it uses to
identify an anchor segment and overlapping rigid layer segments.
(2) Rigid docking is used to generate multiple poses of the
anchor within the receptor. (3) The first layer atoms are added to
each anchor pose, and multiple conformations of the layer 1
atoms are generated. An energy score within the context of the
receptor is computed for each conformation. (4) The partially
grown conformations are ranked by their score and are spatially
clustered. The least energetically favorable and spatially diverse
conformations are discarded. (5) The next rigid layer is added to
each remaining conformation, generating a new set of confor-
mations. (6) Once all layers have been added, the set of
completely grown conformations and orientations is returned
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Overview of test set

The validation of any software program requires

careful testing of all aspects of the algorithm and

assessment of its utility in all anticipated applications

of the software. Molecular docking is commonly used

in several modes, namely ligand binding mode pre-

diction, virtual screening, and prioritization of a set

of related compounds based on their affinity. How-

ever, predicting the correct binding mode of a li-

gand–receptor complex is a requisite step for the

successful comparison of different ligands and

therefore will be the focus of this paper. It is

important to note, however, that predicting binding

orientations is not the only metric for the accuracy

and utility of docking algorithms. Optimizing DOCK

for applications, including ranking libraries of small

molecules and calculating absolute free energies

of binding, will be addressed in other papers

(http://dock.compbio.ucsf.edu).

Large-scale validation of docking algorithms was

long hampered by the lack of a large number of high

quality protein–ligand complex crystal structures.

Thanks to advances in automation in molecular biol-

ogy and crystallography, the number of structures in

the Protein Data Bank (PDB) continues to grow at a

rapid pace [18]. The developers of GOLD were first to

test their program on a large number of available

structures [19]. Their test set was compiled using a

number of criteria to select candidate protein–ligand

complex structures. The protein must be of pharma-

cological interest and the ligands must be drug-like. In

addition, complexes were chosen that exhibited inter-

esting and unusual interactions between the ligand and

the protein. The final set of 100 (more recently ex-

panded to 134) protein–ligand complexes has served as

the basis for other, larger test sets [11, 20–22].

More recently, the CCDC/Astex set compiled 305

protein–ligand complex structures by expanding the

original GOLD test set [22]. However, the authors

note that many of the new entries contain larger li-

gands that have more rotatable bonds, making this set

less drug-like. The crystal structures in the CCDC/

Astex set were evaluated for crystallographic errors

and inconsistencies, yielding a ‘‘clean’’ set of 224 pro-

tein–ligand complexes. To create the test set for the

DOCK validation studies, we filtered out 84 complexes

with eight or more rotatable ligand bonds. In addition,

several of the complexes had properties that we felt

made them inappropriate for a validation set. These

issues included ligands that were covalently bound to

the receptor (PDB code 1ASE), ligands with missing

Fig. 2 The major DOCK 5 classes and their interconnections.
The bold arrows denote the connections between the classes that
implement the DOCK sampling algorithm. The path traced by
the arrows illustrates the sequence of operations performed upon
a ligand molecule during docking. The bold lines (without
arrowheads) denote functional connections between classes.
These connections allow one class to call functions implemented
in another. This diagram demonstrates that the classes imple-

menting the DOCK sampling methods are heavily connected to
a layer of classes that implement the physics engine: the force
field, the scoring functions, and the energy minimizers. The thin
lines denote hierarchical relationships between a master class
and modular subclasses. These hierarchical arrangements allow
new functional classes (scoring functions, energy minimizers,
etc.) to be plugged into the existing DOCK algorithm in a
modular fashion
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electron density (PDB code 1EED), and known se-

quence misregistry in the receptor (PDB code 3HVT).

Ligands with vanadium that required VDW types in

which we were not completely confident were also re-

moved. The final test set contained 114 drug-like

complexes (see Methods, Table 2).

Methods

DOCK 4 to DOCK 5 conversion

The new DOCK rigid body orienting code was written

as a direct implementation of the isomorphous sub-

graph matching method of Kuhl et al. [23]. All receptor

sphere pairs and atom center pairs are considered for

inclusion in a matching clique. This is more computa-

tionally demanding than the clique matching algorithm

implemented in previous versions of DOCK that used

a distance binning algorithm to restrict the clique

search, in which pairs of spheres and atom centers were

binned by distance. Only sphere pairs and center pairs

that were within the same distance bin were considered

as potential matches [14]. The new DOCK clique

matching implementation avoids bin boundaries that

prevent some receptor sphere and ligand atom pairs

from matching, and, as a result, it can find good mat-

ches missed by previous versions of DOCK. The rigid

body rotation code was also corrected to avoid a sin-

gularity that occurred if the spheres in the match lay

within the same plane. Both of these changes improved

orientational sampling.

The anchor-and-grow algorithm in the new version

of DOCK was also modified to prevent premature

pruning of the growth tree. The DOCK 5 anchor-and-

grow code was completely rewritten with several dif-

ferences in the implementations between DOCK 4 and

5. The anchor-and-grow implementation in DOCK 5

fixed a series of bugs that caused some branches of the

search to be pruned when they should have been pre-

served for the next round of growth. The mechanism of

minimization of partially grown conformers was also

changed to allow the entire partial conformer to move,

instead of just the latest layer, enabling more accurate

ranking and pruning of the partially grown conformers.

In addition, the simplex minimizer was re-coded

based on the original Nelder and Mead algorithm [24].

The new minimizer implementation consistently found

lower energy minima when using the same set of 1,000

ligand orientations in a receptor, indicating that it was

performing better than the previous version (data not

shown). In addition, we changed the mechanism of

minimization of partially grown ligand conformers to

allow all atoms in the partial conformer to be mini-

mized, rather than only the outermost layer of atoms.

These changes may explain why DOCK 4 performs

more poorly when run with the DOCK 5 optimized

parameters (see below).

The final version of the new DOCK code, including

all functions described below and all bug fixes, was

posted to the DOCK web site as version 5.4.0 (http://

dock.compbio.ucsf.edu). All experiments performed

with the new implementation of DOCK used this

version and will be referred to as DOCK 5 for conve-

nience. All experiments performed with the previous

version of DOCK used version 4.0.1 and will be re-

ferred to as DOCK 4.

Conversion of the DOCK codebase from C to C++

The design of the new DOCK 5 architecture balances

the speed of the code, or computational performance,

against its modularity and extensibility. The code was

developed using ANSI C++ to ensure portability across

multiple platforms [17]. The only external library used

by DOCK 5 is MPICH for parallel processing [25]. To

enable easy modification or replacement of DOCK 5

algorithm components, the DOCK 5 class structure

was designed so that there are classes for each major

DOCK algorithm function, and these classes interface

with each other by passing instances of the DOCK 5

molecule class. Within the major functions, there are

two layers of classes: those that implement the ligand

sampling functions—rigid orienting, conformational

searching, and minimizing—and those that implement

Table 2 Complexes used in the test set (total of 114 complexes)

Protein data bank identifier
1A28 1COM 1FLR 1OKL 1TYL 2MCP
1A6W 1COY 1HAK 1PBD 1UKZ 2PCP
1A9U 1CPS 1HDC 1PDZ 1ULB 2PHH
1ABE 1D3H 1HSL 1PHD 1WAP 2PK4
1ABF 1D4P 1HYT 1PHG 1XID 2TMN
1ACJ 1DBB 1IMB 1PTV 1XIE 2YPI
1ACM 1DBJ 1IVB 1QCF 1YDR 3CPA
1ACO 1DG5 1LAH 1QPE 2AAD 3ERD
1AI5 1DID 1LCP 1QPQ 2ACK 3GPB
1AOE 1DOG 1LDM 1RNT 2ADA 3HVT
1AQW 1DR1 1LST 1ROB 2AK3 4AAH
1AZM 1DWB 1LYL 1RT2 2CHT 4COX
1BYG 1EBG 1MDR 1SNC 2CMD 4CTS
1C5C 1ETT 1MLD 1SRJ 2CPP 4FBP
1C5X 1F0R 1MRG 1TDB 2CTC 4LBD
1C83 1F0S 1MRK 1TNG 2DBL 5ABP
1CBX 1F3D 1MUP 1TNH 2GBP 5CPP
1CIL 1FGI 1NGP 1TNI 2H4N 6RNT
1CKP 1FKI 1NIS 1TNL 2LGS 7TIM
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the underlying physics engine—the force field defini-

tions and the scoring functions. The sampling classes

are applied sequentially to the ligand molecule; the

physics engine classes are utilized by the sampling

classes to score the ligand–receptor interaction after

each step.

As a specific example of modularity, the DOCK 5

scoring functions are implemented as a master score

class with five scoring function subclasses. The master

score class acts as an interface to the scoring subclasses,

enabling the user to designate primary and secondary

scoring functions at runtime. This design was chosen

because the individual scoring functions were best

implemented as individual classes; they each require

different input and use different internal data struc-

tures. While they could have been implemented into

one large scoring class, the result would have been

quite large and disjoint. This solution was also applied

to the ligand conformational search, energy minimi-

zation and post-docking analysis classes.

The DOCK 5 molecule class was designed to con-

tain the minimum information required to specify a

three-dimensional ligand conformation (atom coordi-

nates, bond connectivity, atom partial charges, atom

types and bond types) to minimize the memory re-

quired to store a molecule, allowing large arrays of

molecules to be stored in RAM. Standard C-style ar-

rays were used to store the molecular data to maximize

the speed of accessing this information.

Test set preparation

The proteins and ligands were extracted from the PDB

files, which were downloaded from the PDB website

(www.rcsb.org, Table 2). The ligands were assigned

atom types and bond types manually, and hydrogens

were added using Sybyl [26]. Subsequently, AM1-BCC

partial electrostatic charges were calculated using the

Antechamber package distributed with Amber 8 [27,

28]. The number of rotatable bonds of each of the li-

gands was measured using DOCK, and ligands

with > 7 rotatable bonds were eliminated from the test

set. We choose seven or fewer bonds to give a rea-

sonable representation of DOCK’s performance using

compounds similar to those of most interest in drug

discovery [29–31]. The final test set that was used

consisted of 114 non-covalent protein–ligand com-

plexes [32] (Table 2).

For the proteins, we removed all waters, covalently

linked sugars, sulfates, and halogens that were not

part of the ligand. Co-factors, such as heme, ATP,

and NADPH, were kept, atom and bond types were

assigned manually, and Gasteiger–Hückel partial

electrostatic charges were calculated using the

‘‘Compute’’ module in Sybyl [26, 33, 34]. Ions, such as

calcium and zinc, were considered to be part of the

protein and the correct charge was assigned manually.

Different VDW parameters for zinc were used

depending on the coordination state of the zinc atom

in the protein–ligand complex (Table 3). Hydrogens

were added to the protein residues using the ‘‘Bio-

polymer’’ module in Sybyl, as were AMBER partial

charges and VDW parameters [26, 37]. No additional

optimization of the protein structure was carried out

at this point.

The GRID accessory program of DOCK was used

to pre-calculate scoring function potential grids [16].

All parameters were set to default parameters, except

for the ‘‘energy_cutoff_distance,’’ which was set to

9,999, resulting in the inclusion of all protein atoms in

the energy calculation. For matching, the dms program

was used to generate a molecular surface for each

receptor [38]. The SPHGEN accessory program of

DOCK was used to create a negative image of the

surface using spheres [39, 40]. For the purpose of this

validation study, a general procedure was established

to generate a sphere cluster for every protein in the test

set. In this procedure, we select all the spheres found

within 10 Å of any ligand atom. The receptor box

delimiting the active side was calculated with the

accessory program SHOWBOX using the sphere set

with an additional 5 Å boundary. We have explored

additional box sizes ranging from 1 Å to 9 Å padding

and found that there is little sensitivity to the exact

padding amount (i.e. success rate for rigid ligand

docking of 80 ± 1%, time increase 10% with padding

size increase, and an average test set energy of -

50 ± 0.1 DOCK units). The final procedure creates

sphere sets with an average of 101 docking spheres and

boxes of ~20 Å3. These receptor sphere sets are larger

than what one would typically use in most docking

applications. This adds stringency to our testing of

DOCK 5 by increasing the orientational and transla-

tional space that it must search.

Table 3 Zinc VDW parameters used to generate grids

Tetra-coordinated Zinca

Radius 1.700 Å
Well depth 0.067 kcal/mol
Penta-coordinated Zincb

Radius 1.100 Å
Well depth 0.0125 kcal/mol

a Parameters used for receptors with tetra coordinated zinc ions
[35]
b Parameters used for receptors with penta coordinated zinc ions
[36]
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Optimized hydrogen locations for test set receptors

To assess the effect of hydrogen placements on dock-

ing outcomes, we also optimized the hydrogen atom

placement and hydrogen-bonding network for the

receptor using the ‘‘Dock Prep’’ module in Chimera

[41]. In this module, the hybridization states of the

non-hydrogen atoms of a PDB structure are deter-

mined by an enhanced version of the IDATM atom-

typing algorithm [42]. Then, all hydrogens that can be

unambiguously positioned are added to the file. To

assist in positioning ambiguous hydrogens, hydrogen-

bonding interactions are examined. The definitions of

hydrogen-bonding donors and acceptors as well as

hydrogen-bonding angle and distance criteria are based

on the values found in Mills and Dean [43]. Relevant

hydrogen bonds (H-bonds) are examined from shortest

to longest, with satisfaction of shorter bonds having

priority. For H-bonds where it is unclear which end is

acting as the donor (e.g. water–water), use of that bond

is postponed until either end is resolved further,

though any lower-priority bonds that conflict geomet-

rically with the postponed bond are eliminated from

consideration at that time. If neither end is resolved by

other interactions, the ambiguity is decided arbitrarily.

Should examination of H-bond interactions not com-

pletely determine the positions of all of the hydrogens

bound to a heavy atom, they are positioned to first

satisfy potential H-bond interactions, then any

remaining hydrogens are positioned to avoid steric

clashes with other atoms. For histidine residues, nor-

mally one nitrogen will be protonated (chosen based

on H-bond/steric considerations); however if both ring

nitrogens are H-bond donors, they will both be pro-

tonated.

Selection of active site waters

All waters within 3 Å RMSD of any ligand heavy atom

were selected. These waters were included as part of

the receptor. The new receptor–water complexes were

then subjected to the same hydrogen bonding optimi-

zation as above.

DOCK parameter optimization

To characterize the performance of DOCK 5 in

regenerating known complex structures, we explored

the optimum parameters for use with rigid and flexible

ligand docking strategies (see Appendix 1). Unless

otherwise stated, all docking experiments were carried

out on 2.2 GHz dual processor Opteron 828s running

Linux Fedora Core 3. The code was compiled using

open-source GNU compilers (http://www.gnu.org).

The optimized parameters have been implemented as

the defaults. We note that our primary criterion for

optimization was success in finding the proper ligand

geometry and not the CPU time required per com-

pound. Unless otherwise stated, these parameters were

used for all experiments in this paper.

Greedy clustering of conformational ensemble

The greedy clustering algorithm is designed to elimi-

nate redundant ligand orientations from consideration.

DOCK generates a set of ligand orientations that are

ranked by the scoring function. The RMSD between

each ligand orientation in the list is calculated. If the

RMSD between two ligand orientations falls within the

clustering threshold, the second orientation is assigned

to a cluster with the first. The first ligand orientation is

selected and compared to all subsequent unclustered

orientations in the list; this process is repeated until the

last unclustered orientation has been selected. Once

the entire list has been processed, only the best scoring

ligand pose in each cluster, designated as the cluster

head, is retained.

Evaluation of MPI functionality

Parallel processing is fully integrated into the DOCK

calculation. The DOCK program starts a single master

node and a set of processing nodes. The master node

performs file processing and molecule input/output,

whereas the processing nodes perform the actual

docking calculations. If the number of processors is set

to 1, the code defaults to non-MPI behavior. As a re-

sult of this configuration, there will be minimal differ-

ence in performance between 1 and 2 processors.

Improved performance will only become evident with

more than two nodes. It should be emphasized that the

primary benefit in using DOCK 5 in parallel mode is to

reduce bookkeeping tasks associated with manually

splitting up a database into multiple chunks, which

then must be submitted to different processors indi-

vidually. DOCK 5 automatically partitions out subsets

of a database to various nodes, collates and ranks the

final results, and takes care of all intermediate book-

keeping.

To gauge the performance of parallelization of the

DOCK 5 algorithm, two small subsets of the NCI

database from the ZINC database were constructed

[25, 44]. The two subsets, one containing 500 and the

other 1,000 small molecules, were filtered to have £5

and £14 rotatable bonds, respectively. The receptor

used as a target for this study was HIV-1 reverse
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transcriptase in complex with nevirapine (PDB code

1VRT). Because the receptor was not part of the test

set, nevirapine was flexibly redocked using the opti-

mized parameters, which yielded a ligand orientation

0.28 Å RMSD from the crystal structure orientation.

In addition, a library consisting of 1,000 copies of ne-

viripine was generated to remove dependence on the

order and size of the compound library. All parallel-

ization study calculations were executed at the Com-

putational Science Center at Brookhaven National

Laboratory (http://www.bnl.gov/csc) on a cluster con-

sisting of 34 nodes with dual 3.2 GHz Xeon processors

running Linux. Tests were performed using between 2

and 68 nodes. The code was compiled using open-

source GNU compilers and MPI software mpich ver-

sion 1.2.7 from Argonne National Laboratory (http://

wwwunix.mcs.anl.gov/mpi/mpich).

Results

We first consider the results of rigidly docking ligands,

which used a conformation taken directly from the

complex crystal structure, to the complex crystal

structure conformation of the receptor. We then pres-

ent the results of flexible ligand docking tests. In each

case, we consider (a) the overall performance of each

sampling algorithm, (b) the ability of each algorithm to

reproduce the crystal ligand orientation as the top-

scoring pose, (c) the effect of the initial ligand con-

formation on the performance of the algorithm, (d) any

additional information contained in the set of all

sampled ligand orientations, and (e) the ability to ex-

tract additional information by clustering docking re-

sults. We also compare the performance of DOCK 5 to

equivalent DOCK 4 experiments. Finally, we analyze

the cases in which DOCK 5 fails to reproduce the

crystal structure and propose some directions for

improvement of both the DOCK algorithm and our

test set preparation method.

Rigid ligand docking

Overall performance

Unless otherwise noted, all experiments described in

this section involved rigid docking of the complex

crystal structure ligand conformation to the receptor

complex crystal structure. For each case in the test set,

the heavy atom RMSD between the top-scoring

docked ligand pose and the complex crystal structure

ligand pose was evaluated. A DOCK 5 run was con-

sidered to be successful for cases in which the RMSD

between for the top-scoring ligand orientation and the

crystal ligand orientation was less than 2.0 Å. DOCK 5

selects the correct pose as the lowest energy structure

for 79% (90/114) of the test cases using the rigid

docking protocol with an average time of 55 s per

complex.

Dependence on ligand conformation

An ensemble of ligand conformations was generated

using the anchor-and-grow algorithm to apply changes

of each of the ligand’s rotatable bonds. This expan-

sion generated a conformation ensemble for each li-

gand that covered all torsional parameters that

DOCK samples. Each generated conformation was

rigidly docked to the receptor, and the results from all

the dockings were binned according to the magnitude

of the ligand’s conformational perturbation (Fig. 3a).

The curve shows dramatic and continual decrease in

the success rate as the perturbation magnitude in-

creases with little success for any ligand conforma-

tions greater than 0.5 Å heavy atom RMSD away

from the crystal conformation. Therefore, any con-

formation generation method must generate ligand

conformations within 0.5 Å heavy atom RMSD of the

crystal conformation for rigid docking to have a rea-

sonable chance to succeed.

Analysis of total orientational ensemble

To this point, we have disregarded ‘‘near misses,’’

which we define as any generated orientations within

2 Å RMSD from the crystal structure that are close to

the top of the ranked conformation list, but are not the

best scoring poses. We can examine the remaining

poses either by including all poses that differ by a fixed

energy unit from the most favorable geometry or by

including those that differ by a fixed number of ranked

poses from the most favorable energy. In order to

quantify the extent of these partial successes, all gen-

erated ligand poses for each test case were preserved

and sorted by their energy scores.

An energy gap is defined as the difference between

the DOCK score of the top scoring ligand orientation

and the score of a ligand ranked further down the list.

Considering all docked ligand orientations with an

energy gap of 2.5 DOCK units—an average of five li-

gand orientations—increases the rigid ligand docking

success rate to 90% for the entire test set, while an

average of 50 orientations increase the rigid docking

success rate to 99% (Fig. 4a, b). These results indicate

that the orienting method samples near-crystal ligand

orientations well, but the current energy scoring func-
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tion cannot discriminate well between the top-ranked

orientations.

Geometric clustering of poses

Each ligand conformational ensemble was spatially

clustered according to inter-pose RMSD values (see

Methods section for algorithm details). After examin-

ing a range of potential cut-offs, an optimal value of

1.0 Å was chosen (Fig. 5). Using this clustering

threshold, only 15 clusterheads are required to achieve

a success rate of 99%, compared with the top 50

ranked unclustered orientations. This result is encour-

aging, suggesting that the clustering helps sort through

the conformers efficiently.

Flexible ligand docking

Overall performance

Unless otherwise noted, all experiments described in

this section involved flexible docking of the ligand to

the receptor complex crystal structure. As with the ri-

gid docking tests, the heavy atom RMSD between the

a) b)
Fig. 3 (a) Rigid docking
success rates (n)—as
calculated by any
conformation being within
2 Å heavy atom RMSD of the
complex crystal
orientation—shown as a
function of the ligand internal
conformation perturbation
magnitude (RMSD). (b)
Flexible growth success rates
(S)—as calculated by any
conformation being within
2 Å heavy atom RMSD of the
complex crystal
orientation—shown as a
function of the magnitude of
the anchor perturbation
(RMSD)

a) b)
Fig. 4 (a) The rigid (n) and
flexible (S) docking success
rate as a function of the
DOCK score energy gap
(kcal/mol) for all conformers
generated. (b) The rigid and
flexible docking success rate
as a function of the number of
ranked conformers examined
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top-scoring docked ligand pose and the complex crystal

structure ligand pose was evaluated for each complex

in the test set. The success rate over the entire test set

using the optimized flexible ligand anchor-and-grow

protocol was 72% (82/114) with an average time of

314 s per complex.

Dependence on anchor position

The anchor-and-grow algorithm belongs to the set of

incremental construction algorithms for searching li-

gand conformational space [14, 15]. It uses a rigid

docking step for the ‘‘anchors’’ to identify likely anchor

positions (anchor orienting), and a torsion angle search

step to generate ligand conformations rooted at the

previously identified anchor positions (flexible growth).

In order for flexible docking to succeed, both of these

individual steps must be successful.

To measure the dependence of success rate on the

precision of the anchor location, the crystal position of

the anchor for each complex in the test set was per-

turbed randomly from 0 Å to more than 10 Å. Each

perturbed anchor position was then considered as the

starting point for flexible growth (Fig. 3b). With the

anchor starting less than 0.5 Å heavy atom RMSD

from the crystal orientation, the growth algorithm can

find the experimental orientation 99% of the time.

However, the results demonstrate a rapid decrease in

success rate as the anchor is moved further away from

its crystal structure position, decreasing to 76% at

1.0 Å perturbation down to 54% at 2.0 Å. These data

imply that if the flexible ligand docking algorithm can

place the anchor within 0.5 Å heavy atom RMSD of

the crystal anchor position, DOCK 5 has a very high

probability of successfully predicting the full binding

mode correctly.

Analysis of total conformational ensemble

We examined the entire ensemble of conformers gen-

erated by flexible docking, as we described previously

in the rigid ligand docking analysis. Considering all

docked ligand conformations with a 2.5 DOCK unit

energy gap—an average of five ligand orienta-

tions—increases the success rate to 82%, while an

average of 100 orientations increasing the success rate

to 95% (Fig. 4a, b). Again, these results indicate that

the sampling density produced by the optimized

parameters is quite high, but there is little discrimina-

tion between very similar poses by the current scoring

function.

Geometric clustering of poses

As with the rigid ligand docking tests, each confor-

mational ensemble was spatially clustered according to

interpose RMSD (see Methods section for algorithm

details). A clustering threshold of 1.0 Å, as determined

in the rigid docking section, was used (Fig. 5). Using

this clustering threshold, only 50 clusterheads must be

examined to reach a success rate of 95% as compared

to 100 purely ranked orientations. Once again, this

result is encouraging, as it requires a small number of

ligand poses to be retained for rescoring with more

a) b)Fig. 5 The rigid (filled) and
flexible (open) docking
success rate as a function of
the number of cluster heads
examined. Clusters with
heavy atom RMSD cutoffs of
1.0 Å (d), 3.0 Å (m), and
5.0 Å (r) were compared
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advanced scoring functions that are better at discrimi-

nating between very similar ligand poses.

Comparison to DOCK 4

Using the optimized DOCK 5 parameters, we per-

formed the same rigid and flexible ligand docking

experiments on the entire test set using the last avail-

able version of DOCK 4. The performance of the

current implementation of DOCK 5 compared favor-

ably with the DOCK 4 performance (Table 4). We

attribute the improved accuracy in performance to

improvements outlined in the Methods Section. How-

ever, when comparing the speed of docking experi-

ments between DOCK 4 and DOCK 5, DOCK 4 is

fivefold faster for rigid docking and 30-fold faster for

flexible ligand docking than DOCK 5 (Table 5). We

attribute this increased calculation time to extra stages

of minimization and sampling in DOCK 5, as well as

additional overhead necessary to preserve the modu-

larity of the code (see Methods).

Comparison to other docking methods

Developers of Glide, GOLD and FlexX have also

evaluated their methods using similar test sets and

made some of their analyses available [9, 45, 46]. Based

on this data, we note that DOCK’s flexible docking

success rate of 70% is comparable to Glide’s and

FlexX’s success rates of 82% and 61%, respectively

(Table 6). Unfortunately, GOLD has not posted the

results for the entire CCDC/Astex test set, so a com-

plete comparison could not be made. However, for the

subset of the test set they did report, DOCK’s success

rate of 67% is once again reasonable as compared to the

success rate of 77% for GOLD, considering that the

DOCK scoring function does not use either empirically

weighted parameters or adjustable parameters.

Analysis of successes and failures of docking

protocols

Docking failures can be categorized into two catego-

ries: sampling (soft) and scoring (hard) failures [47].

For scoring failures, an orientation near the crystal

structure was sampled in the course of the DOCK run,

but the scoring function failed to rank it at the top of

the list. A sampling failure indicates that the DOCK

run failed to sample any orientations within 2 Å

RMSD of the crystal structure. The major caveat of

this classification scheme is the assumption that the

model of both the receptor and the ligand, including

the VDW parameters, electrostatics, and hydrogen

orientations and protonation states, reflect those that

occur in the experimental structure [48]. Here, we

analyze the flexible docking ligand failures within the

sampling-scoring classification scheme.

Failures resulting from receptor modeling/structural

problems

The original CCDC/Astex test set was filtered for

experimental errors using a variety of metrics [22]. We

plotted the flexible ligand success rate as a function of

various metrics of the quality of the X-ray structures to

determine if the selection criteria were appropriate for

testing the DOCK algorithm (Fig. 6). There appears to

be at best a weak correlation between the RMSD of

the best scoring DOCK pose and either crystal reso-

lution or b-factor of active site or backbone atoms,

indicating that the cut-offs chosen for the original set

were reasonable for docking purposes.

We next explored whether specific atom types caused

problems with the DOCK force field terms by corre-

lating the test set success rate with the presence and type

of active site cofactor (Table 7). The only clear problem

involved metal ions in the receptor. These structures

showed a much lower success rate, accounting for nearly

half of both the rigid and flexible ligand docking failures.

However, there still are a number of failures in the

portion of the test set without cofactors in the active site

that require further characterization. Unless otherwise

mentioned, all studies below were performed on this

subset, referred to as the Cofactor Free (CF) subset.

Table 4 Success based on DOCK version (see Methods)

DOCK version Rigid ligand Flexible ligand

4.0.1 71.9% 42.1%
5.4.0 79.0% 71.9%

Table 5 Average length of time in seconds for docking calcu-
lation using the optimized parameter set (see Appendix 1)

Average Minimum Maximum

DOCK 4 rigid lig 10.9 ± 12.1 0.99 66.8
DOCK 4 flexible lig 7.1 ± 6.04 0.44 33.5
DOCK 5 rigid lig 55.4 ± 37.5 6.0 198.0
DOCK 5 flexible lig 314.7 ± 449.8 2.0 2638.0

Table 6 Comparison of DOCK success rates to other docking
programs for flexible ligand docking

Program No. of complexes Success DOCK success

GOLD 43 77% 67%
Glide 71 82% 70%
FlexX 71 61% 70%
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For all members of the test set, the experimental

resolution of the crystal structures was too poor to

identify hydrogen atom locations. We originally mod-

eled the hydrogen atom positions using a rule-based

method. To test this scheme, we applied a more ad-

vanced hydrogen addition procedure that accounted

for steric clashes and hydrogen-bonding networks to

the CF subset (see Methods). As a follow-up, we as-

sumed all crystallographically bound waters found

within 3 Å of any ligand heavy atom were critical for

binding and included them in the receptor model as

well. We found that both of these procedures improved

the flexible ligand docking success rate (Table 8).

Failures resulting from ligand flexibility

In addition to the selection criteria imposed on the

original test set, we also filtered out complexes in

which the ligand had greater than seven rotatable

bonds (see Methods). We reexamined this choice on

the CF subset by plotting the rigid and flexible ligand

docking success rate as a function of the number of

flexible bonds (Fig. 7). As expected, the results show a

decrease in the success rate with increasing ligand size,

but with no dramatic drop-off.

Sampling versus scoring failures

We now return to classification of DOCK failures

based on scoring and sampling classifications [47].

First, we examined the test set failure cases with active

site cofactors (Table 9). Within this set, nine examples

were scoring failures for both rigid and flexible ligand

docking, indicating that new VDW and electrostatic

parameters need to be developed for magnesium,

heme groups, and some coordination states of zinc. In

addition, there were three flexible ligand scoring fail-

ures that were rigid successes, thus suggesting that the

flexible algorithm was able to identify additional ori-

entations with better scores than the experimental li-

gand orientation. Only two flexible ligand docking

cases were sampling failures. We expected flexible li-

gand docking sampling failures due to the increased

ligand degrees of freedom compared with rigid ligand

docking, but it does not appear to be a severe problem

in this test set containing ligands with less than eight

Fig. 6 Correlation of flexible
ligand success (filled) and
failure (striped) rates with
crystallographic resolution
(Å) and experimental
B-factor (Å2). For active site
B-factors, the active site was
defined as any atom within
9 Å of the experimental
ligand orientation

Table 7 Success as function of active site cofactor

Total count Rigid
success

Flexible
success

Entire test set 114 79.0% 71.9%
CF subset 76 81.6% 76.3%
Active site cofactor 38 73.7% 63.2%
Active site metal cofactor 28 64.3% 50.0%

Table 8 Flexible ligand success as function of CF test set
preparation (total of 76 complexes)

Test set preparation technique Success

Standard 76.3%
Hydrogen optimization 78.9%
Active site waters + hydrogen optimization 80.3%

612 J Comput Aided Mol Des (2006) 20:601–619

123



rotatable bonds. Finally, one of the rigid ligand dock-

ing scoring failures was a flexible ligand success. In this

case, there was a large VDW clash between one of the

ligand atoms and the receptor. The anchor-and-grow

algorithm was able to build the ligand in the active site

to avoid this clash, which the rigid ligand docking

algorithm could not accommodate.

We repeated this analysis with the CF subset

(Table 10). Here, there was one rigid ligand docking

sampling failure, which also failed for flexible ligand

docking. Upon closer examination of the receptor site,

a residue making critical interactions with the ligand

was not resolved in the experimental complex structure

(PDB code 1A6W). We anticipate that there may not

be enough contacts to correctly place the molecule.

Seven examples were scoring failures for both rigid and

flexible ligand docking. In this subset, though, we

cannot attribute the failure to unusual atom types,

indicating that the scoring function is incorrectly

modeling some portion of the energy landscape. There

were also seven scoring failures for flexible ligand

docking that were successes for rigid ligand docking,

once again suggesting that the flexible docking algo-

rithm identified additional orientations that scored

better than the experimental orientation.

As in the cofactor set above, there were only three

additional flexible ligand docking sampling failures.

One of these was also a scoring failure in rigid ligand

docking, implying that this failure case may actually be

due to a combination of both sampling and scoring

factors. The remaining two flexible ligand docking

sampling failures once again indicate that the flexible

algorithm was able to identify alternative orientations

that scored better than the crystal complex orientation.

Finally, five rigid ligand docking scoring failures were

flexible ligand dockings successes, signifying that the

b)

a)Fig. 7 Rigid and flexible
docking success (filled) and
failure (striped) rates as a
function of the number of
rotatable bonds in each ligand
in CF test set

Table 9 Comparison of success and failure cases of both rigid
and flexible docking for complexes in test set with cofactors in
active site (total of 36 complexes)

Rigid
sampling
failure

Rigid
scoring
failure

Rigid
success

Flexible sampling failure 0 0 2
Flexible scoring failure 0 9 3
Flexible success 0 1 23

Table 10 Comparison of success and failure cases of both rigid
and flexible docking for complexes in CF subset (total of 76
complexes)

Rigid
sampling
failure

Rigid
scoring
failure

Rigid
success

Flexible sampling failure 1 1 2
Flexible scoring failure 0 7 7
Flexible success 0 5 53
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flexible ligand docking algorithm is able to compensate

for intermolecular clashes in the active site of the

experimental structure that the rigid ligand algorithm

simple cannot accommodate (data not shown).

Analysis of DOCK score for docking protocols

To analyze the ability of DOCK to reproduce the li-

gand–receptor interaction energy as measured by the

DOCK scoring function, we plotted the score from the

top-ranking pose for both rigid and flexible ligand

docking that were successful against the DOCK score

of the complex crystal structure (Fig. 8a, b). Each

crystal structure ligand was minimized with 1,000 steps

of the DOCK simplex minimizer. The significant fea-

ture of both plots is that the docked pose generally

scores more favorably than the minimized crystal

structure. When rigid ligand docking is compared with

flexible ligand docking, the flexibly docked ligand

conformations almost always have a lower score

(Fig. 8c). These results indicate that increasing the

amount of ligand orientational and conformational

sampling increasingly identifies deeper wells in the

binding energy landscape. When we plotted the flexible

ligand success rate against the minimized crystal score,

there was little correlation, though DOCK was ob-

served to perform better using crystal structures with

scores more negative than –20 DOCK units (Fig. 8d).

This lack of correlation indicates that, while having a

negative interaction energy for the crystal structure

will increase the probability of DOCK finding the

correct binding orientation, this metric is not a good

predictive indicator of DOCKing success.

Database docking using MPI

Substantial speedup is observed for up to about 14

processors for the 500 compound library and 18 pro-

cessors for the 1,000 compound library (Fig. 9). Inter-

estingly, the library with 1,000 copies of neviripine

shows almost perfectly parallel behavior up to 68

processors. We hypothesize that the speedup for the

heterogeneous libraries will continue to approach ideal

as larger libraries with increased numbers of rotatable

bonds are used, but will never be completely linear due

to overhead from input and output and lag resulting

from communication between the nodes.

Discussion

In this paper we have described a new version of the

DOCK program. Our main purpose was to develop

modular code that was straightforward to modify and

c)a)

b) d)

Fig. 8 (a) Successful rigid
ligand docking scores (kcal/
mol) as a function of
minimized crystal structure
ligand scores (kcal/mol),
(b) Successful flexible ligand
docking scores (kcal/mol) as a
function of minimized crystal
structure ligand scores (kcal/
mol), (c) Successful flexible
ligand docking energy scores
(kcal/mol) as a function of
successful rigid ligand
docking energy scores (kcal/
mol), (d) Comparison of the
RMSD between all top
ranked flexible ligand
orientations and the
minimized crystal ligand
orientations to the minimized
crystal interaction energy as
measured by the DOCK score
(kcal/mol)
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which showed improved performance over the old

version. By using an object-oriented language for

DOCK 5, we were able to accomplish this goal, and we

demonstrate, here, how routines such as the simplex

minimizer and the clustering algorithm can be added or

replaced without changes in other parts of the pro-

gram. The successful parallelization of the calculation

and the addition of post-processing clustering were

simple but useful modifications to the algorithm, which

encourages further investigations and algorithm

experimentation.

The performance of DOCK 5 on a curated test set of

114 protein–ligand complexes proved to be superior to

DOCK 4, with an over-all success rate of 79% for rigid

ligand docking and 72% for flexible ligand docking,

compared with 72 and 42%, respectively for DOCK 4.

We ascribe the improvements to significant changes in

the flexible search sampling and pruning procedures

and to code corrections. The difference in performance

of DOCK 5 for rigid and flexible docking is relatively

modest (79% vs. 72%) even though the search for

flexible ligands includes both configurational and con-

formational spaces. Using the receptor structure to

prune the conformational search tree is clearly a rea-

sonably efficient procedure. Although, the DOCK 5

code takes longer on average to run a calculation than

DOCK 4, we feel this drawback is balanced by the

improved results and the modularity of DOCK 5. Ef-

forts to increase throughput are underway.

We also wish to stress the importance of having a

high quality test set for evaluation of docking pro-

grams. X-ray crystallography typically provides essen-

tial but incomplete data for the calculations we wish to

carry out. For example, in the majority of cases,

hydrogen positions must be determined. In other cases,

critical water molecules must be placed and some

residues need to be modeled where experimental data

is lacking. The ligand conformations may also contain

significant uncertainties. Finally, we must be aware of

the inherent assumptions underlying the force field

parameters used in the molecular modeling steps. All

of these considerations speak to the need for careful

inspection of test set complexes. Our results demon-

strate this issue: the success rate for reconstitution of

the complex geometries was shown to depend on the

nature of the cofactors, the optimization of hydrogen

placements, and the inclusion of critical waters.

The primary result that emerges from the analysis of

the docking failures is that the current force field re-

quires improvement, particularly in the treatment of

metal-containing cofactors. We also note that binding

conformations and configurations are determined by the

free energy of the system while we are only, at best,

estimating the enthalpy. Finally, we do identify a few

situations in flexible ligand docking where the confor-

mational sampling is insufficient. A test set with ligands

containing more than seven rotatable bonds would,

presumably, show an increase in these sampling failures.

We hypothesize that the key weakness is the pruning

algorithm, which we will explore in future studies.

What are the routes to improvement? An obvious

starting point is the use of more accurate methods for

preparing experimental structures, including tools for

accurate pKa prediction and de novo identification of

critical waters. For the docking calculation itself, it

would be helpful to improve VDW and electrostatic

parameters for all atoms heavier than oxygen, partic-

ularly for metal atoms. Ideally, one would directly in-

clude charge polarization and ligation geometry in the

force field. In addition, modifications to the force field

to better approximate the free energy—e.g. general-

ized Born or Poisson Boltzmann implicit solvation

electrostatics with surface area corrections to account

for the hydrophobic effect—would also improve mod-

eling accuracy. The DOCK 5 platform is positioned to

enable future developments and work is underway to

incorporate them into future releases.

Conclusions

In this study, we have evaluated a new version of

DOCK. We have found that it predicts binding

geometries of a structurally diverse test set comparably

Fig. 9 Speedup (calculated as length of time for calculation on a
single processor/length of time for calculation on n processors)
for docking a library of 500 different small molecules (s), 1,000
different small molecules (M), and 1,000 copies of nevaripine (S)
using flexible ligand docking as a function of the number of
processors in MPI mode. A perfectly parallel calculation (–) is
plotted for comparison
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to similar algorithms and better than the previous

version of DOCK. Simultaneously, we have thoroughly

explored the sampling portions of the algorithm and

found that the majority of binding pose prediction

failures is a result of scoring function deficiencies. In

further exploration of these failures, we have deter-

mined that the docking success seems to be a function

of whether there are alternative orientations that score

well—as defined by the scoring function—rather than

the interaction energy of the experimental structure

itself. Finally, we have implemented new functional-

ities and shown that they improve the success rates of

both rigid and flexible ligand docking. In general, we

have a new tool that not only performs well on a typical

test set but is an ideal tool to explore any number of

new algorithms in the context of the molecular docking

problem.
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Appendix 1

Rigid docking parameter optimization

The parameters listed in Appendix 1 control the

sampling of ligand poses within the receptor active site

during rigid ligand docking. The parameters that con-

trol the step sizes for the simplex minimizer

(simplex_trans_step, simplex_rot_step, and sim-

plex_tors_step) were optimized in a previous study and

were held at those values [14, 49]. For the remaining

parameters—the number of orientations (max_orien-

tations) and the number of minimization steps (sim-

plex_final_max_iterations)—a series of rigid ligand

docking experiments were performed to optimize the

DOCK score for the top ranking pose averaged over

the entire test set and the success rate, defined as the

orientation of the top ranking pose being within 2 Å

heavy atom RMSD from the crystal ligand. The success

rate and DOCK scores initially improved as the num-

ber of orientations and the amount of minimization

increased and then converged (Fig. 10). We selected

the lowest converged values—1,000 orientations and

1,000 minimization steps—as optimal.

Flexible docking parameter optimization

For the more complex flexible ligand algorithm, the

parameter optimization was performed first on the

anchor docking, and the best parameters were then

used for optimizing the growth. The parameters that

control the sampling in both these steps are listed in

Appendix 2. As for rigid ligand docking, the

parameters that control step sizes for the simplex

minimizer were set to the previously defined optimal

values.

Fig. 10 Optimization of parameters for rigid ligand docking.
Parameters of 50 (h), 100 (s), 1,000 (O), and 10,000 (.)
minimization steps (simplex_final_max_iterations) are examined
as a function of the number of orientations (max_orientations)

Appendix 1 Description of and optimized default values for parameters that affect rigid ligand docking

Parameter name Parameter description Value

max_orientations The number of ligand poses sampled by the rigid orienting algorithm 1,000
simplex_score_converge The score threshold used to determine simplex convergence 0.1
simplex_trans_step The maximum initial translation step size for the simplex minimizer 1.0 Å
simplex_rot_step The maximum initial rotational euler angle step size for the simplex minimizer 0.1 radian
simplex_tors_step The maximum initial dihedral angle step size 10�
simplex_final_max_iterations The maximum number of simplex iterations 1,000
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The first step in the anchor-and-grow algorithm is

ring identification or anchor segmentation. All bonds

within molecular rings are treated as rigid. This clas-

sification scheme is a first-order approximation of

molecular flexibility, since some amount of flexibility

can exist in non-aromatic rings. To treat such phe-

nomena as sugar puckering and chair-boat hexane

conformations, the user needs to supply each ring

conformation as a separate input molecule. If the

molecule does not have a ring, the largest rigid seg-

ment is specified as the anchor. Additional bonds may

be specified as rigid by the user. For simplicity, all runs

in this study used the default of largest anchor only. If

the molecule had multiple anchors of the same size, the

first anchor on the anchor list was used. Once the an-

chor had been identified, the parameters that control

the number of anchor orientations (max_orientations),

the number of anchor minimization steps (sim-

plex_anchor_max_iterations), and the cutoff for the

anchor pruning (num_confs_for_next_growth) were

explored. Because the anchors are substructures of the

ligand, the parameter convergence was monitored as a

function of the RMSD between the anchor orientation

and the corresponding substructure of the crystal li-

gand averaged over all generated orientations before

the pruning function. When the number of anchor

orientations and minimization steps were varied sys-

tematically, the number of minimization steps con-

verged at 500 (Fig. 11a). We expected this optimized

value to be lower than rigid docking because anchors

are typically smaller than the final ligand.

Because the anchor orientations are pruned before

the growth step, we used the optimized number of

minimization steps while exploring the number of

anchor orientations and the pruning cutoff. The

optimal anchor pruning cutoff of 100 was chosen as a

balance between convergence and the length of the

calculation, which remained fixed for the final explo-

ration of the number of orientations. The optimal

number of orientations was selected to be 500 because

the combination of these three variables generated

the highest number of anchors near the crystal

structure (Fig. 11a). Note that if the number of ori-

entations was increased beyond the selected value,

the number of anchors near the crystal structure

dropped dramatically. We hypothesized that this

resulted from a combination of increased sampling

and pruning. The pruning function was designed to

identify a representative orientation from each energy

well that the matching algorithm finds (see Introduc-

tion: DOCK background). As sampling increased, the

ranked orientations began to converge toward the

bottom of the deepest energy wells, sampling less of

the alternative high energy wells. Because the pruning

function is designed to supply the most diverse

ligands, fewer orientations made it through the

pruning step as the sampling is increased. We felt that

this effect was reducing the potential sampling for the

algorithm and plan to explore alternatives in future

studies.

The next step in the anchor-and-grow algorithm is

flexible bond identification. Each flexible bond is

associated with a label defined in an editable file. The

parameter file is identified with the flex_definition_file

parameter. Each label in the file contains a definition

based on the atom types and chemical environment of

the bonded atoms. Typically, bonds with some degree

of double bond character are excluded from minimi-

zation so that planarity is preserved. Each label is also

associated with a set of preferred torsion positions.

The location of each flexible bond is used to partition

the molecule into rigid segments. A segment is the

largest local set of atoms that contains only non-

flexible bonds.

Using the optimal anchor parameters, we varied

number of minimization steps for each layer of growth

(simplex_grow_max_iterations) and the cutoff of

number of conformers for the growth pruning function

(num_confs_for_next_growth). Because the dock run

now creates a complete pose, we return to using a

combination of the score for the top ranking pose

averaged over the entire test set and the success rate to

Appendix 2 Description of and optimized default values for parameters that affect flexible ligand docking

Parameter name Parameter description Value

max_orientations The number of anchor poses sampled by the rigid orienting algorithm 500
num_anchor_orients_for_growth The maximum number of anchor orientations promoted to the conformational search 100
num_confs_for_next_growth The number of partially grown ligand conformers stored at each stage of the flexible growth

procedure
100

simplex_anchor_max_iterations The maximum number of simplex iterations applied to the ligand anchor during anchor
docking

500

simplex_grow_max_iterations The maximum number of simplex iterations applied to the ligand during the flexible growth
procedure

500
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monitor convergence. As with rigid ligand docking, the

success rate improves modestly with improved sam-

pling and eventually converges (Fig. 11). However,

although DOCK scores improved as the number of

orientations and the amount of minimization in-

creased, the values do not converge. We once again

attribute this phenomenon to the pruning function.

Therefore, we used the success rate to select the lowest

converged values—500 minimization steps and the

cutoff for the number of conformers for the growth

section as 100—as optimal.
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