
Abstract The requirement of aligning each individ-

ual molecule in a data set severely limits the type of

molecules which can be analysed with traditional

structure activity relationship (SAR) methods. A

method which solves this problem by using relations

between objects is inductive logic programming (ILP).

Another advantage of this methodology is its ability

to include background knowledge as 1st-order logic.

However, previous molecular ILP representations

have not been effective in describing the electronic

structure of molecules. We present a more unified and

comprehensive representation based on Richard

Bader’s quantum topological atoms in molecules

(AIM) theory where critical points in the electron

density are connected through a network. AIM theory

provides a wealth of chemical information about

individual atoms and their bond connections enabling

a more flexible and chemically relevant representa-

tion. To obtain even more relevant rules with higher

coverage, we apply manual postprocessing and inter-

pretation of ILP rules. We have tested the usefulness

of the new representation in SAR modelling on

classifying compounds of low/high mutagenicity and

on a set of factor Xa inhibitors of high and low

affinity.
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topology (StruQT) Æ Atoms in molecules (AIM) Æ
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Introduction

A structure–activity relationship (SAR) relates bio-

logical or therapeutic activity of a drug to its chemical

structure. SAR modelling has been widely applied in

elucidating biological processes and in the develop-

ment of new drugs. In addition to being reliable, a

model should also be comprehensible and provide a

better understanding of the chemistry and biology be-

hind the problem. Any SAR methodology consists of a

representation to describe chemical structure and a

learning algorithm which relates a compound’s activity

to its structure.

Most learning algorithms employed in SAR prob-

lems require an attribute-based representation where

each molecule is described as a list of properties. An

early example of this was the use of global molecular

properties, e.g. hydrophobicity, molecular refractivity

[1, 2]. Attempts to incorporate attributes describing

local properties within a molecule include the use of

topological indices, which characterise molecular

structure as a single scalar [3]. A more elegant way to

represent local knowledge is to describe the substruc-

tures and their associations directly, e.g. ‘‘a benzene
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ring connected to a nitro group’’. However, this rep-

resentation is relational instead of attribute-based and

conventional learning algorithms cannot make effec-

tive use of this. It requires a description of the rela-

tionship between two attributes.

Comparative field analysis (CoMFA) is an example

of a widely used attribute-based method for describing

the local properties of molecules [4]. The electrostatic

potential or similar distributions are estimated by

placing each molecule in a 3D grid and calculating the

interaction between a probe atom at each grid point and

the molecule. When the molecules are properly aligned

in a common reference frame, each point in space be-

comes comparable and can be assigned an attribute

such that attribute-based learning methods can be used.

However, CoMFA fails to provide accurate results

when the lack of a common skeleton prevents a rea-

sonable alignment. The need for alignment is a result of

the attribute-based description of the problem.

The only method fully capable of handling relational

data directly without relying on alignment of molecules

is inductive logic programming (ILP) [5]. King et al. [6]

introduced a SAR method based on ILP which

described chemical structure as a collection of atoms

connected through chemical bonds. ILP enables the

inclusion of background knowledge by defining many

high-level chemical concepts, e.g. benzene ring, methyl

group and the three topologically distinct ways to

connect three benzene rings. They generated rules

which are easy to understand such as: ‘‘A compound is

highly mutagenic if it has an aliphatic carbon atom

attached by a single bond to a carbon atom which is in

a six-membered aromatic ring’’. Much work has been

done to improve ILPs ability to solve SAR problems;

generation of indicator variables to provide quantita-

tive estimates of the activity [7, 8], building pharma-

cophore models [9, 10], dealing naturally with multiple

conformations [10], performing structure-based drug

design [11] and improvements in algorithms to reduce

search space [12, 13]. However, no non-trivial

improvements have been applied to the original atom/

bond representation. It is desirable to replace this

representation with one which is richer and more able

to describe well-known chemical concepts such as

conjugation, hyperconjugation, delocalisation effects,

aromaticity, electrophilicity, nucleophilicity, covalent

and ionic bonds in a quantum mechanical setting.

Richard Bader’s atoms in molecules (AIM) theory

provides a link between quantum and classical chem-

istry which enables a natural framework for explaining

chemical concepts and phenomena [14]. Compact

descriptors based on bond properties from AIM

theory have been successfully applied to various

attribute-based SAR problems [15–24]. We have

previously presented the idea of combining an AIM-

based representation named structure representation

using quantum topology (StruQT) [15, 16] with induc-

tive logic programming [25]. This approach combines a

powerful and chemically interpretable representation

with a learning algorithm able to describe the true

relational nature of molecular structure. In this paper,

we investigate the new method using a classical SAR

problem relating to the prediction of mutagenicity and

to the prediction of the affinity of a set of factor Xa

inhibitors.

Theory

Inductive logic programming

Learning algorithms based on propositional logic are

able to learn if-then rules such as ‘‘If a molecule has a

benzene ring then it is biologically active’’, given that

the precoded descriptor benzene ring exists. Propo-

sitional learners require that molecules are repre-

sented as a vector with one element for each

attribute, and hence they are referred to as attribute-

based methods. The output is a set of rules or a

decision tree that classifies the data using these

attributes. A propositional algorithm cannot learn a

more complex rule like ‘‘If a molecule has a benzene

ring connected to a nitro group then it is active’’

without having precoded a benzene ring connected to

a nitro group as an attribute where the relationship

between two attributes is used. Furthermore, this

limitation prevents propositional learning algorithms

to take fully advantage of the molecular structure

hypothesis—that a molecule is a collection of atoms

connected by bonds—which is perhaps the most cen-

tral hypothesis in chemistry.

The incorporation of relations enables us to natu-

rally describe atomic connections in molecules. For

instance, the bond between atoms A and B might be

represented using a bond predicate bond (A, B) where a

predicate here defines a relationship between two ob-

jects (atoms). Inclusion of predicates and therefore the

capability of handling relational data replaces propo-

sitional logic with first-order logic. The class of learning

algorithms which generates rules expressed in first-or-

der logic are known as inductive logic programming

(ILP).

The classical atom/bond representation used to

solve SAR problems [6] is based on the molecular

structure hypothesis. Atoms are represented in the

form
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atom(127,127_1,c,22,0.191).

stating that the first atom in compound 127 is a

carbon atom of type 22 (aromatic) with a positive

charge of 0.191.

Similarly,

bond(127,127_1,127_6,7)

states that there is a type 7 bond (here aromatic) be-

tween the first and sixth atom in compound 127.

Another advantage with a learning algorithm for-

mulated in first-order logic is the possibility of includ-

ing background knowledge in the form of computer

programs. Since chemists often study molecules in

terms of molecular groups, the atom/bond representa-

tion was extended with programs that define such high-

level chemical concepts. Contrary to propositional

algorithms, ILP can learn rules which use structural

combinations of these concepts without having to

explicitly include the combinations as new attributes.

Another example of useful programs used as back-

ground knowledge is the definition of a distance mea-

sure. This allows a three-dimensional representation

with rules in the form: ‘‘A molecule is active if it has a

benzene ring and a nitro group separated by a distance

of 4 ± 0.5 Å’’. It should be noted that the inclusion of

distance measures does not require an alignment of the

molecules. It is also straightforward to include more

than one conformation of each compound which allows

the consideration of conformational flexibility which is

often a major drawback by conventional QSAR/SAR

methodologies.

The input to an ILP algorithm is the background

knowledge about the problem (descriptions of atoms,

bonds and programs defining high-level concepts) and a

set of positive/active and negative/inactive molecules.

The task is then formulated as finding a set of rules

which explains as many positive examples as possible

while covering the fewest number of negative examples.

When the program searches for a new rule, it selects

a single positive example to guide the search. It then

tries to build a new rule that covers this example and as

many other positive examples as possible. The first

attempt to build the new rule uses only a single pred-

icate such as benzene(A, B) stating that a molecule A

is active if it has a benzene ring B. A set of possible

extension to the best of these candidate rules are

generated and tested to find the optimal combination.

The default criteria maximises the difference between

positive and negative examples covered by the rule.

This process is repeated as long as the best of these

candidate rules have a higher positive coverage and

lower negative coverage than the shorter candidates.

After the candidate rules have reached a certain

length, the inclusion of more predicates will no longer

improve the rules because the next predicate removes

more true than false positives leading to a lower overall

coverage.

All the positive examples that are covered by the

new rule are removed from the data set before a new

positive example is chosen and the entire rule gener-

ation process is repeated. The negative examples that

are erroneously classified as positives by the rule are

kept in the data set. Otherwise the next candidate rule

that classifies them incorrectly would not be punished

for this. Eventually, no more significant rules can be

found, or all the positive examples have been classified

correctly, and the set of rules is considered complete.

This set of rules, often referred to as the theory

explaining the problem under study, is returned as the

output from the ILP algorithm. For a more technical

and mathematical description of the rule-making pro-

cess in ILP, the reader is referred to the review article

by Muggleton and De Raedt [26].

A major limitation of ILP in learning quantitative

SAR models (QSAR) is how to meld first-order logic

with probability theory. This is arguably the most

important theoretical area in machine learning [27].

One very successful practical approach to this problem

is to apply ILP as a pre-processing step to learn suit-

able propositional descriptors (attributes), and then to

use standard QSAR approaches [7, 8]. Recent work

has also taken the alternative approach of using sta-

tistical procedures as background knowledge [7].

Bader’s atoms in molecules quantum theory

The molecular structure hypothesis is central to most

aspects of chemical intuition and knowledge. However,

the concept of an atom is not explicitly defined in

traditional quantum mechanics. It is only concerned

with particles moving in potential fields. This poses a

representational dilemma; we wish to make use of the

rigour and physical correctness of quantum mechanics,

but we also require that our models are easy to

understand and related to conventional chemical

intuition. A quantum theory which meets both

requirements has been presented by Bader [14]. A

unique definition of the concept of atoms and bonds

results from a study of the topology of a molecule’s

electron distribution. The theory provides a link be-

tween quantum mechanics and many standard chemi-

cal concepts.

Central to AIM theory is an analysis of the topo-

logical properties of the electron density distribution q.

It is hard to find the relevant information in the
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electron density directly since most of the variation is

located around the nuclei. The topological character-

istics of a scalar field may be summarised with the

properties of its critical points and this forms the basis

of our electronic structure representation. The four

different types of critical points in the electron density

in a stable molecule are associated with atomic nuclei,

bonds, rings and cages:

Nuclear attractor (NA) is a critical point with max-

imum electron density along all three dimensions. The

locations of the maxima are for all practical purposes

equal to the nuclei positions.

Bond critical point (BCP) is a point with maxima

along two dimensions and a minimum along the third.

A BCP is always located between two bonded atoms. It

has minimum electronic density along the bond path

between the two atoms. However, it has a maximum

along the plane perpendicular to the bond path.

Ring critical point (RCP) is a point with minima

along two dimensions and a maximum along a third

dimension in the electron density. The atoms sur-

rounding a ring have maximum density, and it

decreases along the path towards the RCP. However,

the point is a maximum along the path perpendicular

to the ring surface.

Cage critical point (CCP) is a point with minimum

electron density along all three dimensions. Cages are

formed when at least two rings bound a region with

minimum electron density.

The electron density contour map of the molecular

plane in 1-nitronaphthalene (see Fig. 1(a)) is illus-

trated in Fig. 1(b). Three different critical points are

observed: nuclear attractors (circles), bond critical

points (square) and ring critical points (triangle). We

see that according to AIM theory, the oxygen atoms in

the nitro group are bonded to the neighbouring

hydrogen atoms. These bond paths create new ring

structures which are not usually explicit in our chemi-

cal knowledge. Each bonded pair of atoms is connected

by a line which goes through a BCP. This path is called

an atomic interaction line (AIL) and is related to an-

other topological property of the electron density field:

The gradient vector field and its gradient paths.

The gradient vector denoted �q is defined as the

direction of steepest ascent, and by tracing the path

with infinitesimal small steps, we obtain a gradient

path. These paths never intersect, and they always

terminate at a critical point. Most gradient paths ter-

minate at nuclear attractors, and the complete set of

paths ending in a specific attractor is known as its

basin. They naturally partition the molecule into

regions which are identified as the AIM definition of an

atom. Figure 1(c) shows selected gradient paths for
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Fig. 1 Illustration of electron density contour plot, critical
points, atomic interaction lines, gradient paths, interatomic
surfaces and definition of atoms. The structural formula
of 1-nitronaphthalene is shown (a). Figure (b) and (c)
shows respectively the contour plot and gradient paths for
the molecular plane. Squares indicate nuclear attractors,
circles are bond critical points while ring critical points are
shown as triangles. Thick lines in (c) are the interatomic
surfaces
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1-nitronaphthalene where the thin lines are paths

terminating at the nuclear attractors. They either

originate at infinity or at another critical point. The

thick lines terminating at a BCP defines the inter-

atomic surfaces separating the different atoms from

each other. One example of applying the definition of

an atom is the grayed region in Fig. 1(c) marked A

which is an aromatic carbon atom bounded to a

hydrogen atom. We see that atoms in molecules are

not spherical.

The properties of a critical point can be further

characterised using the Hessian matrix. It describes the

second derivatives or curvature at the point with respect

to the position coordinates. A diagonalisation of the

matrix gives eigenvalues ki describing the curvature at

the critical points in a representation independent of the

choice of molecular coordinate system. Hence, the

eigenvalues may be used to describe the general prop-

erties of critical points. For instance, a BCP always has

two negative and one positive eigenvalue. As AIM

theory defines a chemical bond as a point in the electron

density distribution, it is straightforward to describe the

nature of a bond with quantitative measures. For

instance, the following properties are very useful [23]:

The electron density (qb) is related to bond order and

bond energy.

The laplacian (�2qb) can be computed as the sum of

the eigenvalues of the Hessian matrix (k1 + k2 + k3). It

measures the degree of charge concentration at the

bond. Negative values are associated with shared

interaction present in covalent bonds. On the other

hand, positive values are called close-shell interaction

and are present in ionic, hydrogen and van der Waals

bonds. While covalent and ionic bonds are usually used

as qualitative concepts within chemistry, AIM theory

provides a quantitative description with more detailed

information. This clearly illustrates the advantage of

using AIM theory for SAR problems.

The ellipticity (�) is defined as k1/k2 – 1 and measures

the deviation of the electron density distribution from

being symmetrical in the plane orthogonal to the bond

path. This relates to the p character of a chemical bond

and AIM theory again provides a quantitative gener-

alisation of classical chemical concepts. It also mea-

sures the susceptibility of ring bonds to rupture.

The electron density at the critical point along with

its laplacian is also used to characterise the nature of

RCPs.

StruQT-ILP

It is advantageous to replace the original atom/bond

representation with one based on AIM theory for

the following reasons: Many chemical concepts are

explained and quantified by the theory leading to more

relevant and comprehensive rules. The atom and bond

typing used in the original representation are based on

ad-hoc definitions from the original modelling software

while a representation using AIM theory provides a

generic and principled way to form types. Previous

work on AIM descriptors in modelling attribute-based

QSARs have only used properties of the bond critical

points [15–24]: the value of the electron density, the

ellipticity and the laplacian. We expand this set by

including properties of the ring critical points. These

quantitative properties, the critical points themselves

and their connectivities in addition to high-level

background programs form the foundation of the cur-

rent version of our StruQT-ILP representation.

Similar to the atom predicate in the atom/bond

representation, we have defined a na predicate. For

example,

na(mol162, na162_1).

element(mol162, na162_1, c).

states that in compound 162, the critical point named

na162_1 is a nuclear attractor corresponding to a car-

bon atom.

Instead of a bond predicate, our new quantum

topological representation uses the related concept of

an atomic interaction line:

ail(mol162, bcp162_2, na162_2, na162_3).

stating that the second and third atom in molecule 162

is connected through the second BCP.

In addition to atom/bond predicates, King et al. [6]

also included high-level chemical structures such as the

definition of a benzene ring and a nitro group. We have

added similar predicates with some minor improvements.

For instance, predicates are included to describe how two

rings may be connected. The first predicate (fused)

defines two rings bonded with two common atoms.

Another possibility is two rings connected through a

single bond between an atom in each ring. Table 1 gives

the complete list of predicates used in this article.

Some comments about the definition of these pred-

icates are necessary. When King et al. defined their

predicates, they used additional data from a molecular

modelling software. For instance, the concept of aro-

matic atoms were already defined by the software.

However, The StruQT-ILP representation starts with a

set of critical points, their mathematical properties and

connections. Any chemical concepts or structure must be

defined from these fundamental properties. For instance,

we define an aromatic bond using the quantitative
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properties of the BCP. We also define a not_chem_ring

predicate where there is not a strong, covalent bond

between all atoms in a ring. There may for instance be a

hydrogen bond between a hydrogen and nitrogen atom

leading to a ring structure different in nature than or-

dinary rings (here denoted chemical rings).

Our present definitions are based on the empirical data

for the problem of predicting mutagenic activity, and

better, more robust definitions are required for further

work. However, the definitions proved to be applicable

also for the other problem studied in this work.

Materials

Data

Mutagenesis data set

Debnath et al. [28] studied the problem of predict-

ing whether aromatic and heteroaromatic nitro

compounds cause mutagenic changes measured by

Ames test using Salmonella typhimurium TA98. The

data set includes diverse molecules such as 2,4-dini-

trophenylhydrazine, nitrocoronene, mono-, di-, and

tetranitroarenes, nitroindoles, nitroindazoles, nitrofu-

rans and nitrodiazines. As the compounds are hetero-

geneous and cannot be superimposed onto a common

template, attribute-based methods have problems

finding comparable structural attributes. The repre-

sentation used in the original article by Debnath et al.

[28] consisted of the energy of the lowest unoccupied

molecular orbital (LUMO) and the partition coeffi-

cient between octanol and water in addition to two

binary-valued indicator variables (I1 and I2). The

descriptor I1 was set equal to 1 for all compounds

containing three or more fused rings and Ia was set to 1

for five examples of acenthrylenes as they showed

lower activity than expected from their molecular

properties. These descriptors were selected manually

by experienced chemists after detailed inspection of

this particular data set. All these descriptors are global

Table 1 Chemical predicates
defined in StruQT
representation

Basic critical point predicates
na A critical point is a nuclear attractor
BCP A critical point is a bond critical point
rcp A critical point is a ring critical point
element Specifies the element type of an atom
ail Defines an atomic interaction line
Chemical structure predicates
ring_size_5 A ring with five atoms
ring_size_6 A ring with six atoms
chem_ring Ring where all atoms are connected

through strong bonds
not_chem_ring Ring with at least one weak (e.g. hydrogen) bond
carbon_5_ring A chem_ring with five carbon atoms
carbon_6_ring A chem_ring with five carbon atoms
arom_ring A chem_ring with only aromatic bonds
not_arom_ring A chem_ring which are not an arom_ring
carbon_5_aromatic_ring An arom_ring with five carbon atoms
benzene An arom_ring with six carbon atoms
anthracene Three benzene rings fused linearly
phenanthrene Three benzene rings fused in a curve
ball3 Three benzene rings fused in a ball
hetero_aromatic_5_ring A heterogeneous arom_ring withfive atoms
hetero_aromatic_6_ring A heterogeneous arom_ring withsix atoms
nitro A nitro group
methyl A methyl group
Relationship predicates
fused Two rings are connected with two common atoms
connected_rings_unfused Two rings are connected with a single bond
connected_ring_group A ring is connected to a chemical group
ringmember An atom is a part of a ring
atommember An atom is a part of a chemical group
Numerical predicates
electron_density_lteq Electron density is less than or equal a value
ellicticity_lteq The ellipticity is less than or equal a value
laplacian_lteq The laplacian is less than or equal a value
electron_density_gteq Electron density is larger than or equal a value
ellicticity_gteq The ellipticity is larger than or equal a value
laplacian_gteq The laplacian is larger than or equal a value
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in nature, and thus the problem was solvable by attri-

bute-based methods such as ordinary least square

regression. The data set was further divided into 188

so-called ‘‘regression-friendly’’ compounds and 42

which are not readily modelled by attribute-based

regression methods. Even though this division of the

data set is artificial and somewhat misleading, we will

keep it to allow a relevant comparison with the results

obtained from previously published results. This divi-

sion and data set have been used as a benchmark data

set in machine learning [28] to test various methods

such as linear regression, back-propagation neural

network, CART and the atom-bond representation

with ILP [6]. This benchmark data set is the most well-

document problem studied using the atom/bond rep-

resentation. If we are able to prove that the new

methodology gives additional information about this

problem, we have rather strong evidence that the

introduction of a more flexible representation is well-

founded.

A compound was classified as active or highly

mutagenic when the logarithm of revertants/nmol

produced by the mutagen was above zero. Of the 188

compounds, 125 are classified as active and 63 as

inactive while similar values for the 42 compounds are

12 and 30, respectively.

Factor Xa data set

Fontaine et al. [29] recently published their new

methodology anchor-GRIND on a data set discrimi-

nating between factor Xa inhibitors of high and low

affinity. It is a modification of the grid-independent

descriptors (GRIND) method [30, 31] which uses a

mathematical transformation to provide alignment-

free descriptors from molecular interaction fields

(MIF). The user is required to define a single common

position in the structure of all compounds in a series of

molecules which is named an anchor point. This point

is used as a common reference which enables a more

precise geometrical description. They conclude that

‘‘the descriptors obtained are far more specific and

therefore produce better models, which are easier to

interpret’’ than in the original GRIND methodology.

The data set contains a wide series of compounds

which all share an amidine group which is often

observed in factor Xa inhibitors and binds in a well-

defined pocket. The inhibitors were used for binary

classification between low (Ki < 10 nM) and very high

(Ki > 1 lM) activity. This resulted in 156 low-activity

and 279 high activity compounds in the data set. It was

divided using random assignment into a calibration and

test set with 290 and 145 compounds, respectively.

We should at this point note that whereas the an-

chor-GRIND method requires an anchor point, this is

not an requirement of StruQT-ILP. We could have

compared our method with the original GRIND

method, but the authors have unfortunately not re-

ported the prediction accuracy for this method in their

article. They do however report the corresponding

value for another data set which shows that the stan-

dard GRIND method produces a model with a lower

cross-validated correlation coefficient and which is

harder to interpret than anchor-GRIND [29]. Hence,

we aim at comparing our new methodology with a

method specifically developed to handle a special,

although very common situation in building SAR

models.

Computational details

All molecules were optimised at density functional

theory (DFT) level using the B3LYP functional with a

6-31G** basis set computed with the Gaussian 98

program [32]. DFT was chosen as it is able to include

the effects of electron correlation at a low computa-

tional cost. A recent study of nitroaromatic compounds

also gave good results with DFT [33]. Among DFT

functionals B3LYP gives the best estimates of BCP

properties [24]. Even though the absolute values of

BCP properties are highly basis-set dependent, they

preserve the trends even at small basis sets. A large

basis set is therefore not crucial to model a reliable

SAR because only relative differences between mole-

cules are important.

One of the active compounds in both the 188

mutagenesis data set and the Factor Xa calibration set

were removed from computation since they contain an

iodine atom which is not parametrised at the selected

basis set. All AIM properties were computed using the

AIM analysis program MORPHY98 [34]. For the

Factor Xa data set, MORPHY98 failed to find cage

critical points in 10 molecules. We therefore did not

use cage critical points in the rule-making process. One

molecule was also removed from the test set since the

number of molecular orbitals was too high for MOR-

PHY98.

Data analysis

We used the ILP system Aleph [35] which is imple-

mented in the computer language Prolog. A sequential

covering algorithm is usually employed in ILP to learn

the rules (induce command in Aleph). One positive/

active example is selected and a rule is induced which

J Comput Aided Mol Des (2006) 20:361–373 367

123



ensures it is correctly classified. All examples covered

by this rule are removed and the process is repeated.

One problem with this approach is that the rules and

predictive ability depend on the order of the active

compounds. A better option is to select more than one

example and only include the best rule generated into

the theory. The examples covered by this rule are as

usual removed, and new active molecules are selected

to explain the remaining examples. This is achieved in

Aleph using the samplesize option which specifies the

number of examples selected randomly at each step.

We selected this number equal to the number of active

molecules which means that the most optimal rule

given the specified background knowledge and other

settings is found. This also has the advantage that all

molecules are selected, and the algorithm is no longer

stochastic, but deterministic. After removing the

examples covered by the selected rule, the best rules

explaining the remaining examples are found in a

similar way. Another advantage of this approach is that

the best rule is the one which explains the highest

number of active compounds not yet explained by

another theory. Hence, the rules in the obtained theory

are smaller in number and better fit to explain the

diversity among the active compounds in a few rules.

Pruning was used to remove irrelevant rules in order

to reduce the size of the search space. For instance,

there is a large number of rules containing the predi-

cates

na(A, B), na(A, C), na(A, D)

stating that molecule A has three atoms (which may or

may not be the same). Combinations of such predicates

severely slows down the program, and consequently

only one na is allowed in a rule. Other atoms are in-

cluded through the use of for instance ail predicates.

Similar pruning rules were also included.

The prediction accuracy was evaluated using leave-

one-out crossvalidation for the two mutagenesis data

sets and using a test set for the factor Xa data set. This

difference reflects the choices made previously in the

literature [6, 29].

Manual postprocessing of rules

In addition to looking only at the prediction accuracy,

it is also important to study the relevancy of the ob-

tained rule. Relevancy of rules is a relative concept,

but it is obvious that rules with high coverage are

preferable. A theory with many rules implies that the

model consists of many sub-models which are not rel-

evant for the entire data set. Page and Srinivasan [36]

emphasised the importance of the interaction between

ILP and human experts in further development of the

methodology. We propose here a simple postprocess-

ing to obtain more relevant rules with higher coverage.

The most interesting rules from ILP are selected and

manual refinements are suggested by studying the

molecules covered by the rule. One of the main rea-

sons for performing postprocessing is that there are

many ways of describing the same concept, but some

may be more preferable to human experts than others.

For instance, different rules explaining similar concepts

may be combined to give a better rule with higher

coverage. We used Prolog which is a computer lan-

guage using first-order logic, to interactively modify the

rules and study the new ones.

A methodological problem with postprocessing re-

lates to the cross-validated prediction accuracy. We

should perform the postprocessing within each cross-

validation segment, however this often requires too

much manual work. Fortunately, ILP finds rules

which have high coverage, and the rules are often not

influenced by single molecules being removed in

cross-validation. The task which ILP tries to solve

may be specified as finding a few rules which explains

the variation in the data set. From a biological point

of view this approach is appealing since there is often

a limited number of ways that a compound can bind

to a binding site. The aim is to find this set of pos-

sibilities. Removing a few samples using either cross-

validation or an external test set should not change

these rules. Hence, the rules with highest coverage

often appear in each cross-validation loop and the

postprocessing may be performed outside the loop. It

should be pointed out that we are using postprocess-

ing mainly as a step to find rules that are more

interpretable, and not as a measure to improve the

prediction ability.

Results

Mutagenesis data set

Table 2 gives cross-validated prediction results for

both the 188 and the 42 mutagenesis dataset. We used

a slightly different parameter setting (noise=2, min-

pos=5) compared to the original work on the atom/

bond representation [6] to reduce the risk of overfit-

ting. The samplesize option explained earlier was also

not used by the original authors leading to suboptimal

results. This partly explains the difference between the

results reported here (84%) and in the original article

(81%). The StruQT-ILP representation gives slightly
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higher prediction accuracy (86%) than the original

atom/bond representation (84%), but the difference is

not significant. This is not very surprising since the

mutagenesis data set is the best known example

where the original representation gives excellent re-

sults. It is also important to realise that our new

representation resembles the original atom/bond rep-

resentation in many ways. When quantitative bond

properties are replaced by a suitable qualitative scale

and some of the flexibility in the StruQT-ILP repre-

sentation is removed, the two representations are

equivalent. While the atom/bond representation uses

ad-hoc typing of chemical properties from the original

modelling software, StruQT-ILP is a generic and

principled way to form these types. There is another

difference in the current implementation: The atom/

bond representation includes atomic partial charges

which we have not presently included into our rep-

resentation. In fact, most rules obtained with the

atom/bond representation involves predicates using

the partial charges.

Even though prediction accuracy provides an

objective measure for model performance, other

aspects are equally important. A model should be

comprehensive and allow the domain expert to draw

relevant conclusions. In this context, we continue by

studying the obtained rules, their coverage and the

importance of postprocessing.

The raw ILP rules for both the atom/bond and

StruQT representation are given in Fig. 2. Both

approaches result in five different rules. The rules are

reported in the Prolog language and require some

explanation. For instance, the first ILP-StruQT rule is

reported as active(A):– chem_ring(A, B), lapla-

cian_lteq(A, B, 0.14672) which translates into english

as ‘‘A molecule named A is active if it has a chemical

ring B with a laplacian value larger than or equal

0.14672’’. The number of reported digits should not be

stressed to much by the reader as standard ILP is

rather limited in its ability to deal with numerical

values. It must use discretisation algorithms to handle

them, and the default handling is rather simplistic as it

uses the numerical values present in the active com-

pound used as seed example. Hence, the value 0.14672

is the laplacian value at the ring in the seed example.

This handling of numerical values results in a large

search space with a subsequent increase in the risk

of overfitting. Even though our new representation

includes more numerical values, the results are

improved since the included descriptors are relevant

for prediction. The fact that ILP generates rules which

are easily translated into plain English is an important

advantage. Chemists are often interested in structural

features of a compound which cause activity, and ILP

creates such rules directly. Other alignment-free SAR

methods often have much larger problems when it

comes to model interpretation.

The first ILP-StruQT rule which involves a numer-

ical AIM descriptor requires a more detailed expla-

nation. We are going to use this rule both as an

example of the interpretation of AIM theory and how

to improve the rules using postprocessing. The rule

states that ‘‘a compound is active if it has a chemical

ring with a laplacian value lower than 0.147’’. The

laplacian value measures the curvature of the electron

density. Aromatic rings typically have a low curvature

since the electrons are delocalised around the ring. The

laplacian value is even lower than usually observed in

aromatic rings which indicates that it is surrounded by

chemical structure allowing further delocalisation

effects. Based on the chemical structures present in the

mutagenesis data set, one possible explanation is that

the ring is bonded to two benzene rings. We then

propose a new rule stating that a molecule is active if it

has a chemical ring bonded to two benzene rings in the

way illustrated in Fig. 3. The relevance of this rule is

supported by Debnath et al. [28] where an indicator

variable related to the presence of three or more fused

rings improved their regression model. Four examples

of compounds with high mutagenicity which are

explained by this rule are shown in Fig. 4. Previous ILP

studies have as far as the authors know not found

similar rules despite the fact that this feature was

detected by chemical experts as important in the

original article [28]. Finding this rule using the simpler

atom/bond representation requires rules of very long

length which are prohibited due to efficiency consid-

erations. It is also encouraging to observe that this rule

has a much higher coverage than any other rule

reported in the literature. Even though the postpro-

cessed rule does not contain any AIM descriptors, they

have been important in finding the rule. Hence, we

conclude that our new representation are able to find

Table 2 Cross-validated prediction accuracy for classical atom/
bond and StruQT-ILP representation

Data set Representation Accuracy (%)

Mutagenesis 188 Atom/bond 84
StruQT-ILP 86

Mutagenesis 42 Atom/bond 91
StruQT-ILP 91

Factor Xa One-block anchor-GRIND 88
Two-block anchor-GRIND 84
StruQT-ILP 88

McNemar’s test [39] was used to compare the prediction meth-
ods for the mutagenesis data set which showed that the results
are not significantly different
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new rules and knowledge not provided by the more

simple atom/bond representation which therefore jus-

tify the new methodology. It is also interesting to see

that ring critical points may provide a compact

description of a ring structure along with its

surrounding. The atom/bond description does not have

a corresponding structural feature.

Another interesting rule cover 42 positive examples

and states that ‘‘a molecule is active if it has a five-

membered carbon ring’’. From a chemical point of

view this rule is strange since this structure is some-

times located in the interior and sometimes in the

exterior of the molecule. However, the high coverage

clearly indicates that this structure is of importance.

From a study of the compounds covered by the rule, we

find that they also have a benzene ring fused to the

five-membered carbon ring. This illustrates that post-

processing of the rules is important in building relevant

and reliable rules. These two rules alone have a pre-

diction accuracy of 84.5% which is impressive since

King and collegues [37] needed between 10 and 14

rules to obtain similar prediction accuracy. The latter

fact also illustrates another important lesson from our

work: The usage of samplesize is able to reduce the

number of rules considerably as our theory with the

atom/bond representation contain only five rules. A

theory consisting of fewer rules is clearly more com-

prehensible.

The 42 mutagenesis data set consists of only 12 ac-

tive compounds1 and the single rule reported in [6]

which is given in Fig. 5(a) covers 8 of these. This leads

to a prediction accuracy of 90.5% and we do not expect

to obtain better results using our new representation.

The rule obtained from the StruQT-ILP representation

which is presented in Fig. 5(b) does not contain AIM

descriptors, but it is still different. The structures are

equal only when the ring atoms are carbon, the double

bond is between a nitrogen and oxygen atom and an-

other oxygen atom is added to structure (a). This

illustrates the problem with the generality of ILP rules:

ILP is designed to find the most general rules consis-

tent with accuracy and coverage. However, the Stru-

QT-ILP rule is preferable since it is more related to

chemical structures actually present in the mutagenesis

data set. There is no evidence in the data that the ring

contains anything except carbon atoms and the less

general rule is often preferred by chemists. It also

specifies that the ring is bonded to a nitro group instead

of the more general concept that it is two atoms Y and

Z which have a bond of order 2. When several equally

general rules exist, the choice made by ILP is arbitrary

and not always the one preferred by domain experts.

Fig. 2 The ILP rules
obtained with both the atom/
bond and StruQT
representation. The number
of positive and negative
molecules which each of rule
covers are given in
parenthesis

1 King et al. [6] wrongly classified one of the inactive compounds
as active resulting in 13 active compounds. This explains the
higher accuracy reported here.
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Even though postprocessing of rules was not necessary

in this situation, similar situations may be resolved

using this strategy.

Factor Xa data set

The aim of using the Factor Xa data set was to com-

pare the StruQT-ILP methodology with another

alignment-free methodology, anchor-GRIND. Predic-

tion accuracies for both methods are given in Table 2.

The one-block anchor-GRIND model describes only

the interaction between the anchor point and specific

positions of the molecular interaction fields named R

group which are chemical groups susceptible for

modifications. They are specific to one or a subset of

compounds present in the studied series of molecules.

The two-block model also includes descriptors of the

interactions within each R group. For the Factor Xa

problem, the two-block model does not provide new

information not already described by the one-block

model, and it introduces only noise leading to a worse

prediction accuracy. Our new methodology gives equal

prediction accuracy as the best of the anchor-GRIND

models. The ILP rules have the advantage that they are

easily translated into plain english and presented in a

form suitable for chemists and other experts.

A graphical presentation of theories with varying

number of rules are given in Fig. 6. The largest theory

which is the one reported in Aleph by default has seven

rules. Beyond this point, the added rules only explain

one more active example, and are therefore not

important. Both the calibration and test set prediction

accuracy increase gradually with the number of rules.

We see that the prediction accuracy is almost 80%

after only two rules. This is an important point for

interpretation. We also see from the same figure how

the number of active compounds which remains to be

RULE 1:

ILP rule:

laplacian <= 0.147

active :- chem_ring(A,B), laplacian_lteq(A,B,0.147).

Postprocessed rule:

Positive coverage:     92
Negative coverage:     4

Positive coverage:     55
Negative coverage:     2

RULE 2:

ILP rule:

Postprocessed rule:

active :- carbon_5_ring(A,B).

Positive coverage:     42
Negative coverage:     0

Positive coverage:     42
Negative coverage:      0

Fig. 3 Illustration of postprocessing of rules for the 188 data set

NO2

1-nitrofluoranthene

NO2

2-nitro-9,10-dihydrophenanthrene

NO2

1-nitro-7,8,9,10-tetra-
hydrobenzo[a]pyrene

O

NO2

2-nitrobenzofuran

Fig. 4 Four compounds of high mutagenicity explained by the
first postprocessed rule using the StruQT-ILP representation

U

V

W X

Y Z

Positive coverage:      8
Negative coverage:     0

(a) Atom/bond representation

N

O

O

Positive coverage:      8
Negative coverage:     0

(b) StruQT-ILP representation

Fig. 5 The ILP rules learned on the 42 dataset. (a) Structure
found using original atom/bond representation where atoms U-Z
are not necessarily carbon. (b) Structure found using StruQT-
ILP representation
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explained decreases gradually with increasing number

of rules in the theory.

Discussion

To solve SAR problems one needs both a representa-

tion which is comprehensible and easily interpretable

and a data analysis method that can make use of the

knowledge in an effective way. Although SAR prob-

lems are relational they have traditionally been han-

dled using attribute-based methods. This has been

possible through either the corresponding use of global

descriptors such as hydrophobicity, and the loss of

ability to describe structure in detail; or through fixed

reference frames and sophisticated statistical methods

to try and recapture relational information made

inaccessible in processing (e.g. CoMFA).

The ability of ILP to handle relational problems

directly allows more relevant and flexible representa-

tions. They do not require the extra coding which is

often necessary for attribute-based methods to capture

relational data. Even though the atom/bond represen-

tation was an important step in this direction, it ne-

glects much of the chemical knowledge gained after the

postulation of the molecular structure hypothesis. Our

new method is the first which is both firmly rooted in

quantum mechanics, encoding the molecular electronic

structure effectively and related to classical chemical

concepts. Straightforward extensions of the represen-

tation as presented here are possible: Integration of

various properties over the atomic basin allows the

computation of atomic properties such as atomic

charge, dipole moment and volume. Cartesian coordi-

nates of all critical points takes our representation into

the realm of 3D QSAR. Including more knowledge

about critical points such as the bonding radius, more

detailed data from the Hessian matrix and energy

values can be used to construct more flexible models.

We have only discussed AIM theory as a topological

analysis of the electron density, but AIM theory in-

cludes much more than this. Another field which can

be subjected to topological analysis is the laplacian

showing where the electron density is locally concen-

trated or depleted. Its critical points explain the con-

cept of an electron pair which has been central to

chemistry for the last 90 years and the well-known

valence shell electron pair repulsion (VSEPR) model.

Other concepts such as Lewis acids and bases are also

related to the critical points of the laplacian field.

Even though ILP has valuable advantages over

attribute-based learning algorithms, it is important to

be aware of its limitations and drawbacks such as its

difficulty in dealing directly with numbers. The devel-

opment to include probability theory into ILP has not

come sufficiently far to allow efficient handling of

uncertainty. However, this problem is being investi-

gated in the literature [38].

We want to emphasise the importance of combining

ILP with chemical intuition and interpretation. We

have presented two ways of doing this: Our new rep-

resentation provides knowledge about chemical con-

cepts which may be important for understanding a

variety of problems. Postprocessing of rules is also

important to find the ones with highest relevance.

Following this approach produced rules with signifi-

cantly higher coverage at comparable prediction

errors. The advantage of our new representation is

expected to increase as ILP methodology is further

developed to better handle numerical data. We intend
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Fig. 6 The prediction
accuracy of the calibration
and test set at varying number
of rules for the factor Xa data
set. The percent-wise number
of active compounds which
remains to be covered by the
theory are also given

372 J Comput Aided Mol Des (2006) 20:361–373

123



to study more novel problems to investigate the ability

of our StruQT-ILP representation to provide chemical

knowledge about problems formulated as SAR prob-

lems.
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ping electronic articles in Computer and Information Science
6

26. Muggleton S, De Raedt L (1994) J Logic Programming
20:629

27. Kersting K, De Raedt L (2002) Basic principles of learning
bayesian logic programs

28. Debnath AK, Lopez de Compadre RL, Debnath G, Shus-
terman AJ, Hansch C (1991) Anal Chim Acta 34:786

29. Fontaine F, Pastor M, Zamora I, Sanz F (2005) J Med Chem
48:2687

30. Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000)
J Med Chem 43:3233

31. Fontaine F, Pastor M, Sanz F (2005) J Med Chem 47:2805
32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb

MA, Cheeseman JR, Zakrzewski VG, Montgomery JA,
Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels
AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V,
Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C,
Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q,
Morokuma K, Malick DK, Rabuck AD, Raghavachari K,
Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G,
Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin
RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayak-
kara A, Gonzalez C, Challacombe M, Gill PMW, Johnson
BG, Chen W, Wong MW, Andres JL, Head-Gordon M,
Replogle ES, Pople JA (1998) Gaussian 98 (Revision A1).
Gaussian Inc., Pittsburgh PA

33. Onchoke KK, Hadad CM, Dutta PK (2004) Polycycl Aromat
Compd 24:37

34. MORPHY98 – A program written by P.L.A. Popelier with a
contribution from R.G.A. Bone. UMIST, Manchester, Eng-
land

35. Srinivasan A ALEPH: A learning engine for proposing
hypothesis. http://www.web.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/aleph.pl.

36. Page D, Srinivasan A (2003) J Mach Learn Res 4:415
37. Srinivasan A, King RD, Muggleton SH (1999) The role of

background knowledge: using a problem from chemistry to
examine the performance of an ILP program. Technical
Report PRG-TR-08-99, Oxford Univsersity Computing
Laboratory, Oxford

38. De Raedt L, Kersting K (2004) Lecture Notes in Artificial
Intelligence 3244:19

39. McNemar Q (1947) Psychometrika 12:153

J Comput Aided Mol Des (2006) 20:361–373 373

123


	Representation of molecular structure using quantum topology with inductive logic programming in structure-activity relationships
	Abstract
	Introduction
	Theory
	Inductive logic programming
	Bader&hxx2019;s atoms in molecules quantum theory
	Fig1
	StruQT-ILP
	Materials
	Data
	Mutagenesis data set
	Tab1
	Factor Xa data set
	Computational details
	Data analysis
	Manual postprocessing of rules
	Results
	Mutagenesis data set
	Tab2
	Fig2
	Factor Xa data set
	Fig3
	Fig4
	Fig5
	Discussion
	Fig6
	Acknowledgement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


