
Abstract Finding novel lead molecules is one of the

primary goals in early phases of drug discovery pro-

jects. However, structurally dissimilar compounds may

exhibit similar biological activity, and finding new and

structurally diverse lead compounds is difficult for

computer algorithms. Molecular energy fields are

appropriate for finding structurally novel molecules,

but they are demanding to calculate and this limits

their usefulness in virtual screening of large chemical

databases. In our approach, energy fields are computed

only once per superposition and a simple interpolation

scheme is devised to allow coarse energy field lattices

having fewer grid points to be used without any sig-

nificant loss of accuracy. The resulting processing

speed of about 0.25 s per conformation on a 2.4 GHz

Intel Pentium processor allows the method to be used

for virtual screening on commonly available desktop

machines. Moreover, the results indicate that grid-

based superposition methods could be efficiently used

for the virtual screening of compound libraries.
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Introduction

Finding novel lead molecules is one of the primary

goals of the early phases of drug discovery projects [1].

However, often there is no structural information

available about the therapeutic target of interest [2–4],

which limits the usefulness of receptor-based methods

such as molecular docking [5]. In such situations, li-

gand-based methods are usually chosen. In particular,

the superposition of ligands is the method of choice for

preparing data for subsequent similarity analysis and

virtual screening [2].

Over the years many molecular properties have

been investigated and numerous algorithms presented

to allow superimposing of molecules. For example,

Krämer et al. [6] superimposed molecules according to

the features derived from the structure, Cosgrove et al.

[7] utilized the shapes of the molecular surface, Lem-

men et al. [2] used partitioning and incremental con-

struction, Kearsley and Smith [8] used atomic partial

charges and steric volumes, while Mills et al. [9]

superimposed molecules by using hydrogen-bond

maps. All of these methods can be applied to the

screening of compound databases, but each method is

based on a different concept with different character-

istics and subsequent limitations. As a result, one

particular method may work better in some contexts

than the others, but it may be difficult to predict which

method will actually produce the desired results [1].

Thus, multiple search methods need to be used.

Molecular energy fields are suitable for elucidating

structurally novel and biologically active molecules,

since energy fields model molecular structures over 3D

space surrounding atomic nuclei. This space around

the atomic nuclei relates directly to non-covalent
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interactions that are thought to be mainly responsible

for the biological effects at the molecular level [10]. It

is well known that structurally distinct compounds may

exhibit similar biological activities, and, assuming that

the mechanism of action is the same, the energy fields

of dissimilar compounds should be similar. If so, a

virtual screening method that finds similar energy

fields should be able to come up with both structurally

novel and biologically active compounds.

Molecular energy fields can be presented by recti-

linear lattices and analytic Gaussian functions [11]. In

the first approach, an energy field consists of a three-

dimensional lattice where the energy between a probe

atom and a molecule is computed at each grid point. In

the latter approach, an energy field is formed by

attaching a Gaussian function to every atom, and the

union of these functions forms an energy field.

The similarity of two molecules in a given alignment

can be evaluated using either of the methods, although

the use of analytic Gaussian functions has been re-

ported to increase the efficiency of similarity evalua-

tion by as much as three orders of magnitude when

compared to a grid-based evaluation of similarity [12].

However, we claim that the grid-based evaluation of

similarity is still a viable approach, and it is possible to

improve the efficiency of the grid-based evaluation to a

more usable level by using coarse energy field lattices

and a simple interpolation algorithm that reduces the

inherent loss of accuracy without consuming too much

computational resources.

In this paper, the theory underpinning the BRUTUS

algorithm is discussed and the method is parameterized

by molecular self-overlap studies. In our recent paper

[13], the algorithm was validated by applying BRUTUS

to both pair-wise alignments and lead finding.

Methodology

Hodgkin index

The similarity of energy fields A and B can be

estimated by the Hodgkin [14] hodgkin index

HAB ¼
2
R

V pApBdV
R

V p2
AdV þ

R
V p2

BdV
ð1Þ

where pA and pB are density functions of energy fields

A and B [14].

With the Hodgkin index [14], the similarity of any

two molecules can be easily estimated by keeping

either of the molecules in a fixed position while the

other is rotated and translated [15]. After each step, an

energy field of the moving molecule is generated, and

the similarity is estimated by the Hodgkin index. When

enough of these steps are repeated, an optimum

superposition can be obtained.

Although straightforward, the above procedure is

not an effective way to estimate similarity during

optimization of the Hodgkin index. The main problem

with this simple approach is that energy fields must be

recomputed after each optimization cycle in order to

estimate the similarity of energy fields in the

subsequent alignment. However, it is also possible to

rotate the energy field instead of the molecule, in which

case the energy field does not need to be recomputed

during an optimization process that may involve thou-

sands of similarity evaluations [16]. Rotating the energy

fields instead of molecules is especially useful if the

energy fields are computed by quantum mechanical

methods [17].

In BRUTUS, energy fields are expressed as rigid

rectilinear lattices, and a coordinate transformation is

applied to map the coordinates between energy fields

to achieve rotation and translation. After this trans-

formation, the similarity of an alignment is estimated

by the Hodgkin index such the grid points of fixed and

moving energy are associated by another coordinate

transformation, and the energy values of static energy

field are approximated by an interpolation algorithm.

Coordinate transformation

A coordinate system of an energy field can be repre-

sented by vector ta that identifies an origin of the

coordinate system and vectors xa, ya and za, which are

the basis of the X, Y and Z-axis. In such a system,

vector qi can be mapped from the internal coordinate

system of a molecule to point qw in a world coordinate

system by coordinate transformation [18]

qw ¼ Cðxa; ya; za; taÞ � qi ð2Þ

where

Cðxa; ya; za; taÞ ¼

xax
yax

zax
tax

xay
yay

zay
tay

xaz
yaz

zaz
taz

0 0 0 1

2

6
6
4

3

7
7
5

Likewise, vector qw, expressed in the world coordi-

nate system, can be transformed back to an internal

coordinate system defined by vectors xa, ya, za and ta by

inverse coordinate transformation

qi ¼ C�1ðxa; ya; za; taÞ � qw ð3Þ
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Energy fields can be positioned and oriented using

three-dimensional homogenous coordinate transfor-

mations, which are described by 4 · 4 matrices [18, 19].

The matrix for translating a coordinate system by

vector v is [19]

TðvÞ ¼

1 0 0 vx

0 1 0 vy

0 0 1 vz

0 0 0 1

2

6
6
4

3

7
7
5 ð4Þ

In 3D applications, objects can be rotated around

any line in space, but the simplest rotation axes to work

with are those that are parallel to the X, Y and Z

coordinate axes [18]. By combining these primitive

rotations in a different order, objects can be oriented in

3D space. There are many possible orderings of the

rotations, and it is not necessary to use all three

coordinate axes [20]. For example, all possible orien-

tations of an object can be achieved by rotating first

around the Z axis, then the Y and finally again around

the Z axis. In a Euler angle representation, these axes

of rotation are fixed to the object, and the rotations are

expressed in a left to right order.

The matrix for rotating a vector around to the Y axis

by angle b is [19]

RyðbÞ ¼

cos b 0 sin b 0
0 1 0 0

� sin b 0 cos b 0
0 0 0 1

2

6
6
4

3

7
7
5 ð5Þ

The Z-axis rotation matrix by angle c is [19]

RzðcÞ ¼

cos c � sin c 0 0
sin c cos c 0 0

0 0 1 0
0 0 0 1

2

6
6
4

3

7
7
5 ð6Þ

The combined coordinate transformation for

positioning and orienting a centered energy field is

M ¼ TðvÞ � RzðaÞ � RyðbÞ � RzðcÞ � Cðxa; ya; za; taÞ ð7Þ

where Æ is the matrix multiplication. With Equation 7,

the location of a grid point within the energy field

lattice is transformed to a world coordinate.

Interpolation

As the energy fields are rotated, the grid points of the

template and the database molecules will not exactly

match. Thus, the energy between the grid points must

be estimated by an interpolation method. Perkins et al.

[16] solved this problem by using a simple interpolation

scheme where lattices were overlaid and the closest

grid point was used. However, the approximation error

increased by the resolution, and, as a consequence,

fairly dense 1.0 Å grids had to be used. De Cáceres

et al. [17] solved the very same problem by using a

distance-based interpolation function that considered

many neighboring grid points. Thus, the resulting

energy function was smooth and easy to optimize.

However, the interpolation is the most time con-

suming phase of the grid-based similarity evaluation,

and considering multiple grid points can make the

computation unwieldy. In order to speed up the simi-

larity search even further, the interpolation process

must be as simple as possible and coarse grids have to

be used. Needless to say, the coarser the grid, the

quicker the calculation of the similarity is, but this must

be balanced by loss of accuracy [21].

In the simplest possible interpolation technique, the

interpolated value is computed from one single grid

point; i.e., the energy fields are superimposed and the

energy of the grid point nearest to the point of interest

is taken. Although simple, this method is crude and can

create discontinuity if coarse grids are used. However,

if either of the energy fields is expressed at a much

higher resolution than the other, then the accuracy of

the method can be increased.

Using this simple interpolation method, Equation 1

can be written as

HAB ¼
2ua

Pda

k¼1

Pha

j¼1

Pwa

i¼1 AijkBi0j0k0

ua

Pda

k¼1

Pha

j¼1

Pwa

i¼1 A2
ijkþ ub

Pdb

k¼1

Phb

j¼1

Pwb

i¼1 B2
ijk

ð8Þ

where Aijk is a grid point at position (i,j,k) in an energy

field lattice A. The grid point (i,j,k) in the energy field

A is mapped to point (i¢,j¢,k¢) in energy field B by

coordinate transformation

i0

j0

k0

1

2

6
6
4

3

7
7
5 ¼ C�1ðxb; yb; zb; tbÞ �M �

i
1

� �

ð9Þ

The different resolutions of the energy fields are

taken into account by ua and ub, which are the volumes

of the unit cells of energy fields A and B. The volume

of unit cell is computed from unit vectors that describe

the coordinate system of the energy field as

ua ¼ xa � ya � za ð10Þ
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where · is the cross product (vector product) and • is

the dot product.

Figure 1 shows how the grid points are mapped from

energy field A to energy field B using equation 9. Filled

circles represent the grid points of energy field A,

whereas open circles represent the grid points of en-

ergy field B. For example, grid point (1,1) is mapped to

point (2,2) and grid point (2,1) is mapped to (4,2). If

the grid separation of energy field B is increased, the

precision of interpolation algorithm can improved,

since the difference between the mapped grid points

becomes shortened.

Systematic search

Assuming that a reasonable superposition for any two

molecules exists, the real question is how to maximize

the likelihood that it will be found. Gradient-based

optimization methods, for example, can only go

downhill on the energy surface and so they can only

locate the minimum that is nearest (in a downhill

sense) to the starting point [22]. A systematic search,

on the other hand, is a reliable but very slow method to

find global and local maxima [23].

Selecting the most representative set of starting

positions is of primary importance in finding global

maxima with Gradient optimization methods [15]. In

theory, there is an infinite number of possible align-

ments to be considered but, in practice, not every

alignment has to be evaluated. It is sufficient to select a

small set of starting positions and optimize these with a

Gradient-based optimization method to find near

optimal solutions.

Grant et al. [24] found it convenient to center

molecules and start with four initial alignments that

were derived from principal axis while Mestres et al.

[25] used 208 unique starting positions. However, while

a small number of starting positions may be sufficient

for aligning molecules that are approximately the same

size, it is debatable whether the number of starting

positions is adequate for partial matches where a small

molecule is aligned onto a larger molecule, or vice

versa. It would be logical to assume that the number of

starting positions should increase with the size of a

molecule, or at least the starting positions should be

chosen with greater care, if partial matches are desired.

In BRUTUS, possible starting positions are exam-

ined by a systematic search, after which the most

potential starting positions are optimized by a Gradi-

ent-based method. A systematic search of alignment

space yields with a suitably large rotation step and a

translation step a broad range of potential starting

positions from which to choose, irrespective of the

molecular size or initial alignment. By optimizing the

very best alignments from this initial search phase, a

set of interesting solutions can be produced.

Rotation step

An experiment was conducted to investigate the effect

of rotation and to determine a suitable rotation step for

the systematic search. For this purpose a set of 300

random molecules was selected from the Maybridge

chemical database [26] prepared by Tervo et al. [13]

The set contained 100 molecules with 20 atoms, 100

molecules with 40 atoms and 100 molecules with 60

atoms. The molecules were centered, and each mole-

cule was superimposed with its rigid copy. The identi-

cal copies were gradually rotated from –90 to 90�,

according to the X, Y and Z rotation axes, and the

energy fields were computed for both the molecule and

its identical copy with a cut-off value of 5 kcal/mol.

Figure 2 illustrates how the Hodgkin index changes

when a perfectly overlaid pair of molecules is gradually

rotated to separate the charge centers. Two conclu-

sions can be drawn from the figure; (1) it may be

possible to optimize alignment of energy fields by a

Gradient-based optimization method if the optimal

alignment is less extensive than ± 90�. After all,

the average similarity coefficient is steadily increasing

as the optimal alignment is approached. (2) As

the molecular size increases, the similarity drops

more sharply. This suggests that the number of ini-

tial alignments is dependent on the molecular size,

and, a method that has been parameterized for small

molecules, may not work for large molecules such as

proteins.

(2,1)

(1,1)

(2,2)

(4,2)

yayb

xa

xb

Fig. 1 Grid points (1,1) and (2,1) of energy field A (black circles)
are mapped to grid points (2,2) and (4,2) of high-resolution
energy field B (open circles)
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In order to decide upon a suitable step size, the

standard deviation in Fig. 3 was also taken into

account. The figure shows the standard deviation and

the average Hodgkin similarity index that were com-

puted while gradually rotating self-overlays of 100

randomly selected molecules, containing 40 atoms,

from –180 to 180�. These results allow one to draw the

conclusion that alignments within ± 30� from

the optimal alignment are clearly distinguishable from

the majority of orientations. In this area, the average

Hodgkin index is likely to be above 0.55, whereas

outside that window, an average Hodgkin index is

likely to be below 0.55. It is these starting positions

within ± 30� from the optimal alignment that can be

reliably optimized to reach the optimum.

By lowering the threshold, the step size can be

increased, thus improving the speed of the systematic

search. However, at the same time the probability of

finding the global maximum will decrease. If a starting

position for Gradient-based optimization is too distant

from the global maximum, the optimization may in-

stead advance towards local maximum. Gradient-based

optimization methods usually advance in the direction

of increasing similarity, and whenever two atoms come

close to each other, there is a potential local maximum.

Therefore, the starting position has to be relatively

close to the global maximum if it is to be identified

reliably by Gradient-based optimization methods. In

order to ensure that at least one starting position is

close enough to the global maximum, possible starting

positions should be explored with a step size, and, in

order to locate partial matches, the alignment space

should be explored uniformly without disregarding

some areas.

Translation step

A similar study was conducted to estimate the step size

of the translation. The results in Fig. 4 show the effect

of translation on an average Hodgkin index, computed

for self-overlays of 200 molecules, which contain 100

randomly selected molecules with 20 atoms and 100

randomly selected molecules with 60 atoms. Here, the

average Hodgkin index decreased steadily, but the

minimum and the maximum similarity values shown by

the dashed lines do not follow the average trend. For

example, at point A, the similarity after translating a

particular molecule by just 2.0 Å is as low as 0.2. At

point B, the similarity is above 0.3, even though the

molecule in question has been translated by more than

10 Å.

These two extreme cases are explained by examin-

ing the results from planar molecules in the test set.

With planar molecules, the translation may have a

dramatic effect on the similarity when two perfectly

overlaid molecules are translated to separate the

layers. If, on the other hand, a planar molecule is
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Fig. 3 Average Hodgkin index and standard deviation of 100
gradually rotated self-overlays containing molecules with 40
atoms
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computed for self-overlays of 100 molecules containing 20, 40
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translated in a plane, the similarity is not likely to

change greatly. Both cases need to considered when

estimating the number of trial alternatives to be

investigated.

Figure 4 shows that in order to find alternative

starting positions, which may be further optimized, the

distance between the optimal alignment and the starting

position cannot be much more than ± 1.0 Å if results

are desired with a high degree of confidence. The

Hodgkin index within the ± 1.0 Å window is clearly

above 0.5, whereas the Hodgkin index drops below 0.5

even for the most troublesome alignments. However, if

the starting positions are explored by using a larger step

size, the Hodgkin index of the most potential starting

positions cannot be reliably distinguished from the

Hodgkin index of the poor positions, thus increasing the

probability of the algorithm to choose a sub-optimal

starting position and the optimizer to stick on a local

maximum.

Optimization

The Hodgkin index is optimized according to six de-

grees of freedom (three rotations and three transla-

tions), and the rotation angles a and b are made to vary

between 0 and 360� whereas the c angles range from 0

to 180�. With the step size previously established, it

should therefore be possible to find interesting starting

positions by substituting 30, 90, 150, 210, 270 and 330�
for a and b, and 30, 90 and 150� for c in the Equation 7.

Thus, for each trial translation, only 108 rotations (6 ·
6 · 3) need to be evaluated in order to find at least

one starting position within ± 30� from the optimal

alignment.

If one wishes to optimize the three translational

parameters of Equation 1, it is assumed that the center

point of the template molecule is located inside a

bounding box that is defined by the outermost heavy

atoms of the database molecule. The volume of this

bounding box defines the number of trial positions that

must be evaluated to find the starting positions for

further optimization. Using the ± 1.0 Å window, an

average of 80 trial alignments are needed for a typical

molecule containing 40 atoms. The number of trial

alignments naturally depends on the size of the mole-

cule, which in turn depends on the number of atoms.

Considering the optimization of both the rotational

and translational variables, some 8500 trial alignments

are needed to find 256 starting positions for further

optimization. Furthermore, some 3500 more trial

alignments are needed to optimize these starting

positions. Thus, about 12,000 trial alignments need to

be evaluated for a typical molecule containing 40

atoms. Compared to algorithms using fewer starting

positions, BRUTUS is a brute-force algorithm that

attacks the problem of finding pair-wise alignments in a

rather brutal way, hence the name.

Results and discussion

Euler angles and quaternions

Rotations can be achieved by Euler angles or quater-

nions [20]. We found Euler angles and transformation

matrices convenient for use in BRUTUS, as a number

of translation, rotation and scaling operations could be

encapsulated in a single 4 · 4 matrix. With quater-

nions, these operations are handled separately, and a

scalar multiplier and translation vector would have to

be operated along with the transformation matrix to

mimic the homogeneous coordinate transformation of

BRUTUS. However, quaternions might improve the

efficiency of minimization [24, 27], and it might be

useful to replace rotations of Equation 7 with a

quaternion formulation.

The problem with our current approach is that

rotation Rz(a)ÆRy(b)ÆRz(c) has a singularity when b is

close to zero; i.e., change of a can undo change in c
when b approaches zero. This gives rise to artificial

saddle points and maxima, which may affect the

optimization of the molecular overlay[24]. However, in

this study the artificial saddle points and maxima did

not represent a major problem.

The number of starting positions needed

Selecting the most representative set of starting posi-

tions is essential if one is to find the global maximum

with Gradient-based optimization methods [15]. In

BRUTUS, potential starting positions are identified by

translating and rotating molecules systematically with a

step size of 2 Å and 60�, after which at most 256 of the

best alignments are used as starting positions in the

subsequent optimization. Due to these fairly small

steps, some 8500 trial alignments must be evaluated

before the most potential starting positions can be

selected.

It can be argued that a more elaborate optimization

scheme would cope with far fever trial alignments.

However, we believe that a large number of alignments

has to be evaluated in order to find decent starting

positions for finding partial matches, where a small

molecule is aligned to a larger molecule, or vice versa.

Database searches are often conducted to find com-

pounds that are structurally novel [1], and molecules
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that are larger or smaller than a template molecule

may also be interesting in that respect. Moreover, it

should be noted that also the more elaborate optimi-

zation algorithms, such as simulated annealing and

evolutionary algorithms, require a set of starting

positions (initial population) in order to locate the

optimal alignment. If the potential starting positions

cannot be identified by using a step size much greater

than 2.0 Å and 60�, then it would be anticipated that,

irrespective of the optimization scheme, the number of

trial alignments cannot be greatly reduced if the

potential starting positions and interesting local

maxima are to be identified reliably.

It may also be useful to remember that the step sizes

were derived from self-overlays, where an optimal

superposition always exists. This is usually not the case

with the structurally dissimilar molecules, which are

likely to be encountered in virtual screening. However,

if one wishes to locate reasonable starting positions for

finding partial matches, it would be unrealistic to expect

that interesting starting positions would be found reli-

ably with a much larger step size in a more challenging

scenario. Instead, in the view of the fact that two

dissimilar structures do not usually have a perfect

alignment, the step size of a systematic search may even

need to be tightened to find the most potential starting

positions in a real world scenario. Alternatively, the

energy fields or the similarity function should be

modified such that the potential starting positions could

be identified with a much larger step size.

Precision of interpolation

In order to investigate the accuracy of Equation 8, a

random set of 200 molecules was selected and super-

imposed with their identical copies. The molecules

were centered, and one copy was kept in a fixed posi-

tion while the other copy was rotated. For each rota-

tion, the Hodgkin index was computed precisely and

approximated by two different interpolation schemes.

The precise similarity coefficients were obtained by

rotating a molecule and re-generating the electrostatic

energy field of the rotated molecule so that the grid

points of the two fields matched perfectly. A resolution

of 0.2 Å was used for both energy fields. The Hodgkin

index was approximated by linear interpolation and

the simple interpolation scheme while using two dif-

ferent resolutions. For the linear interpolation, both

energy fields were generated with a resolution of 2.0 Å,

and the eight nearest grid points were used to

approximate the energy between the grid points. For

the simple interpolation scheme, the template mole-

cule was expressed with resolutions 2.0 Å and 1.0 Å in

turn while the database molecule was expressed with

0.5 Å and 0.25 Å resolutions.

The correlation coefficient (R2) was 0.899 by using

linear interpolation. When the simple interpolation

scheme was used with resolutions 2.0 Å and 0.5 Å, the

correlation coefficient increased to 0.966, and, when

using resolutions 1.0 Å and 0.25 Å for template and

database molecules, the correlation coefficient was

further increased to 0.999.

The results show that this computationally light-

weight and simple interpolation scheme can accurately

estimate similarity using coarse grids, even though the

grid points of the template and database molecules do

not coincide. However, due to the approximation

error, some noisiness is still expected in the optimiza-

tion of equation 8, and optimization algorithms that

can cope with noisy data are preferred.

Energy fields

In principle, any type of energy field can be used with

BRUTUS. However, energy fields with continuous,

smoothly varying densities and large regions of positive,

neutral and negative charge are preferred in order to

minimize the approximation error and to allow starting

positions to be explored using a fairly large step size.

Energy fields with sudden changes of density and small

regions of positive, neutral or negative charge are likely

to incur greater approximation errors and may even

require tightening of the steps of the systematic search

in order to locate appropriate starting positions for

further optimization. If new energy field types are used

with BRUTUS, the level of the approximation error

and the applicability of the 60 degree rotational step

and 2.0 Å translational step needs to be verified.

Electrostatic and van der Waals energy fields are

suitable for BRUTUS, as these fields contain large

regions of positive, neutral and negative charges.

However, both fields also contain rapid changes of

energy, and the usability of these fields can be improved

by removing or smoothening these rapid changes. In

van der Waals energy field, the energy changes rapidly

near to the van der Waals radius. Smoothening the

transition of energy near to van der Waals radius both

reduces the approximation error and makes the simi-

larity function continuous thereby allowing easier

optimization of the similarity. In electrostatic energy

field, the energy changes rapidly near the atomic

centers. However, the charge inside the van der Waals

radius is not meaningful for estimation of similarity,

and the rapid changes can be eliminated by assigning a

fixed value to the grid points that fall inside the van der

Waals radius [28].
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In BRUTUS, electrostatic charge and van der Waals

volume are combined into a single energy field. The

van der Waals component allows molecules to be

superimposed by their shape and the electrostatic

component allows charged regions of molecules to be

matched. The combined energy field is created such

that the charge inside the van der Waals radius is set to

a positive value, and the electrostatic charge is used

outside the van der Waals radius. Furthermore, the

transition between the van der Waals and electrostatic

regime is smoothened.

In this scheme, the relative importance on shape and

electrostatic fit can be controlled by selecting the

appropriate value that is assigned to the grid points

inside the van der Waals radius. A large value favors a

shape match while a small value favors an electrostatic

fit. In BRUTUS, the shape match is favored over the

electrostatic fit, and a value of five is assigned to grid

points inside the van der Waals radius. However, the

importance of shape and electrostatic fit may depend

on the target [29], and this value might not be optimal

for all targets.

Evaluation of similarity using this combined energy

field is twice as fast as can be achieved using two dis-

tinct energy fields. However, the relative importance of

shape and electrostatic fit might be easier to control if

two distinct energy fields were used. Moreover, it is not

possible to combine more than two types of energy

fields. For example, electrostatic and hydrophobic en-

ergy fields cannot both occupy the area outside the van

der Waals radius in the combined energy field. If these

energy field types are to be used, there should be a

distinct energy field for each energy field type. The use

of distinct fields could be especially useful in aligning

compounds for comparative molecular field analysis

(CoMFA [30]), where proper compound alignments

are crucial for the quality and reliability of the model

and superposition time is typically not an issue.

Accuracy of molecular alignments

The accuracy of molecular alignments was examined in

a self-overlay experiment, in which 35 various-sized

compounds, extracted from X-ray structures of pro-

tein–ligand complexes, were aligned with their identi-

cal copies. Initially, 1000 arbitrarily rotated and

positioned orientations were generated for each com-

pound. Next, these random orientations were super-

imposed with the original compound. Molecular fields

were derived from Gasteiger–Hückel charges, using

field resolutions of 1.0 Å and 2.0 Å in turn. Finally,

heavy atoms root mean square deviation (RMSD)

values were calculated between the template com-

pound and each resulting superposition. Average

RMSD values of the superpositions for each compound

were calculated to obtain an estimate of the structural

accuracy of the superpositions.

BRUTUS omitted 38 and 39 (0.1%) out of 35,000

superimposed orientations, and generated 39 (0.1%)

and 104 (0.3%) reverse alignments for symmetrical

compounds, when using field resolutions of 1.0 Å and

2.0 Å, respectively. These alignments were left out of

the average RMSD values. The remaining average

RMSD values for the 35 investigated compounds are

presented in Table 1.

The average inaccuracy of the structural superposi-

tion for the field-based self-overlays of all 35 com-

pounds was 0.28 Å and 0.55 Å for field resolutions of

Table 1 The average accuracy of 35 self-overlays using two
resolutions

Compd PDB IDa Atomsb RMSD (Å)

1.0 Å 2.0 Å

1 3pgh 31 0.284 0.593
2 6cox 37 0.251 0.496
3 2hwb 39 0.272 0.569
4 1r09 41 0.306 0.659
5 1ruc 45 0.288 0.600
6 5tln 46 0.252 0.470
7 1ele 48 0.247 0.501
8 7est 51 0.245 0.498
9 1rud 54 0.638 1.172

10 1a85 55 0.250 0.496
11 2rs3 57 0.745 1.409
12 1hwr 60 0.252 0.461
13 1mmb 63 0.258 0.483
14 5tmn 65 0.245 0.501
15 1tmn 68 0.262 0.544
16 1hpv 70 0.245 0.447
17 1bma 73 0.246 0.530
18 1dmp 76 0.239 0.472
19 1qbu 79 0.244 0.480
20 1b0e 81 0.255 0.492
21 1d4h 83 0.248 0.468
22 1g35 87 0.240 0.471
23 1ebz 89 0.238 0.464
24 1d4l 91 0.246 0.487
25 1qbr 92 0.237 0.445
26 1ebw 96 0.237 0.438
27 1hxw 98 0.245 0.488
28 1hef 101 0.245 0.476
29 1hos 105 0.240 0.479
30 2bpy 106 0.245 0.494
31 1ec2 108 0.241 0.461
32 1dif 116 0.511 0.716
33 1ody 116 0.240 0.593
34 1a8g 118 0.255 0.534
35 1hiv 120 0.240 0.474

a PDB ID of the X-ray structure where the cocrystallized ligand
was obtained
b Number of atoms in the compound
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1.0 Å and 2.0 Å, respectively. There were no major

differences between the average RMSD values of the

different compounds, except for compounds 9, 11 and

32. For these nearly symmetrical compounds, BRU-

TUS generated some reverse-oriented alignments,

which increased the average RMSD.

The results show that BRUTUS can generate self-

overlays with an acceptable accuracy irrespective of the

starting orientation stored in the database. Moreover,

the results suggest that the average accuracy of super-

position of two different molecules is at least 0.55 Å. If

greater accuracy is required, BRUTUS is recom-

mended to be used with a field resolution of 1.0 Å.

Running time

In our recent article [13], three database searches were

conducted with BRUTUS version 0.6.3. As these

searches used three distinct template molecules with

37, 92 and 118 atoms, the results of these searches

provide a hint on the performance of BRUTUS in a

real world scenario. Table 2 summarizes the average

superpositions times per conformation for these three

database searches.

The results lead to the conclusion that the super-

position time depends on both the template molecule

and the database. If the size of the template molecule is

increased from 37 to 162 atoms, the running time of the

database search does not increase by the same extent.

In fact, it seems that the actual running time of

BRUTUS is dependent more on the size of the average

database molecule rather than on the template mole-

cule. This is to be expected as the bounding box of the

database molecule directly affects the search region

and the number of starting positions that are to be

evaluated. The size of the template molecule, on the

other hand, only affects the running time indirectly. A

large template molecule has more grid points than a

small molecule, but, unless these grid points are

matched with a database molecule, the points have no

effect on the running time.

Efficiency of grid-based algorithms

Efficiency is one of the most crucial features when

deciding whether a method can be applied to real-world

virtual screening problems that involve millions of

molecules [1]. In two virtual screening experiments

[13], BRUTUS has been shown to superimpose a con-

formation in less than 0.25 s, and this suggests that

performance of BRUTUS is sufficient for practical

applications. Moreover, the efficiency of BRUTUS

indicates that grid-based methods in general can be

efficient for comparing the similarity of molecular

energy fields.

To improve the efficiency of the similarity calcu-

lations, in 1992 Good et al. [11] suggested that the

effect of the atomic partial charges should be

approximated by overlapping Gaussian functions.

According to Good and Richards [12], Gaussian

functions increase the efficiency of similarity evalua-

tion by as much as three orders of magnitude com-

pared to a grid-based evaluation of the similarity.

However, Good and Richards utilized a 0.2 Å grid

separation in their comparative study whereas BRU-

TUS uses a 2.0 Å separation. Moreover, BRUTUS

applies an interpolation algorithm to avoid regener-

ating energy fields during similarity optimization.

These changes make BRUTUS a different algorithm,

and Good s conclusions may not apply to BRUTUS.

For example, the mere change of grid separation from

0.2 Å to 2.0 Å represents a thousand-fold reduction in

the number of grid points, and this can compensate

for the thousand-fold increase in performance that

Good and Richards [12] achieved by using Gaussian

functions instead of grid-based evaluation. It is

therefore possible that a grid-based similarity calcu-

lation method coupled with an interpolation algorithm

can be as efficient as a Gaussian function similarity

calculation.

Conclusions

BRUTUS is an automated computer program for

rigid-body molecular superposition. BRUTUS identi-

fies potential starting positions for further optimization

via a systematic search, and, during a single molecular

superposition, some 8500 alignments are evaluated to

find up to 256 most potential starting positions.

Another 3500 alignments are then evaluated to opti-

mize these starting positions. This seemingly large

number of trial alignments makes BRUTUS reliable,

and interesting alignments are located independently

of the starting position.

Table 2 The average superposition times of three database
searches

Templatea Atomsb Time (s)

6cox 37 0.21
1qbr 92 0.24
1a8g 118 0.25

a PDB ID of the X-ray structure where the template molecule
was extracted
b Number of atoms in the template molecule
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BRUTUS is a molecular field-based method, in

which coordinate systems are transformed to estimate

the similarity of energy fields in various alignments.

This removes the need to re-generate energy fields

during optimization, and thereby makes the algorithm

more efficient. Moreover, BRUTUS applies a simple

interpolation algorithm for estimating the energy be-

tween grid points, and this allows coarse energy fields

to be used without significant loss of accuracy. The

resulting superposition speed of about 0.25 s per con-

formation on a 2.4 GHz Intel Pentium processor allows

the algorithm to be used for virtual screening of large

molecular databases on commonly available desktop

machines.

The results indicate that grid-based superposition

methods can be efficiently used for the virtual screen-

ing of compound libraries. Moreover, these results

open new possibilities for constructing virtual screen-

ing algorithms and for finding structurally diverse lead

molecules for a variety of targets.
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(2004) Proteins 56:585
30. Cramer III RD, Patterson DE, Bunce JD (1988) J Am Chem

Soc 110:5959

236 J Comput Aided Mol Des (2006) 20:227–236

123


	BRUTUS: Optimization of a grid-based similarity function �for rigid-body molecular superposition. II. Description �and characterization
	Abstract
	Introduction
	Methodology
	Hodgkin index
	Coordinate transformation
	Interpolation
	Systematic search
	Rotation step
	Fig1
	Translation step
	Fig3
	Fig4
	Fig2
	Optimization
	Results and discussion
	Euler angles and quaternions
	The number of starting positions needed
	Precision of interpolation
	Energy fields
	Accuracy of molecular alignments
	Tab1
	Running time
	Efficiency of grid-based algorithms
	Conclusions
	Tab2
	Acknowledgments
	References
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


