
Abstract A novel approach termed comparative res-

idue-interaction analysis (CoRIA), emphasizing the

trends and principles of QSAR in a ligand–receptor

environment has been developed to analyze and pre-

dict the binding affinity of enzyme inhibitors. To test

this new approach, a training set of 36 COX-2 inhibi-

tors belonging to nine families was selected. The

putative binding (bioactive) conformations of inhibi-

tors in the COX-2 active site were searched using the

program DOCK. The docked configurations were fur-

ther refined by a combination of Monte Carlo and

simulated annealing methods with the Affinity pro-

gram. The non-bonded interaction energies of the

inhibitors with the individual amino acid residues in

the active site were then computed. These interaction

energies, plus specific terms describing the thermody-

namics of ligand–enzyme binding, were correlated to

the biological activity with G/PLS. The various QSAR

models obtained were validated internally by cross

validation and boot strapping, and externally using a

test set of 13 molecules. The QSAR models developed

on the CoRIA formalism were robust with good r2, q2

and rpred
2 values. The major highlights of the method

are: adaptation of the QSAR formalism in a receptor

setting to answer both the type (qualitative) and the

extent (quantitative) of ligand–receptor binding, and

use of descriptors that account for the complete ther-

modynamics of the ligand–receptor binding. The

CoRIA approach can be used to identify crucial

interactions of inhibitors with the enzyme at the resi-

due level, which can be gainfully exploited in opti-

mizing the inhibitory activity of ligands. Furthermore,

it can be used with advantage to guide point mutation

studies. As regards the COX-2 dataset, the CoRIA

approach shows that improving Coulombic interaction

with Pro528 and reducing van der Waals interaction

with Tyr385 will improve the binding affinity of

inhibitors.
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Introduction

The quantitative structure activity relationship

(QSAR) approach has been one of the most successful

tools in drug design. Since its first inception by Hansch

et al. [1–3], the QSAR methodology has undergone

revolutionary changes in every aspect of the approach,

and the limitations inherent in the Hansch approach

have spurred the development of the current 3D-

QSAR methods.

QSAR analysis, whether 2D or 3D, has invariably

been applied to data sets for which the geometry of

the receptor is unknown. In cases where the geometry

of the receptor is known, either by X-ray crystallog-

raphy, NMR, or comparative modeling, docking and

structure based drug design are preferred over QSAR

analysis. Current 3D-QSAR techniques attempt to

characterize ligand–receptor interactions indirectly

using probes positioned at intersections of a lattice

(grid or box) spanning a three dimensional region.
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Usually, steric and electrostatic interactions between

the probe and the ligand are calculated at the grid

points. Comparative molecular field analysis (CoM-

FA) [4] was the first 3D-QSAR method developed

based on this approach. Since then, several other

methods like molecular shape analysis (MSA) [5],

Molecular Similarity Matrices (for e.g., CoMSIA [6]),

Distance Geometry [7], the Hypothetical Active Site

Lattice method (HASL) [8], Genetically Evolved

Receptor Models (GERM) [9], CoMPASS [10], Cat-

alyst [11], etc. have been developed around the

CoMFA theme. Each method has its strengths and

limitations which has now been realized.

One of these limitations is the wealth of knowledge

available in ligand–receptor complexes is ignored.

There is now a growing interest in developing receptor-

dependent 3D QSAR models in which the receptor

geometry is used in computing QSAR-independent

variables. The first approach along this line was that of

Hopfinger and colleagues [12] who modeled anticancer

anthracyclines intercalating into DNA. More recently,

COmparative BINding Energy (COMBINE) [13] has

been developed, in which the ligands are divided into

fragments, which are chosen according to their spatial

location in the protein–binding site, rather than by

chemical identity. The intermolecular interaction

energies between each fragment of the ligand and the

amino acid residue are calculated. These energy terms

are then correlated to experimental binding free

energies (biological activities) by partial least squares

(PLS) method. A reverse variant of CoMFA is

Adaptation of fields for molecular comparison (AF-

MoC) developed by Gohlke and Klebe [14] and is

based on adaptive knowledge-based pair-potentials

tailored for the protein while simultaneously consid-

ering ligand-based information in a CoMFA-type ap-

proach.

A conceptual flaw in most 3D-QSAR approaches is

that contribution from the solvent and entropy factors,

which many times influence and dictate the binding

process are ignored. However, Vedani et al. have

developed QSAR methods beyond the third dimension

by accounting for the effect of different conformations

as the fourth dimension [15], the induced fit mechanism

as the fifth dimension [16] and evaluation of different

solvation models as the sixth dimension [17], addi-

tionally incorporating entropy of ligand binding into

the analysis. Much progress has been made in recent

years in the theoretical foundations and practical

computations of ligand–receptor binding thermody-

namics [18]. Hence, an approach that includes such

terms has the potential to enhance the quality and

predictive power of a 3D-QSAR model.

We describe here an approach termed comparative

residue-interaction analysis (CoRIA) which tries to

take into account ligand–protein interactions as well

the thermodynamics of binding to explain the variation

in activity of 36 cyclooxygenase-2 (COX-2) inhibitors

belonging to different structural classes. The COX-2

enzyme has been well studied at the molecular level

and many structurally diverse inhibitors have been

synthesized and tested with a good amount of success.

Also, the X-ray structures of the COX-2 enzyme in

complex with several inhibitors are available. These

factors make the COX-2 dataset a good test case for

the CoRIA hypothesis.

Ligand–receptor binding

The complete thermodynamics of ligand–receptor

binding leading to a biological response, involves many

events like interaction, solvation and entropy changes

[19], all of which can profitably be taken into account

in a 3D-QSAR analysis.

The binding free energy difference (DGbind) be-

tween free and bound states of receptor and ligand

(DGcomplex – DGuncoplexed) is related to the binding

constant (Kd) of ligand to the receptor and can be

written as an additive interaction of different events

using the classical binding free energy equation [15],

DGbind ¼ DGsolv þ DGconf þ DGinter þ DGmotion

ð1Þ

i.e., the total free energy of binding (DGbind) is an

additive interaction of different events such as solva-

tion of ligand (DGsolv) which is the difference between

unbound (e.g. cellular) and bound state, conforma-

tional changes that occur in the receptor and/or ligand

(DGconf), specific interactions between the ligand and

receptor as a consequence of their proximity (DGinter),

and the motion in the receptor and ligand once they

are close to each other (DGmotion).

Every term in Eq. 1 contributes more or less to the

ligand–receptor binding process. The binding free en-

ergy contribution by solvation at physiological condi-

tions is the hydration free energy. Both the protein and

the ligand are solvated before binding, the solvent

molecules reorganize, as the interactions with water

compete with protein–ligand interactions. Because of

the relatively high surface area of the receptor com-

pared to the ligand, the solvation binding free energy

due to the receptor is negligible as compared to that of

ligand. For the ligand, the electrostatic contribution to

the hydration free energy can be calculated using the
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finite difference approximation to the linear form of

the Poisson–Boltzmann equation [20].

The next part of the binding free energy is the

contribution from changes in the conformation of both

the protein and the ligand due to their association

(DGconf). In many complexes, the conformation of the

receptor on binding does not change much from the

native structure, but in some (e.g., HIV protease [21]),

the protein undergoes a large change in its conforma-

tion on inhibitor binding. The conformational change

associated with the ligand upon binding to the receptor

is more significant compared to that for the receptor

and can be estimated by the strain energy upon bind-

ing. The ligand conformational energy can be calcu-

lated using a molecular mechanics potential function

[22] as the energy associated with changes in bond

lengths, angles, torsions and non-bonded interactions,

E ¼ Ebond þ Eangle þ Etorsion þ EvdW þ Ecoul

ð2Þ

The third term in Eq. 1, the interaction energy

(DGinter), is the dominant factor in the overall binding

process in many cases, and is the main theme in the

CoRIA formalism. Since it is purely an enthalpic

contribution, DG can be replaced by DE, and is the

total energy of the complex minus the energy of the

free protein and free ligand. The electrostatic and van

der Waals interactions are the major contributors to

the interaction energy [23].

The last term in Eq. 1, DGmotion, incorporates the

effects of molecular motion and accounts for the loss of

torsional, vibrational, rotational and translational free

energies upon binding. When two molecules bind,

there is a loss of three rotational and three transla-

tional degrees of freedom. There is both an enthalpic

and entropic contribution to this free-energy loss. The

enthalpic contribution is about 3RT [24], and is usually

assumed to be a constant value, independent of the size

of the ligand. The entropic contribution is approxi-

mately 7–11 kcal/mol [19]. This contribution would

cancel out when comparing different ligands binding to

the same receptor.

We first describe the preparation of the test system,

before we explain how each one of the above events in

ligand–receptor binding has been accounted for in the

CoRIA approach.

Materials and methods

The building of molecular models of COX-2 inhibitors

and the enzyme-inhibitor complexes were carried out

with the InsightII (v 2000.3 L; Accelrys Inc., USA) [25]

molecular modeling package. Energy minimization and

molecular dynamics simulations were carried out with

the Discover module (v 2000.3 L; Accelrys Inc., USA)

and the CVFF force field [26]. The CVFF charges for

atoms were used throughout this study. DOCK (v. 4.0)

[27] and Affinity [28] (Accelrys Inc., USA) suite of

programs were used to search the optimal binding

poses of inhibitors. The statistical analysis was carried

out using G/PLS as implemented in Cerius2 (v 4.8;

Accelrys Inc., USA) [29].

Biological data

The test system was a set of COX-2 inhibitors com-

prising pyrrole [30], imidazole [31, 32], cyclopentene

[33, 34], benzene [35], pyrazole [36], spiroheptene [37],

isoxazole [38], pyridine [39], thiazolone [40], thiadiaz-

ole and oxadiazole [41] derivatives. The inhibitory

activities of all these molecules were measured on

human recombinant enzyme by the same protocol, and

are reported as IC50 values [30–41]. The enzyme

inhibitory activities were converted to the negative

logarithmic scale (pIC50) and as seen in Table 1 spans

5 log orders.

Docking of COX-2 inhibitors

The crystal structure of murine COX-2 [42], entry

1CX2 in PDB (www.rcsb.org/pdb) [43] complexed with

SC-558 was used for the modeling studies. Hydrogens

were added corresponding to pH 8.0 using the InsightII

Biopolymer program, which resulted in a + 1 charge

for arginines and lysines, and –1 charge for the aspar-

tates and glutamates. The histidines were unionized at

this pH and were considered as such in this study. The

enzyme along with the inhibitor was energy minimized

using steepest descents and conjugate gradients, with

the enzyme backbone atoms tethered with a force

constant of 100 kcal/mol/Å2. The electrostatic energy

was computed with a distance dependent dielectric

constant (r). During the minimization procedure, the

ligand (SC-558) was free to move, and minimization

was carried out until a gradient of 0.01 kcal/mol/Å was

reached for the system.

For ligand docking, residues within a 15 Å radius

from the centroid of SC-558 defined the active site. The

Connolly surface for these residues was composed with

the MS program [44] using a probe of radius 1.4 Å.

Spheres were generated to occupy the binding pocket

with the program SPHGEN in DOCK. The spheres

were then enclosed in a grid and steric and electrostatic
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Table 1 Training and test set (T) molecules used in the present QSAR studies of COX-2 inhibitors

Cyclopentene

S

O

O

R1
R2

ID pIC50 R1 R2

1 7.67 O

O

CH3

2 8.69 O

O

NH2

T1 6.82
CF3

NH2

T2 8.69

Cl

N

CH3

CH3

NH2

Spiroheptene

R2

S

O

R1
O

(CH2)n

ID PIC50 R1 R2 n

3 8.39 CH3
F

2

4 6.86 CH3
OCF3

1

5 8.00 CH3

F

OMe
1

6 8.09 CH3
F

1

T3 7.20 CH3
F

3

T4 9.0 NH2
Cl

1
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Table 1 continued

Benzenes

R2

S

O

O
R1

z

ID pIC50

R2

z

R1 R2

7 7.08

R2

O

O

CH3
F

8 6.46

R2

F

F

CH3

O

O

9 8.09

R2

F

F

CH3

N

CH3

CH3

T5 8.69

R2

F

F

NH2
F

CH3

Pyrazoles

N

N

R1
S

R2

O

O

R3

R4

ID pIC50 R1 R2 R3 R4

10 5.44 CF3 NH2 OH

11 7.00
F

CF3 CH3 H

12 7.38
F

CF3 NH2 H

13 5.48

O
CH3

CHF2 NH2 H

14 7.50 CF3 NH2 H

T6 6.46
F

CN NH2 H
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Table 1 continued

Pyrroles

NR2

R3

R1

R4

ID pIC50 R1 R2 R3 R4

15 7.22 H CH3 SO2CH3

16 5.54 H CH3

CH3

O SO2CH3

17 4.00

C

H2

N
CH3

CH3

CH3
F

SO2CH3

18 5.79 COCH3 CH3
F

SO2CH3

T7 6.28 H CH3 SO2CH3

T8 6.29 H H

S CH3

O

O

F

Imidazoles

N

N

R1

R3

R2

ID pIC50 R1 R2 R3

19 5.24 CF3 SO2CH3
SO 2CH3

20 6.04 CF3 SO2CH3

Cl

21 7.09 CF3 SO2CH3

CH3

Cl

22 4.91 CF3 SO2CH3
CH3

CH3

OMe
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Table 1 continued

23 6.29 CF3 SO2NH2 N

CH3

24 5.76 CF3 SO2CH3

N

25 5.77 CF3 SO2CH3 N

26 6.32 CF3 SO2CH3

O

O

T9 8.15 CF3 SO2NH2 Br

T10 4.00 CF3 SO2CH3

H3CO

Pyridines

N

CF3

R1

F

S

O

O

CH3

ID pIC50 R1

27 6.22 Br
28 6.69 OCH2C ” CH
29 6.52 OCH3

30 6.52 OCH2CH3

Isoxazoles

O
N CH2OH

S NH2

O

O

ID PIC50

31 6.74
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interactions of the enzyme were then calculated at each

grid point by DOCK. Both ligand orientation and

flexibility were considered during the docking process.

The best docking mode for each ligand was selected on

the basis of the ligand–enzyme interaction energy.

Refining docked conformations

The initial ‘‘DOCK’’ conformations were refined using

Affinity. The protein structure was first classified into

three distinct regions: (i) residues within 5 Å radius

from the centroid of the ligand were kept free; (ii)

residues present in the region 5–10 Å from the cen-

troid of the ligand were tethered with a force that al-

lowed a limited mobility and (iii) the rest of the protein

was fixed. The best scored structures from DOCK,

were refined by Affinity through a combined Monte

Carlo (MC) and simulated annealing (SA) procedures.

In the MC procedure, all degrees of freedom for the

ligand namely, translational, rotational and torsional,

Table 1 continued

Thiazolones, Thiadiazoles, Oxadiazoles
R1

CH3

CH3

R3

CH3

CH3

CH3

R2

ID pIC50 R1 R2 R3

32 6.85 OH

S

NN

S
CH3

CH3

33 7.19 OH

N

ON

N
H

N
CH3

34 5.76 OH

S

N

O

N
H

O
CH3

CH3

35 6.24 OH

S

N

O

N
H

O
CH3

H

36 5.49 OH

S

N

O

N
H

O
CH3

CH3

T11 5.18 OH

O

NN

S
CH3

CH3

T12 7.32 OH

N

SN

N
H

N

CH3

T13 5.82 OCH3

S

NN

SH

CH3
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were considered. In the MC step, the maximum per-

missible translational movement of the ligand was

restricted to 1.0 Å along with 180� as the maximum

angle of rotation. Configurations were screened with a

quartic term for the Lennard Jones potential while

neglecting the Coulombic energy. Selected configura-

tions, based on their energies, were then minimized.

The best structures were then screened with a standard

Lennard Jones potential and a more accurate estimate

of the electrostatic energies by the Cell multipole

method [45]. The 10 lowest energy structures were then

refined with SA, where a linear decrease in tempera-

ture from 500 K to 300 K in steps of 100 K for 100 fs

each was adopted. The annealed structures were then

minimized to a gradient of 0.001 kcal/mol/Å. The

above protocol was followed for all the molecules in

the data set. The final conformation selected for the

QSAR study was the one with the lowest binding en-

ergy. The enzyme–inhibitor complexes thus obtained

were used for the computation of the non-bonded

interaction energies. The docking protocol was vali-

dated to reproduce the crystal structure of COX-2 with

SC-558 (1CX2) and the same protocol was used to

generate the ligand–receptor complexes for all mole-

cules in the training and test sets. The other descriptors

(vide infra) were calculated for the ligands extracted

from this bound conformation.

Computation of individual terms in the CoRIA

approach

Electrostatic contribution to the solvation energy

(DGsolv in Eq. 1)

The electrostatic contribution to the solvation free

energy of ligands as explained earlier, was calculated

using the module Delphi (Accelrys Inc., USA). The

program calculates the electrostatic energy of transfer

of a molecule from vacuum to water, using the

approximated Poisson-Boltzmann equation [46]. The

ligand charges for Delphi were calculated using

the CFF91 [47] force field, as these partial atomic

charges have been reported to be more accurate in

reproducing experimental solvation free energy [48].

Strain energy (DGconf in Eq. 1)

The ligands were extracted from their respective en-

zyme complexes and minimized to relieve the ‘‘strain’’

due to constraints imposed by the protein environ-

ment. This strain energy accounts for the DGconf term

in Eq. 1. The minimization routine involved several

cycles of steepest descents, conjugate gradients and

Newton Raphson (BFGS) methods, and terminated

when the gradient was below 0.001 kcal/mol/Å. The

strain energy was computed as a difference between

the energy of the ligand in complex with the protein

and the energy of the ligand after free minimization in

vacuo. The protein strain energy was found to be

insignificant in the present case.

Non-bonded interaction energies (DGinter in Eq.1)

The van der Waals and Coulombic interaction energies

for the enzyme–ligand complexes were calculated

using the CVFF forcefield in Discover3 program. The

functional forms of the two non-bonded interaction

energies are expressed as,

Evdw ¼
Aij

r12
ij

� Bij

r6
ij

ð3Þ

Eele ¼
qiqj

erij
ð4Þ

for the van der Waals and Coulombic energies,

respectively.

A total of 84 residues in the enzyme enclosed by a

10 Å radius from the inhibitor were identified as the

binding region and considered for calculation of

nonbonded energies (Eqs. 3 and 4). For each ligand

there are thus 84 entries each for the van der Waals,

Coulombic and the sum of the two non-bonded inter-

action energies, respectively, making a total of 252

non-bonded interaction energies in the QSAR study

table.

Miscellaneous descriptors

Besides the above three major components in the

ligand binding process several other descriptors for

the ligand have been calculated which directly or

indirectly can be related to one or the other terms in

the classical equation. These are free energy for

desolvation of ligand in water (Fh2o) and octanol

(Foct) [49]. These linear free energy properties have

proven useful as molecular descriptors in structure

activity analysis [50]. The computations of Fh2o and

Foct are based solely on the connectivity of the atoms

in the molecule and are not dependent critically on

the conformation of the molecule. The Fh2o and Foct

were calculated using the Cerius2 program.
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Jurs descriptors [51]

Jurs descriptors combine shape and electronic infor-

mation that encode features responsible for polar

interactions between molecules. The molecular sur-

face is defined by the van der Waals radii of the

atoms, as traced by a sphere representing a solvent

molecule (water by default). The surface traced out

by the center of the solvent sphere is termed the

solvent-accessible surface. The molecule is further

defined by a specific electron distribution, thus yield-

ing a representation of a charged contact surface

where polar intermolecular interactions can take

place. It is calculated by mapping the atomic partial

charges on the solvent-accessible surface area of

individual atoms. The sum of the solvent-accessible

surface areas of all positively charged atoms (PPSA-1)

and the sum of solvent-accessible surface areas of all

negatively charged atoms (PNSA-1) have been cal-

culated using following equations as implemented in

Cerius2.

PPSA� 1 ¼ RðþSAiÞ ð5Þ

PNSA� 1 ¼ Rð�SAiÞ ð6Þ

where, +SAi and –SAi are the surface area contribu-

tions of the ith positively or negatively charged atom in

the molecule respectively.

Molar refractivity

The molar refractivity index of a molecule is a

combined measure of its size and polarizability.

This fragment constant thermodynamic descriptor

relates the effect of substituents on a reaction

center from one type of process to another. The

basic idea behind using such descriptor is that

similar changes in structure are likely to produce

similar changes in reactivity, ionization, or binding.

It was calculated using the method described by

Ghose and Crippen [52] as implemented in the

Cerius2 program.

Molecular volume

Molecular volume is a 3D spatial descriptor that

defines the molecular volume inside the contact

surface. This property is a function of conformation

and is related to binding and transport. It was calcu-

lated using the Cerius2 program.

Lipophilicity

The octanol/water partition coefficient (log P) is

related to the hydrophobic character of the molecule.

It was also calculated using Ghose and Crippen’s [52]

atom based approach as implemented in Cerius2, in

which each atom of the molecule is assigned to a par-

ticular class. The total value of A log P is an additive

contribution of each atom, which is calculated by the

following equation.

A log P ¼
X

niaj ð7Þ

where, ni is number of atoms of type i and aj is con-

tribution of an atom of type i.

Surface area

This 3D spatial descriptor was computed using the

Cerius2 program. It is a measure of the van der Waals

area of a molecule and determines the extent to which

the molecule exposes itself to the external environ-

ment. The molecular surface area is related to binding,

transport, and solubility of the molecule.

Statistical analysis

Genetic function approximation (GFA) [53] in con-

junction with PLS [54] referred to as G/PLS was the

statistical tool used to develop meaningful QSAR

models. The GFA algorithm develops an initial popu-

lation of individuals; a fitness function which is a

measure of least square error––termed ‘lack of fit’

(LOF) [53], is then applied as an estimate of the quality

of each individual. Individuals with the best fitness

scores are allowed to mate and propagate their genetic

material to offspring through the crossover and/or

mutation operation. After repeatedly performing these

steps, the average fitness of the individuals in the

population increases, as good combination of ‘genes’

(descriptors in the present case) are discovered and

spread through the population. This can be observed as

the frequency at which each term (descriptor) appears

in all equations in the final population. The entire

population of equations can then be searched for

information on features, patterns and regions in which

different equations predict well.

Both linear (x) terms and linear in combination with

spline < x – a > terms were used to develop the

QSAR equations. A total of 8 models, four with only

linear terms and four with a combination of linear and
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spline terms, were developed using the above

described parameters. To preserve the information

contained in the descriptor dataset, pretreatment based

on correlation matrix was avoided [55]. The ‘unit

scaling’ method was used for all the descriptors, where

all the values in a given column are divided by its

standard deviation to obtain a mean of 0 and a variance

of 1. The unit scaling places all the columns, to be

considered for statistical analysis, on the same platform

and all the columns have equal weight (importance)

while deriving the equations. The optimal number of

components was selected as six, for which the cross-

validated r2 (q2) was found to be the highest; the length

of the equations was set to six terms with a smoothness

value of 1.0 (the smoothness function controls the bias

in the scoring factor between equations with different

number of terms), and number of generations were

limited to 10,000. Crossover and mutation probabilities

of 50% (default settings) were used.

Validation

Cross validation using both the leave-one-out (LOO)

and leave-five-out procedures with 50 trials was fol-

lowed to calculate the q2 for every model. The activity

of the test set molecules was predicted using the

CoRIA models and predictive r2 (rpred
2 ) was calculated.

The features and validation results of the CoRIA

models are reported in Table 2.

Results and discussion

Physico-chemical properties derived from ligand–pro-

tein interaction studies can be easily incorporated into

the QSAR formalism. Two such attempts to include

physico-chemical properties from the ligand–protein

complex to formulate 3D-QSAR equations have

appeared [11, 56]. Overall, all 3D-QSARs reported till

date have only probed and extracted information about

a specific interaction involving the ligand, which is

mostly restricted to its binding site while neglecting

critical elements of the ligand binding process. The

CoRIA formalism was developed to fully account for

the thermodynamics of ligand–protein binding within

the QSAR framework. In order to perform a CoRIA

analysis, one needs (i) a 3D structure of the protein

(X-ray, or NMR or Homology model) preferably with

a bound ligand; (ii) a docking algorithm; (iii) a method

to compute intermolecular interactions (van der Waals

and Coulombic energies), (iv) program(s) to calculate

binding descriptors that the medicinal chemist thinks

are important for describing the events during the

ligand–protein binding process, and (v) a robust

statistical method, such as G/PLS or a neural network,

for deriving the QSAR models.

To prove the capability of the CoRIA approach, we

have selected the COX-2 enzyme as a test case since

there is a vast group of inhibitors with diverse chemical

structures and a wide spectrum of biological activity.

Forty-nine molecules with COX-2 inhibitory activity,

that included cyclopentenes, spiroheptenes, benzenes,

pyrazoles, pyrroles, imidazoles, pyridines, isoxazoles,

thiazoles, thiadiazoles, and oxadiazoles, were docked

into the enzyme active site to determine their binding

conformation as there is no experimental evidence of

this property. Since, the non-bonded interaction ener-

gies are sensitive to small changes in the conformation,

the docked conformations were further refined using

Monte Carlo and SA procedures. Finally, the ligand–

receptor complexes were carefully examined for any

bad clashes between ligand and receptor atoms. The

overall goal is to secure ligand–receptor complexes as

accurate as possible since the whole idea of calculation

of various QSAR descriptors is critically dependent on

the ‘‘goodness’’ of these complexes. This is the reason

why great care was taken at each stage of calculation.

There are no reports in the literature about water

molecules being crucial in the binding site of COX-2,

hence they were not considered in the calculations.

To account for the major determinants of the

binding process, we have computed descriptors that

appropriately define these events. These include the

non-bonded interaction energy terms (van der Waals

and Coulombic, DGinter), strain energy of the ligand in

the bound conformation (DGconf for ligand), electro-

static contribution to the solvation energy (DGsolv) of

ligand, desolvation free energy of ligand in water

(Fh2o) and octanol (Foct), Jur’s partial positive surface

area (PPSA-1) and partial negative surface area

(PNSA-1), surface area of the ligands (related to

DGsolv for ligand), lipophilicity (A log P, also related

to DGsolv), molecular volume and molecular refractiv-

ity. An inclusion of these binding descriptors in a

QSAR model can rationalize the full process of bind-

ing from the transfer of free ligand in solution to its

complexation with receptor.

From the dataset of 49 molecules, 36 were grouped

into a training set to construct the CoRIA models,

based on chemical (Daylight fingerprints) and biolog-

ical (pIC50) diversity. This was achieved with the

Tanimoto coefficient using the ‘‘select diverse’’ utility

in Cerius2. The remaining 13 molecules were reserved

for testing the predictivity of the models. Four different

models were developed using various combinations of

descriptors. In Model 1, the Coulombic (C) and van

J Comput Aided Mol Des (2006) 20:343–360 353

123



T
a

b
le

2
C

o
R

IA
e

q
u

a
ti

o
n

s
fo

r
v

a
ri

o
u

s
co

m
b

in
a

ti
o

n
s

o
f

th
e

d
e

sc
ri

p
to

rs

M
o

d
e

l
C

o
R

IA
e

q
u

a
ti

o
n

s
r2

q
2

b
y

L
O

O
q

2
b

y
L

G
O

r p
re

d
2

P
2

1
L

p
IC

5
0

=
1

1
.8

9
+

0
.7

4
‘‘

V
_

T
y

r3
8

5
’’

–
7

.2
5

‘‘
C

_
P

ro
5

2
8

’’
+

5
1

.0
9

‘‘
V

_
T

y
r1

1
5

’’
+

6
0

.0
0

‘‘
V

_
A

rg
4

3
3

’’
–

1
1

.7
1

‘‘
C

_
M

e
t1

1
3

’’

0
.9

4
0

.9
4

0
.8

3
0

.5
7

0
.6

6

2
L

p
IC

5
0

=
1

1
.8

5
+

8
1

.1
6

‘‘
V

_
T

y
r1

1
5

’’
+

0
.7

5
‘‘

V
_

T
y

r3
8

5
’’

–
7

.4
0

‘‘
C

_
P

ro
5

2
8

’’
+

5
8

.5
2

‘‘
V

_
A

rg
4

3
3

’’
–

1
1

.3
7

‘‘
M

e
t1

1
3

’’

0
.9

4
0

.9
3

0
.8

5
0

.6
0

0
.7

0

3
L

p
IC

5
0

=
1

1
.8

9
+

6
0

.0
0

‘‘
V

_
A

rg
4

3
3

’’
–

1
1

.7
1

‘‘
C

_
M

e
t1

1
3

’’
+

0
.7

4
‘‘

V
_

T
y

r3
8

5
’’

–
7

.2
5

‘‘
C

_
P

ro
5

2
8

’’
+

5
1

.0
9

‘‘
V

_
T

y
r1

1
5

’’

0
.9

4
0

.9
4

0
.7

2
0

.5
7

0
.7

0

4
L

p
IC

5
0

=
1

1
.8

5
+

8
1

.1
6

‘‘
V

_
T

y
r1

1
5

’’
+

0
.7

5
‘‘

V
_

T
y

r3
8

5
’’

–
7

.4
0

‘‘
C

_
P

ro
5

2
8

’’
+

5
8

.5
2

‘‘
V

_
A

rg
4

3
3

’’
–

1
1

.3
7

‘‘
M

e
t1

1
3

’’

0
.9

4
0

.9
4

0
.7

8
0

.6
0

0
.7

2

1
L

S
p

IC
5
0

=
9

.3
5

–
6

0
.7

6
<

–
0

.0
4

–
‘‘

V
_

A
rg

4
3

3
’’

>
–

7
.3

6
‘‘

C
_

P
ro

5
2

8
’’

+
2

.5
2

‘‘
V

_
V

a
l1

1
6

’’
+

0
.7

4
‘‘

V
_

T
y

r3
8

5
’’

–
1

1
.4

8
‘‘

C
_

M
e

t1
1

3
’’

0
.9

4
0

.9
0

0
.7

7
0

.4
1

0
.7

6

2
L

S
p

IC
5
0

=
9

.1
2

+
0

.2
3

‘‘
A

rg
1

2
0

’’
+

0
.7

8
‘‘

V
_

T
y

r3
8

5
’’

–
2

7
0

.2
8

<
–

0
.0

1
–

‘‘
V

_
V

a
l8

9
’’

>
–

7
.1

3
‘‘

P
ro

5
2

8
’’

+
1

0
.4

7
‘‘

V
_

G
ln

3
5

0
’’

0
.9

3
0

.8
9

0
.7

0
0

.2
4

0
.6

9

3
L

S
p

IC
5
0

=
7

.9
1

+
1

9
.6

9
<

0
.0

1
9

–
‘‘

C
_

P
h

e
4

7
0

’’
>

+
0

.7
8

‘‘
V

_
T

y
r3

8
5

’’
+

7
.6

2
<

0
.2

1
4

–
‘‘

C
_

P
ro

5
2

8
’’

>
–

1
8

0
.5

5
<

–
0

.0
1

–
‘‘

V
_

V
a

l8
9

’’
>

–
5

4
.4

1
<

–
0

.0
4

–
‘‘

V
_

A
rg

4
3

3
’’

>

0
.9

2
0

.9
3

0
.8

4
0

.4
3

0
.7

6

4
L

S
p

IC
5
0

=
9

.7
4

+
6

1
.3

6
‘‘

V
_

A
rg

4
3

3
’’

+
0

.7
4

‘‘
V

_
T

y
r3

8
5

’’
+

1
.8

5
‘‘

V
a

l1
1

6
’’

–
1

0
.5

4
‘‘

C
_

M
e

t1
1

3
’’

+
7

.3
8

<
0

.2
3

1
–

‘‘
C

_
P

ro
5

2
8

’’
>

0
.9

3
0

.8
9

0
.7

7
0

.5
4

0
.6

9

N
u

m
b

e
r

o
f

m
o

le
cu

le
s

in
th

e
tr

a
in

in
g

se
t

is
3

6
;

r2
:

co
rr

e
la

ti
o

n
co

e
ffi

ci
e

n
t;

q
2

b
y

L
O

O
a

n
d

L
G

O
:

cr
o

ss
-v

a
li

d
a

ti
o

n
co

rr
e

la
ti

o
n

co
e

ffi
ci

e
n

t
b

y
L

O
O

a
n

d
L

e
a

v
e

-G
ro

u
p

-O
u

t
(g

ro
u

p
o

f
5

)
re

sp
e

ct
iv

e
ly

;
r p

re
d

2
:

p
re

d
ic

ti
v

e
co

rr
e

la
ti

o
n

co
e

ffi
ci

e
n

t;
p

2
:

p
re

d
ic

ti
v

e
co

rr
e

la
ti

o
n

co
e

ffi
ci

e
n

t
ca

lc
u

la
te

d
a

s
p

e
r

V
e

d
a

n
i

e
t

a
l.

[1
5
–

1
7
];

V
_

T
y

r3
8

5
:

v
a

n
d

e
r

W
a

a
ls

in
te

ra
ct

io
n

w
it

h
re

si
d

u
e

T
y

r3
8

5
;

C
_

P
ro

5
2

8
:

C
o

u
lo

m
b

ic
in

te
ra

ct
io

n
w

it
h

P
ro

5
2

8
;

M
e

t1
1

3
:

v
a

n
d

e
r

W
a

a
ls

p
lu

s
C

o
u

lo
m

b
ic

in
te

ra
ct

io
n

w
it

h
M

e
t1

1
3

354 J Comput Aided Mol Des (2006) 20:343–360

123



der Waals (V) interaction energies between the ligand

and the residues in the receptor active site were

considered for construction of the CoRIA equations

(i.e., C + V). Model 2 included the total non bonded

interaction energy (NB), in addition to C and V terms

(i.e., C + V + NB). To account for the different pro-

cesses leading to binding, Model 3 was developed

using the ten descriptors (D) i.e. strain energy

(DGconf), Jurs PPSA-1, Jurs PNSA-1, molecular vol-

ume, surface area, A log P, Fh2o, Foct, molar

refractivity and electrostatic contribution to the sol-

vation energy (DGsolv) in addition to C & V (i.e.,

C + V + D), and finally Model 4 was developed with

all descriptors (C + V + NB + D) described above.

Each of the models described above were further

categorized into those that included only linear terms

(Models 1L to 4L) and those that considered both

linear and spline terms in the construction of the

models (Models 1LS to 4LS).

Models 1L to 4L have a correlation coefficient (r2)

greater than of 0.90 as seen in Table 2. The cross val-

idated correlation coefficient (q2), using LOO and

leave-five-out, is greater than 0.7 for all the models,

indicating a good predictive power of the models for

the molecules in the training set. The q2 (LOO) values

are greater than 0.9, however q2 values derived by

leave-group-out (group of five) are smaller and around

0.6. The q2 (LOO) reported using GFA are high, and

there are several literature reports with such high q2

values (0.85–0.91) [57–61]. The predictive r2 (rpred
2 ) of

Models 1L to 4L range from 0.54 to 0.60, which indi-

cates a good prediction of the activity of molecules

outside the training set. The p2 of all models is above

0.6 indicating good internal predictive power of the test

set. An examination of all the eight CoRIA models

(Table 2) reveals that Model 1L contains most of the

terms present in the other models but has the best

statistics. This model was therefore used to predict the

activity of the molecules in the test set. A plot of the

predicted versus experimental activity of the training

set using Model 1L is shown in Fig. 1. The 10 best

equations associated with Model 1L were analyzed for

the frequency with which a descriptor occurs in the

population of equations (Fig. 2). An examination of

the population of equations shows that the terms

describing van der Waals interactions with residues

Tyr385 and Arg433 and Coulombic interaction with

Pro528 dominate in Models 1L to 4L. Coulombic

interaction with Met113 and van der Waals interaction

with Tyr115 are seen variably in some of the ‘best’

equations.

In order to gauge the influence of spline factors on

the structure or behavior of the models, four other

models (Models 1LS to 4LS) were developed using a

combination of linear and spline < x–a > terms. In all

these models (Model 1LS to 4LS), terms describing van

der Waals interaction (V) with Tyr385 and Coulombic

interaction (C) with Pro528 dominate as previously (in

Models 1L to 4L); however, Coulombic interaction

with Met113 is absent in Models 2LS and 3LS. The van

der Waals interaction with Arg433 also appears as a

spline term in Models 1LS and 3LS, as a linear term in

Model 4LS, but is not found in Model 2LS. Except for

Model 2LS, the other models, namely Models 1LS, 3LS

and 4LS, have a good predictive power.

An analysis of all CoRIA models reveals that ligand

interaction with Tyr385 plays a dominant role in the

strength of its COX-2 inhibition. This is in congruence

with the reported point mutation data [57–59]. The

residue Tyr385 is present in the catalytic center at the

apex of the channel near the end of helix H8. Variation

in the strength of the interaction between Tyr385 and

the 5-aryl ring of pyrazole, for example, may be one of

the factors that modulate the activity of this class of

molecules. The other residues revealed by CoRIA to

be important in modulating the activity are Pro528,

Arg433, Met113 and Tyr115. There is no point muta-

tion data yet reported for these residues, showing their

importance in the COX-2 activity, but the CoRIA

analysis highlights the interactions of inhibitors with

these residues as being crucial for molecular recogni-

tion. A close appraisal of the ligand–receptor com-

plexes in light of the CoRIA equations reveals residues

predicted to be important in controlling the activity lie

within a 5 Å radius of the inhibitors. This is noteworthy

since non-bonded interactions are significant within a

5 Å radius of the inhibitor and decay gradually at
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Fig. 1 The plot of predicted versus experimental pIC50 values of
the training set molecules using CoRIA Model 1 L
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longer distances. There are four residues––Arg120,

Tyr355, Arg513 and Glu524––which are involved in a

hydrogen bonding network and form a gate for the

entry [60] of inhibitors and play an important role in

the time-dependent irreversible inhibition of COX-2.

The molecules considered in this study are all revers-

ible inhibitors; as a result none of these active site

residues appear in the CoRIA equations with the

exception of Arg120. Only those inhibitors having a

carboxylate group like the aryl propionates are seen to

interact with Arg120 [61].

The CoRIA models can easily be utilized in the

design of new ligands. Figure 3 shows molecule 6
surrounded by the active site residues reflected in the

CoRIA equations. It can be inferred from Model 1L

(Table 2) that the Coulombic interactions with residues

Pro528 and Met113 need to be maximized and van der

Waals interaction with residues Try115, Tyr385 and

Arg433 needs to be reduced, to improve the activity.

This is evident from the interaction energy data

presented in Table 3. In this table, pairs of molecules

with different activities, but with a seemingly minor

modification have been compared and the variation in

their activity explained based on the CoRIA models.

Modification of –SO2CH3 (molecule 1) to –SO2NH2

(molecule 2) causes an increase in activity by one log

unit. The variation in the activity as predicted by

Model 1L, is a result of the increase in the Coulombic

interaction with Pro528 (from –0.100 for molecule 1 to

–0.138 for molecule 2) and a concomitant decrease in

the van der Waals interaction with Tyr385 (from –2.856

for molecule 1 to –1.125 for molecule 2). In molecules 4

and 5, replacement of the 4-trifluoromethoxyphenyl (in

molecule 4) by 3-fluoro-4-methoxyphenyl (molecule 5)

causes a one log unit increase in the activity. The factor

behind this increase in the activity is a decrease in the

van der Waals interaction with Tyr385, which is in

close proximity to this group. A similar analyses carr-

ied out for the molecule pairs 8 & 9; 10 & 12; 16 & 15

leads to the conclusion that changes in the interaction

energies principally with the residues Pro528 (increase

in Coulombic interaction) and Tyr385 (decrease in van

der Waals interaction) are sufficient to explain the

variation in the activity. These two residues are closer

to the inhibitor than the remaining three residues, as

seen in Fig. 2, and hence have a decisive role in

modulating the activity. Although the coefficient

(+0.74) for the van der Waals interaction with Tyr385

Model 1L

Model 2L

Model 3L

Model 4L

0
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F
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F

re
q

u
en

cy

0

2

4

6

8

10

V_Val89 _Val116 _Tyr385 _Arg433 C_Met113 C_Pro528 Arg120
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Fig. 2 Frequency of
descriptors appearing in the
10 best equations of CoRIA
Models 1L to 4L (a) and
Models 1LS to 4LS (b)
Coulombic interactions with
Pro528 and Met113 and van
der Waals interactions with
Tyr385 and Arg433 appear
more frequently in the models
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is relatively small, the decrease in the van der Waals

interaction energy upon modification is significant to

cause changes in the activity (Table 3). The coefficient

for the Coulombic interaction with Pro528 is –7.25, i.e.

a more negative value for this energy term will have a

greater effect on the activity and by optimizing the

Coulombic interaction with this residue, it is possible to

design molecules with enhanced activity.

None of the thermodynamic descriptors like solva-

tion or entropy appear in the final set of CoRIA

models. Some of these descriptors appear transiently

during the evolution but gradually disappear as the

genetic function progresses. Thus it turns out that in

the case of COX-2 inhibition, the interaction energies

with residues in the active site are sufficient to explain

the variations in the biological activity. It is important

to mention that while deriving the CoRIA models, no

bias was placed on any of the descriptors and all had an

equal weightage during development of the equations.

However, these thermodynamic descriptors do appear

in the equations when the number of terms in the

equation is increased to 12 or more. The equation with

12 terms for a training set of 36 molecules breaks the

principles of QSAR according to which the number of

terms in a QSAR equation should not be greater than

the number of molecules in the training set divided by

five, and disregarding this principle leads to an over-

fitting of the equation. Also, smaller the number of

terms in the QSAR equation, the easier it is to use in

optimizing molecules. Further, when the analysis is run

Fig. 3 A stereoview of the
COX–2 active site in which
molecule 1 is shown with the
important active site residues
appearing in the CoRIA
equations. The color codes
used to represent atoms are:
N: blue, O: red, S: yellow, H:
cyan, C (ligand): orange, C
(Tyr115, Tyr385, Arg433):
green, and C (Met113,
Pro528): magenta

Table 3 The interaction
energies of the training set
molecules (discussed in text)
with the residues reflected in
CoRIA models 1L to 4L

Molecule pIC50 C_Met113 C_Pro528 V_Tyr115 V_Tyr385 V_Arg433

1 7.67 0.008 –0.100 –0.009 –2.856 –0.043
2 8.69 0.004 –0.138 –0.010 –1.255 –0.042
4 6.86 0.006 –0.102 –0.014 –2.654 –0.046
5 8.00 0.010 –0.135 –0.014 –1.702 –0.044
8 6.46 0.001 0.033 –0.014 –2.339 –0.042
9 8.09 –0.007 0.052 –0.014 –0.361 –0.048
10 5.44 0.040 0.115 –0.014 –1.829 –0.046
12 7.38 0.027 –0.062 –0.013 –1.787 –0.045
16 5.54 –0.009 0.024 –0.012 –2.903 –0.049
15 7.22 0.004 0.113 –0.012 –1.114 –0.040
SC-558 8.09 0.017 –0.157 –0.038 –0.827 –0.035
Celecoxib 7.40 0.030 –0.107 –0.035 –1.208 –0.037
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using only the molecular descriptors (D), the r2

obtained is ~0.5 and the above mentioned terms are

associated with very small coefficients.

There are several QSAR models reported for COX-

2 inhibitors in the literature [62–66]. The CoMFA

model developed by Desiraju et al. [62], where a lim-

ited set of 1,2-diarylimidazole derivatives were mini-

mized with constraints and aligned to the X-ray

conformation of SC-558, has a q2 of 0.56 and a rpred
2 of

0.79 for the test set. Similarly, starting from the crystal

structure of SC-558 as the template, Chavatte et al. [63]

have reported CoMFA models for various classes of

inhibitors with q2 of about 0.70 and rpred
2 ranging from

0.65 to 0.74. Liu et al. [64], have developed a CoMFA

model using docking strategies for alignment of 1,5-

diarylpyrazoles, with a q2 of 0.63 and a rpred
2 of 0.80. In

comparison to these reported QSAR models, the

CoRIA models have comparable q2 and rpred
2 values.

The rpred
2 is for large diverse test set in our study, which

is limited to a structural class in each of three studies

mentioned above. We had previously reported a

CoMFA study of COX-2 inhibitors, using two strate-

gies for generating conformations and alignment of the

molecules; one based on ‘template-forcing’ on to SC-

558, and other based on ‘flexible docking’ [65]. The

CoMFA model based on ‘template forcing’ has a q2 of

0.66 and an rpred
2 of 0.63, while the CoMFA model

developed with ‘flexible docking’ has a q2 of 0.73 and

an rpred
2 of 0.76. The CoMFA models of our previous

study reveal the presence of sterically unfavorable

contours around most of the molecular space except at

the para position of the p-bromophenyl ring of SC-558.

This result parallels the observation in the present

CoRIA models, which suggests that it is important to

decrease the van der Waals interactions particularly

with residues Tyr385, Tyr115 and Arg433 to improve

the activity. The training set used in the previous study

[65] and the one in the present CoRIA study are not

exactly the same. For comparison purposes, we have

developed a CoMFA model using the present training

set of 36 molecules. This CoMFA model exhibits an r2

of 0.99, a q2 of 0.4 and an rpred
2 of 0.5. The CoMFA

contours of this model have been shown in Fig. 4. The

statistics of the CoRIA model is superior to the cor-

responding CoMFA model.

Kim et al. [66] have reported CoMFA, CoMSIA and

COMBINE models for a dataset comprising three

structural classes of COX-2 inhibitors with q2 of 0.84,

0.79 and 0.64 respectively. We have included nine

structurally different chemical classes of selective

COX-2 inhibitors in our study. The COMBINE equa-

tions contain 14 terms (for the triaryl ring dataset of 58

molecules), 8 terms (for the diaryl cycloalkanopyrazole

dataset of 18 molecules), and 5 terms (diphenyl

Fig. 4 The electrostatic
contours of the CoMFA
model generated for the same
training set used for the
CoRIA study, are shown
around the highest active
molecule 2. The red and blue
contours show how negative
and positive electrostatic
fields can be used to improve
the activity of the molecules
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hydrazide dataset of 12 molecules). In the above

mentioned study, the number of terms far exceeds the

minimum number of molecules in the training set used

to derive the model and as explained earlier this has

led to an over-fitting in the COMBINE equations. In

the CoRIA models, the number of terms in every

equation is within the statistical requirements. The

active site residues appearing in our CoRIA equations

are also present in the COMBINE equations. The

output of the CoRIA equations is more meaningful.

However, the CoMFA and CoMSIA results discussed

in Kim’s work are more meaningful than the result of

the COMBINE methodology, but not above the

CoRIA approach.

Validation of CoRIA Approach

The various CoRIA models were used as a guideline to

suitably modify the inhibitors so as to improve their

activity. We present here one example. After correct-

ing for any errors in the crystal structure and then

subjecting it to a thorough minimization procedure, the

activity of SC-558 was predicted based on CoRIA

Model 1 L and was calculated to be 8.18 (the experi-

mental activity is 8.09). The SC-558 structure was then

modified by replacing –Br with –CH3 to yield celec-

oxib. The new complex was minimized as discussed

previously. The activity of celecoxib was predicted

using Model 1L and found to be 7.41. The reported

pIC50 of celecoxib is 7.40. The interaction energies for

both SC-558 and celecoxib with various residues pre-

dicted by Model 1L to be important in modulating the

activity are listed in Table 3. It is clear from this table

that once again, van der Waals interaction with Tyr385

and Coulombic interaction with Pro528 are crucial for

COX-2 inhibition, as ascribed earlier.

Conclusions

A novel approach termed CoRIA that incorporates the

thermodynamics of binding into the QSAR formalism

was developed in order to capture those events that are

important in the ligand–receptor recognition process.

The approach was tested on a diverse set of COX-2

inhibitors. The CoRIA models have a good correlation

coefficient (r2) and predictive power (q2) compared to

previously reported [62–66] 3D-QSAR models for

COX-2 inhibitors.

The CoRIA methodology has been successful in

extracting key residues in the COX-2 enzyme that

have been reported by X-ray crystallography and

site-directed mutagenesis studies to be important in

ligand binding. The various equations derived by the

CoRIA approach have also brought into focus some

other residues that have hitherto not yet been reported

and may have a hidden role in creating strong forces

that drive the ligand towards specific binding. It is also

pertinent to emphasize here that the approach of

combining docking studies with the QSAR paradigm

allows a more meaningful correlation between ligand–

receptor binding and biological activity.

The CoRIA approach can advantageously be used

to extract the residues that are important for binding

and also as a guide for carrying out mutation studies

directed towards understanding ligand binding. The

results can be easily interpreted by the medicinal

chemist and can provide clear directions for modifica-

tions of lead molecules during the lead optimization

phase. Thus, the CoRIA methodology, by the inclusion

of binding thermodynamics in the QSAR formalism, is

a powerful approach to aid the drug design process.
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