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Abstract Artificial neural networks (ANNs) are used for

classification and prediction of enzymatic activity of eth-

ylbenzene dehydrogenase from EbN1 Azoarcus sp. bacte-

rium. Ethylbenzene dehydrogenase (EBDH) catalyzes

stereo-specific oxidation of ethylbenzene and its derivates

to alcohols, which find its application as building blocks in

pharmaceutical industry. ANN systems are trained based

on theoretical variables derived from Density Functional

Theory (DFT) modeling, topological descriptors, and ki-

netic parameters measured with developed spectrophoto-

metric assay. Obtained models exhibit high degree of

accuracy (100% of correct classifications, correlation be-

tween predicted and experimental values of reaction rates

on the 0.97 level). The applicability of ANNs is demon-

strated as useful tool for the prediction of biochemical

enzyme activity of new substrates basing only on quantum

chemical calculations and simple structural characteristics.

Multi Linear Regression and Molecular Field Analysis

(MFA) are used in order to compare robustness of ANN

and both classical and 3D-quantitative structure–activity

relationship (QSAR) approaches.

Keywords Artificial neural network modeling Æ DFT Æ
Enzyme activity Æ Ethylbenzene dehydrogenase Æ
Multiple linear regression Æ QSAR

Abbreviations

ANN Artificial Neural Network

DFT Density Functional Theory

EBDH Ethylbenzene Dehydrogenase

G/PLS Genetic Partial Least Square

LFER Linear Free Energy Relationship

MLP Multi-Layer Perceptron

MLR Multiple Linear Regression

MFA Molecular Field Analysis

QSAR Linear Quantitative Structure–Activity

Relationship

SNN Statistica Neural Networks

3D-QSAR Three-Dimensional Linear Quantitative

Structure–Activity Relationship

Introduction

Ethylbenzene dehydrogenase (EBDH) is a key enzyme of

the anaerobic metabolism in denitrifying bacterium

Azoarcus sp. EbN1. It catalyzes an oxygen-independent,

stereo-specific hydroxylation of ethylbenzene to (S)-1-

phenylethanol (Fig. 1). It is the first known example of

direct anaerobic oxidation of a non-activated hydrocarbon.

EBDH promises potential applications in chemical and

pharmaceutical industries, as the enzyme is enantioselective

and seems to react with a relatively wide spectrum of sub-

strates [1, 2]. Pure enantiomers of alcohols are of a high

value as building blocks for physiologically active com-

pounds. Therefore, it becomes very important to find an easy

method, which is characterized by a low cost and low con-

sumption of enzyme, for selection of potential substrates.

It is a common approach in chemistry to analyze the

reaction kinetics in terms of Linear Free Energy Relationships
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(LFERs) in order to detect reaction similarities in the group of

substrates and to find a tool for predicting a chemical behavior

of new, not studied compounds. Such methods result in a wide

range of equations that describe electronic and steric factors

influencing reaction kinetics [3–5] and although are proved to

be valuable for studying many reaction systems, their accu-

racy is frequently put to the test by enzymatic catalysis, where

many parameters both from enzyme and substrate sides

combine and interact with each other. Moreover, there are

some factors that limit the application of Multiple Linear

Regression (MLR), i.e. common reference structure must be

shared in the whole studied population and usually only meta

and para substituents parameters (Taft steric constant Es,

Hammett’s sigma) are available. Where linear methods fail to

detect correlations the ANNs with their abilities to locate non-

linear patterns frequently find applications as tools of analysis

and prediction [6–8]. Combination of theoretical and topo-

logic descriptors with the experimental kinetic rate constants

forms a database for training ANN models. Trained ANNs can

predict activities of substrates in a given reaction system and

provide the theoretical model for studying factors that influ-

ence the enzyme–substrate interaction.

It is a common approach to use semi-empirical quantum

chemical methods in a computation of QSAR theoretical

parameters [9, 10]. Although these methods are faster—

the ab initio density functional theory (DFT) approach was

chosen due to the facts that orbital energies obtained on this

level of theory have direct physicochemical interpretation

with a strong background in chemical tradition. The con-

cept introduced by Fukui in the Frontier Molecular Orbitals

(FMO) theory [11] allows assignment of FMO energies

such as Highest Occupied and Lowest Unoccupied

Molecular Orbital (HOMO and LUMO, respectively) to

ionization potential and electronic affinity, respectively.

Moreover based on these energies absolute hardness,

electro-negativity and chemical potential can be easily

calculated [12, 13].

The main aim of our research was to build a neural

model, which could be used for screening of EBDH activity

with new compounds without need of expensive experi-

mental test. We also hoped to get more insight into the

mechanistic aspects of the reaction catalyzed by the en-

zyme. Due to a high structural diversity in EBDH substrates

spectrum, an abundance of meta-substituted compounds as

well as the presence of heteroaromats (Figs. 2 and 3) the

LFER correlations with the classical parameters are of

limited use. Therefore the theoretical DFT-based descrip-

tors and ANN as an analysis tool were selected for

screening of the commercially available compounds for

their possible activities. After testing the activities of 24

compounds, the systems for classification and prediction

(with regression approach) of their biological activity were

developed. At first for prediction of EBDH activity we

developed classifying ANN system. The aim of the classi-

fying network is to estimate so called membership functions

of the case to the particular category. The activity was

divided into four categories, ‘0’ for inhibitors, ‘1’ for sub-

strates exhibiting relative activity below 50% of activity

with ethylbenzene, ‘2’ for the activity of the order 51–150%

and ‘3’ for these with relative activity higher than 150%.

The output value, which is produced by the neural network,

assigns the compound (described by the input parameters)

to one of the above-mentioned categories. The output val-

ues, calculated by the network, give us some measures of

similarity between a new compound (under investigation)

and all compounds classified to particular categories in

training set. These measures are not (in precise sense)

probabilities of belonging of a new compound to the par-

ticular class, but in practice it can be taken as an empirical

approximation of such a probability.

The advantage of this approach is the simplification of

prediction problem by translating continuously changing

output value (in this case enzymatic activity) into discrete

nominal categories. This method of interpretation results in

increased robustness of the whole system and in decrease

of number of cases, which are required to train ANN. In

fact training of classification neural network is always

faster and more successful than training of regression

ANN, when we must expect exact values of estimated

parameter (e.g. activities of the researched compounds).

As the experiments with classification networks gave

promising results, the more demanding regression ap-

proach was also applied. In regression ANN, the objective

is to estimate the value of a continuous output variable,

which is calculated for the known values of the input

parameters. In this approach a higher accuracy is required

than in classification ANN, which results in much longer

and difficult training process. Also number of learning

examples (input data assembles with known proper output

values) must be richer for regression task than for classi-

fication one. Moreover, regression neural model is

expected to show extrapolation capabilities, which can be

the next source of problems (e.g. we must use ANN of the

MLP type instead of RBF networks, because RBF networks

are not suitable for extrapolation activities). As in our case

we expected that ANN should be able to predict correctly

enzyme activity exciding the range of activities for training

compounds this issue was also of major importance. The

Fig. 1 Oxidation of ethylbenzene by EBDH in Azoarcus sp. EbN1
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application of regression network yielded with developing

of model system, which can directly predict normalized

relative reaction rates (rkcat).

Basing on the developed systems, the activity of five

new compounds (Fig. 4) was assessed. For promising cases

the kinetic measurements were performed, thus verifying

theoretical forecasting along with an immediate application

of ANN systems in our biochemical research. The experi-

mentally measured activities for 4-propylphenol and

4-ethylaniline were in very good agreement with the values

provided by regression neural system. Moreover, the post-

processing sensitivity analysis of ANN input parameters

showed, that the charges differences, the dipole moments

as well as the occupation of ortho and para positions are

the most important for the catalytic behavior of the sub-

strates. The neural network approach was complemented

by multiple linear regression QSAR analysis for a group of

10 substrates and genetic partial least square (G/PLS)

3D-QSAR for all superimposed substrates. The standard

QSAR model showed that hardness and dipole moments of

EBDH substrates, as well as electron donating capabilities

and steric hindrance of substituents are crucial for

describing variation in reactivity. 3D-QSAR model iden-

tified regions around substrates that decrease or increase

reaction rate through steric or electrostatic interactions with

the enzyme’s active site.

Experimental

Enzyme activity test

The reaction system comprised of three components:

organic ethylbenzene derivate, electron acceptor (ferrice-

num tetrafluoroborate) and enzyme. Two molecules of fer-

ricenum re-oxidize EBDH that was reduced in the reaction

Fig. 2 EBDH substrates.

Relative activity is given as

a percentage value below

structures
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with organic substrate. The reaction kinetics was followed at

290 nm (D�=6,200 M)1 cm)1). The kinetic parameters were

determined by a non-linear fitting to the Michaelis–Menten

equation. Each analysis was based on more than 10

concentrations and in every case at least two measurements

were performed. As different batches of the enzyme exhib-

ited variations in the specific activity, the kcat of ethylben-

zene dehydrogenase towards given substrate was related

(rkcat) to the kcat of EBDH towards ethylbenzene (typically

0.258 s)1) that was measured on the same occasion at sat-

urating concentration of ~60 lM. It was assumed that

reaction stoichiometry is analogical (2 electron reaction) in

case of all substrates. For the 1,4-diethylbenzene (two ethyl

substituents) the activity was calculated per ethyl group.

Substrate spectrum

For an identification of EBDH substrate spectrum the fer-

ricenum tetrafluoroborate activity assay was applied.

Approximately 30 substances were tested for potential

activity with EBDH and then 24 substances, which inter-

acted with EBDH, were carefully analyzed in function of

their concentration. Among them 16 proved to be sub-

strates whereas 8 turned out to be inhibitors. Introduction

of the relative activity (rkcat) provided the scale of

substrates’ activity, which ranges from 3.8% (the worst

substrate 2-ethyltoluene) to 259% (the best substrate

4-ethylphenol). As the inhibition mechanism varied be-

tween inhibitors we did not provide any discrepancy in the

inhibitory effect (assuming 0 activities for all of them).

Studied compounds are presented in Figs. 2 and 3.

DFT modeling

The theoretical parameters for the substrates were calcu-

lated by ab initio DFT method using Gaussian 2003 package

[14]. Electron correlation and exchange were described by

the exchange–correlation functional of the restricted

B3LYP [15] type whereas Kohn-Sham orbitals were rep-

resented by linear combinations of atomic orbitals using the

6–31G** basis sets. The geometry of the substrates was

optimized and the vibration analysis was employed in order

to check if the minimum was found. The conformational

analyses for chosen substrates (ethylbenzene, 2-ethylnaph-

thalene, 2-ethylpyrrole, 2-ethyltoluene, 2-ethylphenol,

1,2-diethylbenzene and n-propylobenzene) were performed

and the lowest energies were found for ethyl (or propyl)

group perpendicular (or near-perpendicular) to the aromatic

ring for tested compounds. Superimposed structures of all

substrates are presented in Fig. 11. Therefore in all cases

optimized perpendicular conformers were used in calcula-

tion of electronic parameters. Two independent population

analyses were performed: Mulliken [16] and Natural Bond

Orbital analysis [17]. NMR shielding tensors were com-

puted with the Gauge-Independent Atomic Orbital (GIAO)

method [18] and related to tetramethylsilane (TMS)

shielding in order to obtain chemical shift.

For each compound the following quantum-chemical

parameters were computed and considered in ANN anal-

ysis: the partial alpha-carbon charge, the highest and the

lowest atomic charges, the difference between the highest

(positive) and the lowest (negative) charge in both Mul-

liken and NBO analyses, the msC–H symmetrical stretching

frequency, the HNMR shift of substituted hydrogen, the

CNMR shift of alpha-carbon, the dipole moment l, frontier

orbital energies i.e. ELUMO (as an approximation of elec-

tron affinity) and EHOMO (as an approximate measure of

ionization potential) and GAP—the energy difference be-

tween ELUMO and EHOMO (as a measure of absolute hard-

ness). Moreover, as a measure of bulkiness, the molecular

weight (MW), total energy of the molecule (SCF) and zero

point energy (ZPE) were provided [9].

Topologic parameters

As EBDH activity seems to be limited to aromatic com-

pounds, in our study we investigated ethylbenzene-core

substances. In order to describe structural variations in the

particular substituent simple numerical topologic descriptors

Fig. 3 EBDH inhibitors

Fig. 4 Non-studied substrates, which rkcat were predicted with ANN
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such as the number of substituents in the ring, the number of

heavy atoms (not hydrogen) in the longest substituent and the

number of heavy atoms in all substituents were provided

(Fig. 5a). The localization of substituents (para, meta, ortho)

in the aromatic ring in relation to the active center (i.e. ethyl

group) was described with a variation of one-of-N encoding

(1 for presence and 0 for absence of substituent in para, meta

and ortho location). The localization of heteroatoms in het-

erocyclic compounds was not considered. Such an approach

allowed straightforward encoding of structural properties of

almost all compounds that were taken into consideration.

The only artificial encoding was applied for ethylnaphtha-

lenes, where fused aromatic ring was encoded as two sub-

stituents in ortho and meta (or meta and para) positions with

the length of the longest substituent set to 3 atoms.

ANN analysis

For developing the ANN architecture as well as for training

and data validation the commercially available software

package namely Statistica Neural Networks 6.0

(www.statsoft.com) was applied. The molecular weight,

the relative specific activity, and all DFT-based descriptors

were subjected to min-max normalization before feeding

into ANN. It is well known that the reduction of the

dimensionality of input is the most powerful method for

decreasing the number of internal storage elements (syn-

aptic weights) in the network, which leads to better results

of the learning process. As only limited set of data was

available for the network training it was very important to

determine an optimal input dataset, guarantying the fast

and effective learning process. For reducing dimensionality

of the input vector the forward and backward stepwise

feature selection algorithms as well as the genetic algo-

rithm were applied. The performed analysis gave inco-

herent results suggesting that differences of the information

value of the consecutive inputs and differences between

corresponding parameters importance were relatively

small. The detailed analysis, which was performed, has

indicated that only HOMO, LUMO and GAP values as

well as charge minimum, maximum and difference should

be correlated. As differences were calculated from singular

values one of three dependent values was skipped (for

example minimal charge, when difference and maximum

charge was left). In conclusion, we decided to use an

automatic tool: SNN Intelligent Problem Solver (IPS)—the

experimental algorithm build-in into Statistica Neural

Networks 6.0 software package, which tests thousands of

ANN and excludes these input parameters that occur of

limited usefulness in the previous models.

At the starting point of each training all cases were

randomly divided into 3 subsets: learning, validation and

testing. For classification problem the above subsets were

composed of 16, 4 and 4 cases whereas for regression

model of 18, 3 and 3 cases. Supervised training was used in

both cases with standard back-propagation (100 epochs)

and conjunct gradients (1–100 epochs) learning algorithm.

Approximately 3,000 models were tested by IPS for clas-

sification and almost 4,000 models for regression. The IPS-

based experiments showed that Multi-Layer Perceptions

architecture with one hidden layer were the most appro-

priate for solving our problem. The best models obtained in

Fig. 5 (a) Example of topologic encoding: No. of substituents: 2, No.

of heavy atoms in the longest substituent: 2, number of heavy atoms

in all substituents: 3, localization of substituents (para, meta, ortho) in

the aromatic ring in relation to ethyl group: (1,0,0), (b) Mulliken

charge analysis of 4-ethylpyridine (the highest charge: 0.146 and the

lowest charge: )0.434) and vibration mode of C–H bond stretching
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these experiments were additionally retrained and modified

manually. Manual modification of network architecture

was based upon the tuning the number of neurons in the

hidden layer, in such a way that when the given ANN’s

training pattern suggested frequent over-fitting, the number

of neurons was decreased by one. The optimization of input

layer was also conducted manually taking into account the

results of the post-processing sensitivity analysis. If, after

retraining, the ratio of particular input value was signifi-

cantly below 1, the parameter was deleted and the network

retrained. However, this approach was applied only when

the robustness of final ANN increased afterwards. The

manual optimization of the retraining process comprised of

the modification of training algorithm’s type and the

number of epochs applied. Quick propagation, conjunct

gradients, Levenberg–Marquardt algorithms were used

along with standard back propagation procedure.

MLR analysis

In constructing several linear models the commercially

available Statistic 6.0 (www.statsoft.com) Multi Linear

Regression Package was applied. The relative kinetic

constants (scaled in % from 0 to 250 where 100 is for

ethylbenzene) were provided in logarithmic scale. The

correlation analysis of log rkcat with various parameters

allowed us the selection of parameters characterized by the

highest correlation coefficients, namely Taft steric con-

stants Es, the Hammett constants r, the hydrophobic

parameter p [19], the HOMO energy, the dipole moment l,

the charge on alpha carbon (from Mulliken analysis), the

frontier orbital energy difference GAP, and the Mulliken

charge difference Dq. As Mulliken and NBO charges ex-

hibit a high degree of co-linearity only the former analysis

was used. The limitation posed by Es and r allowed only

10 cases to be used in the analysis. Statistically significant

model was obtained by means of step-wise regression.

From obtained regression model the rkcat values were

calculated and correlated with the experimental ones. As a

final test, the activity of 4-ethylaniline was calculated and

compared with prediction performed by ANN.

MFA analysis

Molecular Field Analysis (MFA) was performed with Ce-

rius2 molecular modeling package [20]. All 16 substrates’

conformers, optimized by Gaussian 2003, were included in

the analysis. Rigid-body, least-square fitting of methin

carbon and aromatic ring heavy atoms of each molecule to

the corresponding atoms in ethylbenzene was performed.

In case of five-member ring compounds only carbon atoms

were used in the superposition. Partial atomic charges were

computed by the Gasteiger algorithm [21]. The energies of

steric and electrostatic interactions were calculated in the

universal force field (UFF) [22] respectively with CH3 and

H+ probe molecules, in a rectangular grid of 384 points

with 2 Å step size. Logarithm of relative activity (scaled in

% from 0 to 250 where 100 is ethylbenzene) was provided

as y-value. Only these data points, which exhibited square

correlation with log kcat above 0.2 level, were included in

the subsequent analysis. The QSAR equations were con-

structed by the genetic partial least squares (G/PLS) [23,

24] method with 5,000 crossovers. In order to check the

internal predictivity of the derived models, the five best

equations were cross-validated with leave-one-out G/PLS

algorithm. Finally, as the model’s external cross-validation,

prediction of the enzyme activity for 4-ethylaniline and 4-

propylphenol was conducted for the first five best models

and the last one.

Results

The simplest model, which performs flawless classification,

consisted of 15 neurons in input layer, 10 neurons in hidden

layer and 4 neurons in output layer (e.g. one output neuron

for each classification value 0, 1, 2 or 3). The most

excellent ANN was trained with quick propagation algo-

rithm with momentum for 5 epochs and was characterized

by 100% correctness in the classification. The learning,

validation and testing errors were: 0.137217, 0.190977 and

1·10)6, respectively. The architecture and learning curves

are presented in Fig. 6.

The prediction of the activity of not studied substrates

yields in classification the 4-ethylaniline to the class 3 (rkcat

more then 150%), the 4-propylphenol and 3-chlorobenzene

to the group 1 (rkcat less then 50%) and the 2-ethylbenz-

enthiol and 4-bromoethylbenzene to inhibitors (class 0).

Regression ANN

In case of regression ANN the best architecture, which was

found after broad searching, turn to be the MLP charac-

terized by 19 input neurons, 10 neurons in hidden layer and

1 in output layer (Fig. 7a). Several clones of that archi-

tecture were retrained with different algorithms yielding

very good correlation between the predicted relative spe-

cific activities and the experimental data. The choice of the

most useful network was based mainly on its quality of

prediction for the testing group, as we intended to use them

to forecast the activity of non-studied substrates in our

experiments. The best ANN, which does not show the over

fitting characteristics, was trained with the quick propa-

gation algorithm (37 epochs) with momentum 0.3 and

150 J Comput Aided Mol Des (2006) 20:145–157
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learning coefficient 0.1. The obtained errors are as follows:

learning error=8.14·10)2, validation error=2.4·10)2, test-

ing error=6.29·10)2.

As it is seen from the Fig. 8 the predicted rkcat correlates

quite well with the experimental data (R=0.97) even the

network has a relatively wide variation for inhibitors (with

0 activity). This, however, was to be expected, as we had

not provided any variation in inhibitors potency. One

should stress that for the non-studied substrates the pre-

dicted activities seem reasonable in terms of current

understanding of the reaction system [Szaleniec et al.

unpublished]. The ANN predicts both the 4-ethylaniline

and 4-propylphenol to be highly active (rkcat 0.7), whereas

the 2-ethylobenzenthiol with having traceable or zero

activity (0.02) and the 4-chloro and 4-bromoethylbenzenes

to be inhibitors (with negative values).

Such results suggest that electron-withdrawing substit-

uents stabilize a transition state. This observation is con-

sisted with a common experience from organic chemistry

for electrophilic substitution of the aromatic and hetero-

cyclic compounds where a stabilization of carbocation

transition state decides about the reactivity. This type of the

transition state for ethylbenzene oxidation by EBDH was

previously suggested in works of Spormann et al. [2]. If

stabilization of carbocation by a vicinal aryl or heterocyclic

group is supposed, substituents that stabilize positive

charge in ortho and para position to ethyl groups should

increase the reaction rate and decrease the activation en-

ergy. The same should take place in case of the five

member heterocycles, where ethyl group is in ortho posi-

tion. On the other hand, the reactivity should be decreased

in the case of compounds with the electron withdrawing

substituents localized in para or ortho position (such as 4-

fluoroethylbenzene) and six member heterocycles such as

4-ethylpyridine or 2-ethylpyridine. What we observed in

our kinetic study (data not published) was a decrease of the

activation energy for 4-ethylphenol by 24.8 kJ/mol and 2-

ethylpyrrole by 7.25 kJ/mol. The decrease of the activation

energy correlates with an increase of the reaction rate. For

weak electron donor substituents, such as a methyl group in

4-ethyltoluene, we observed only small decrease of acti-

vation energy (1.83 kJ/mol) and consequently, possibly

due to steric effects, overall decrease in reaction rate.

Moreover, it should be pointed out that 4-ethylpyridine and

2-ethylpyridine similarly to ethylbenzene, do not have any

steric hindrances, and are not oxidized by EBDH. Instead

they are very good enzyme inhibitors. Therefore it can be

Fig. 6 (a) Architecture of the best classification network and (b)

Learning curve of MLP 15:15-10-4:1 Fig. 7 (a) Architecture of the best regression network and (b)

Learning curve of MLP 19:19-10-1:1
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assumed, that both compounds are bound to the active

center, and cannot be oxidized due to increased activation

energy.

Sensitivity analysis

Additionally to the statistics obtained by means of the

ANN, the sensitivity analyses for input variables, con-

ducted by Statistica Neural Network module, were carried

out (see Tables 1 and 2). The sensitivity analyses identify

key variables in the particular model created by the net-

work. Key variables are these input parameters that have

the highest influence on output values obtained from the

model, which solves the problem. Therefore, the key

variables must be retained in following ANN experiments,

while other variables can be excluded form the input vector

without significant decrease in the networks performance.

The procedure of sensitivity analysis, provided by Hunter

et al. [25], rates variables according to the deterioration in

modeling performance that occurs if that the variable is no

longer available to the model. In order to define the sen-

sitivity of particular input variable the SNN runs the net-

work on a set of test cases, and accumulates the network

error for particular input vector. Two types of input vector

are used: with (original vector) and without (incomplete

vector) assayed input variable. The basic measure of sen-

sitivity is the ratio of the error accumulated for the

Fig. 8 Correlation of predicted

relative kcat with experimental

values (R2=0.9465; R=0.9729;

p=0.0000); Solid line:

regression line; dotted line:

confidence interval p=0.95

Table 1 Results of sensitivity analysis for classifying neural network

(MLP 15-10-4)

Variable name Ratio Rank

Alpha carbon charge in NBO analysis 145.01 1

l 39.06 2

Occupation of ortho position 35.48 3

Highest charge in Mulliken analysis 32.23 4

Number of substituents 17.49 5

Dq NBO 13.00 6

Highest charge in NBO analysis 4.28 7

SCF 4.06 8

Lowest charge in NBO analysis 3.28 9

Occupation of para position 2.72 10

Lowest charge in Mulliken analysis 2.49 11

ZPE 1.71 12

HOMO 1.57 13

Number of atoms in the longest substituent 1.05 14

Number of heavy atoms in substitutes 0.41 15

Table 2 Results of sensitivity analysis for regression neural network

(MLP 19-10-4)

Variable name Ratio Rank

Highest charge in NBO analysis 3.89 1

Alpha carbon charge in NBO analysis 3.18 2

Highest charge in Mulliken analysis 2.79 3

Dq NBO 2.44 4

Occupation of ortho position 2.44 5

Number of atoms in the longest substituent 2.31 6

SCF 2.19 7

Occupation of meta position 2.11 8

Number of substituents 2.08 9

C NMR 1.93 10

GAP 1.89 11

ZPE 1.68 12

l 1.64 13

Occupation of para position 1.56 14

Number of heavy atoms in substitutes 1.24 15

LUMO 1.10 16

Lowest charge in NBO analysis 1.10 17

msC–H 1.08 18

Molecular weight 1.03 19
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incomplete input vector to the original error. Assuming that

analysis removes the input variable that provided valuable

information to the model, some deterioration in error might

be expected. The more sensitive the network is to a par-

ticular input parameter, the greater the deterioration can be

expected, and therefore the greater is the evaluated ratio. If

the ratio is high above one, the analysis suggests huge loss

of model performance after switching off the considered

input variable. If it is one or lower, it indicates that the

variable has no effect on the network’s performance or

even cutting it out from the input vector enhances ANN’s

robustness. Once sensitivities have been calculated for all

variables, they are ranked in order.

According to the sensitivity analysis performed for our

ANNs the most important parameter in classification

problem is the atomic charge (derived from NBO analysis)

that is located on reacting carbon (alpha). The next three

variables namely the dipole moment, the occupation of the

ortho position by substituent in benzene ring and the

highest atomic charge following from the Mulliken

analysis turn out to be almost of the same importance. The

least important variables are the number of atoms in the

longest substituent and the number of heavy atoms in

substitutes.

In the regression network the most important are: the

highest charge and the charge on alpha carbon (both fol-

lowing from the NBO charge analysis) whereas the highest

charge from the Mulliken analysis is the next one. The

difference Dq in NBO charges as well as the occupation of

ortho position turn out to be of the same major. The least

important variables are: the symmetric stretching fre-

quency of the C–H bond and the molecular weight.

Standard correlation analysis shows that only the highest

charge and the charge difference Dq (both arising from the

NBO analysis) correlate significantly with the relative kcat

(R=0.4707, p=0.020, R=0.4059, p=0.049). The rest of

parameters do not linearly couple with relative kinetic

constant.

Multiple linear regression

In the multiple linear regression analysis the substrates

such as 1,4-diethylbenzene, 2-ethylaniline, 2-ethylphenol,

2-ethyltoluene, 3-ethylphenol, 3-ethyltoluene, 4-ethylphe-

nol, 4-ethyltoluene, 4-fluorethylbenzene, ethylbenzene

were considered. The best-obtained model has very high

(0.99) correlation coefficient and corrected R2 (0.987) va-

lue. The regression equation takes into account two clas-

sical and two quantum chemical parameters. Its final form

with b coefficients is as follow:

log k cat ¼� 0:18 ð�0:05Þrþ 0:97 ð�0:05Þ
� Es� 1:04 ð�0:1Þl� 1:09 ð�0:09Þ GAP

þ 14:84 ð�1:1Þ
R2 ¼0:98; No. cases ¼ 10

Figure 9 shows the graphical correlation of experimental

and predicted values.

The accuracy of the model was tested in a similar

manner as for the ANN approach i.e. the relative activity of

a substrate with a structural core analogical to ethylbenzene

(4-ethylaniline) was calculated. The obtained value for kcat

is 398% (1.53 in normalized ANN scale).

Fig. 9 Correlation of predicted

relative kcat with experimental

values in MLR model (R2=0.98;

R=0.99; p=4·10)9). Solid line:

regression line; dotted line:

confidence interval p=0.95
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Molecular field analysis

In MFA all substrates were considered. The used G/PLS

procedure generated a set of 99 equations. For the five top

models R2 reached a value of 0.994. The cross-validation

procedure, which was performed for these equations,

allowed selection of the best model (PRESS=0.0482, cross-

validated R2=0.990). The activities calculated from the

model exhibit very high correlation with experimental data

(R2=0.9928) with only one, significant outliner present,

namely 1,4-diethylbenznene (Fig. 10). However, when

obtained models were confronted with external validation

problem, their performance was no longer that excellent.

The studied models estimated the activity of 4-propylp-

hyenol in the range of 6–18% (the best model 18.3%, 0.07

of normalized ANN output value) and 4-ethylaniline 12–

13% (0.05 of normalized value) in case of the best top

models, and 6% in case of the last model.

The obtained model comprises of the set of points in

space, surrounding substrate structure, which defines a

positive or a negative steric and electrostatic interaction

with the enzyme active site (Fig. 11). Therefore, in our

case, the ability of the model to predict enzyme activity of

not-studied compounds was less important than the

knowledge provided by point’s positions and their impor-

tance in the model. However, in order to correctly interpret

results of MFA, one should look at loading values instead

of variables co-efficiencies from the QSAR equation. The

analysis of the loading values, provided in square brackets

in Fig. 11, shows that the positive influences on kinetics

come from electrostatic interactions in position para

(loading value 0.497) and meta (loading value 0.232), and

finally, the least important ortho (loading value 0.108) one.

These influences are balanced by steric negative interac-

tions in the vicinity of para (CH3/131 loading value 0.497)

and ortho (CH3/321 loading value 0.282) positions as well

as negative electrostatic interaction (H/254 loading value

0.255). To some extent this analysis explains, for example,

a variation of activity of 4-ethylphenol, where steric hin-

drance, introduced by phenolic substituent, is outweighed

by strong positive electrostatic interactions. It is also true in

case of ortho-substituted ethylphenol although not to the

same extent (as overall steric influences are stronger).

Finally, in case of the least active 3-ethylphenol, negative

steric and electrostatic interactions in the substituent

vicinity seem to decrease the activity while electrostatic

interaction (H+/226), localized above the aromatic ring, is

of a smaller importance due to the distance to the sub-

stituent.

Conclusions and application

The ANNs turn out to be a very useful tool for predicting

the variation of the activity in the studied group of ethyl-

benzene derivatives. The approach surpasses the multiple

linear regression method by a number of factors. First, as it

predicts directly the kinetic constant, not its logarithm, it

lowers the prediction error. Second, thanks to the theoret-

ical parameters, it lacks the limitation to the family of

compounds with common structural core, which is char-

acteristic for the standard QSAR. Third, both substrates

and inhibitors could be analyzed with ANN. Finally, and

most importantly, the ANNs exhibit higher prediction

Fig. 10 Correlation of

predicted relative kcat with

experimental values in MFA

model (R2=0.9928; R=0.9964;

p < 1·10)5). Solid line:

regression line; dotted line:

confidence interval p=0.95

154 J Comput Aided Mol Des (2006) 20:145–157

123



capabilities for cases, which were not included into the

learning (or regression) process.

As the conclusion it can be clearly stated that ANN

approach is capable of supporting chemist intuition in the

quantitative prediction of the enzyme activity and is far

much superior to the traditional 2D-QSAR. To some extent

the MFA in 3D-QSAR [26] approach can complement

ANN methods. This approach bases on the calculation of

steric (van der Waals) and electrostatic (Coulombic)

interaction between the compound of interest, and a ‘‘probe

atom’’ placed at the various intersections of a regular 3D

lattice, large enough to surround all of the compounds in

the series. The construction of 3D-QSAR equation allows

not only the quantitative prediction of chemical activity but

also localization of points that can show favorable and

unfavorable steric regions around the molecules as well as

favorable and unfavorable regions for electropositive or

electronegative substituents in certain positions.

This approach certainly lacks second, mentioned above,

disadvantage of traditional QSAR, that is the restriction to

the same core molecular architecture (as superimposing of

all pharmacophore atoms is the compulsory condition in

MFA) and the limited availability of experimental de-

scriptors (such as Hammett sigma) for some isomers. Still

ANN surpasses that approach by the fact that it can

incorporate into the model both substrates and inhibitors.

As it is sometime difficult to define one scale for both

groups (especially when the type of inhibition varies) the

construction of regression model describing all compounds

might be very tedious, if ever possible. On the other hand,

the flexibility of ANN systems provides relatively easy

method to build a model, which describes well even such

non-evenly distributed dataset as was in our case. More-

over, there is no need to superimpose molecules for ANN

input, and the only prerequisite is to optimize the whole

dataset into the same type of minimum.

Even our two neural systems were not in prefect agree-

ment towards the activity of non-studied substrates, which

were modeled in silico (Fig. 4), we decided to investigate

activities of two promising compounds, which exhibited

activities in both analysis, namely the 4-ethylaniline and

4-propylphenol. The preliminary kinetic measurements

show that 4-ethylaniline exhibits 136% of ethylbenzene kcat

(0.51 of normalized value), which expose slight ANN

overestimation (0.7 predicted). However, one should have

in mind that this value might be much nearer the truth due to

a fact that in the experiment the effect of substrate inhibition

was detected. This means that evaluation of maximum

activity needs more careful investigation, and what follows

the actual value might be lowered by that effect. It should be

Fig. 11 Localization of steric

(CH3) and electrostatic (H+)

points around the superimposed

substrates. Crosses/circles

denote interactions that

decrease/increase enzyme

activity, respectively. Loading

values (importance in the

model) are provided in the

square brackets
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underlined that prediction made by the MLR model yields

the normalized activity equal to 1.53, which is three times

more than the experimental value.

The normalized relative activity that was obtained for

the second substrate equals to 0.69, and is in a very good

agreement with the predicted value (0.7). Therefore, we

can conclude that the ANN screening has proved to be of a

high practical usefulness as it enabled selection of new and

very active substrates.

Our genetically optimized MFA models exhibited much

better correlation of predicted to experimental log kcat than

it was seen from ANN models. However, although the G/

PLS algorithm was used for equation development, which

should prevent the over-fitting, and in addition models had

exhibited the high internal cross-validation quality, the

activities of not studied compounds, 4-ethylaniline and 4-

propylphenol were far much lower than these seen in the

experiment (ANN normalized values: 0.07 instead of 0.51

and 0.05 instead 0.69, respectively).

Some conclusion supporting the understanding of the

reaction mechanism can also be drawn from the sensitivity

analyses. Although exact ranking of variables changes

strongly from one to other ANN systems, one can notice

that charges, charge differences and dipole moments have

very frequently high position in the global ranking.

Therefore, one can assume that these features are important

for the catalytic behavior of the substrates. From the

topological parameters the occupation of ortho and para

positions seems to be of the highest importance, possibly

due to the steric effects influencing binding to the active

center and positioning of the substituent with their direc-

tional electronic effect on benzene ring (and therefore

stabilization of charge in reaction intermediate). This

assumption found its confirmation in 3D-QSAR model,

which showed that there is a strong diversification of steric

and electrostatic influences around the substrate’s aromatic

ring. For example, localization of MFA points show, that

meta position is unfavorable because of the in-plane steric

and electrostatic interactions, while the steric hindrance,

introduced in the para position, can be counterweighted by

the electrostatic interaction (such as in 4-ethylphenol).

From MLR models we can clearly assume that both

electronic and steric effects are of the great significance for

the reaction system. The big advantage of the MLRs

models over the ANNs is the relative simplicity of the

results interpretation. Even the selection of the parameters

sometimes depends on the method of regression that is

used and on the assembly of starting parameters (in a very

analogical manner as in ANN), the straightforward infor-

mation, which is provided by beta coefficients, has much

higher value than parameters ranking in case of ANN

specially in terms of understanding of the reaction mech-

anism from the chemical point of view.

The results of performed studies allow us to conclude

that the bigger (more negative Es) and the more electron-

withdrawing (higher r) constituent is the slower reaction

proceeds (lower log kcat). This result quantitatively sup-

ports our experimental kinetic observation and activation

energy measurements and is backing up the hypothesis

of the carbocationic transition state as the reaction rate-

limiting step. Moreover, even as the exact binding mode of

substrate at the active center is unknown, it is believed that

there is some type of direct interaction of molybdenum

metal center with substrate carbon atom, which activates

chemically inert hydrocarbon. The negative coefficients for

GAP (the difference of energy of frontier orbitals), which

can be understood as absolute hardness, indicates that

softer the substrate is the faster it reacts. Supposing that

some electronic interaction of substrates and the metal

center indeed takes place, and soft character of the active

center of the molybdenum enzyme is taken into account,

this result is in the perfect agreement with Hard and Soft

Acid and Bases theory. These cannot be deduced from

complicated ANN models. Therefore, it can be stated, that

where the prediction is crucial, the ANN surpasses QSAR

models, and where the simplistic induction from data is

needed, the regression still finds useful application if only

it is applicable.

Future work is going to be directed into the bearing of a

new type of self-optimizing neural networks [27]. These

ANNs can be used both with supervised and unsupervised

learning methods. Some results presented recently on

the Neural Networks Methodology [28] show that in case

of problems similar to the discussed above, such a type

of neural tool can be found as more flexible and more

effective.
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