
BALLView: An object-oriented molecular visualization and modeling
framework

Andreas Moll a,*, Andreas Hildebrandta, Hans-Peter Lenhofa,� & Oliver Kohlbacherb,�
aCenter for Bioinformatics, Saarland University, 15 11 50, 66041, Saarbrücken, Germany; bCenter for
Bioinformatics, Eberhard Karls University, Tübingen, Sand 14, 72070, Tübingen, Germany

Received 29 August 2005; accepted 25 October 2005

� Springer 2006

Key words: Molecular dynamics, Molecular mechanics, Molecular modeling, Rapid prototyping, Molec-
ular visualization

Summary

We present BALLView, an extensible tool for visualizing and modeling bio-molecular structures. It pro-
vides a variety of different models for bio-molecular visualization, e.g. ball-and-stick models, molecular
surfaces, or ribbon models. In contrast to most existing visualization tools, BALLView also offers rich
functionality for molecular modeling and simulation, including molecular mechanics methods (AMBER
and CHARMM force fields), continuum electrostatics methods employing a Finite-Difference Poisson
Boltzmann solver, and secondary structure calculation. Results of these computations can be exported as
publication quality images or as movies. Even unexperienced users have direct access to this functionality
through an intuitive graphical user interface, which makes BALLView particularly useful for teaching. For
more advanced users, BALLView is extensible in different ways. Owing to its framework design, extension
on the level of C++ code is very convenient. In addition, an interface to the scripting language Python
allows the interactive rapid prototyping of new methods. BALLView is portable and runs on all major
platforms (Windows, MacOS X, Linux, most Unix flavors). It is available free of charge under the GNU
Public License (GPL) from our website http://www.ballview.org.

Introduction

Three-dimensional visualization is an essential
requirement for numerous applications in struc-
tural biology and structural bioinformatics. Most
of the freely available tools for molecular visual-
ization (e.g. VMD [1], PyMOL [2], WebLabViewer
[3], or RasMol [4]) are more or less monolithic
applications well-suited for molecular visualization,

but lacking further functionality, e.g. for molecu-
lar modeling. Only a few programs like the Swiss-
PDBViewer [5] offer additional modeling
capabilites. Other visualization packages, like
AVS [6] are extremely powerful for general visu-
alization tasks, but quite difficult to adapt to
specific tasks in molecular modeling. Another
Open Source toolkit is OpenMOIV [7], that has
evolved from the Molecular Inventor [8] library
from SGI. Commercial molecular modeling pack-
ages like SYBYL [9], Discovery studio [3], or
MOE [10] aim to provide a convenient, easy-to-use
interface to the broad functionality in molecular

*To whom correspondence should be addressed. E-mail:
amoll@bioinf.uni-sb.de
�Hans-Peter Lenhof and Oliver Kohlbacher contributed equally
to this work

Journal of Computer-Aided Molecular Design (2005) 19: 791–800
DOI 10.1007/s10822-005-9027-x

modeling and computer-aided drug design lying
underneath.

Here, we present a new visualization framework,
BALLView, providing a flexible and convenient
interface to themolecular modeling functionality of
our C++ framework BALL [11], which was spe-
cifically developed for rapid prototyping applica-
tions in molecular modeling and structural
bioinformatics. BALLView combines state-of-the-
art visualization techniques and a graphical user
interface with the powerful molecular modeling
capabilities of BALL. The major design goals were
ease of use, extensibility, and portability. These
goals should make BALLView easily amenable
even for inexperienced users (e.g. for students), but
also provide a useful tool for rapid prototyping of
visualization applications in the hands of an expe-
rienced modeler or software developer. Among the
key features of BALLView are molecular mechan-
ics methods (AMBER and CHARMM force
fields), Poisson-Boltzmann electrostatics, visualiza-
tion of electrostatic properties, and convenient
creation of movies. All these features are not only
accessible through an intuitive graphical user inter-
face but also through the object-oriented scripting
language Python [12]. BALLView is available free
of charge under anOpen Source license (GPL) from
our website www.ballview.org. Its availability for
all major platforms and its ease-of-use make
BALLView a particularly valuable tool in teaching
molecular modeling and structural bioinformatics.

Section 2 gives an overview of BALLView’s
features and capabilities. The underlying design
concepts and implementation details are described
in Section 3.

Features

Ease-of-Use

BALLView provides rich visualization capabilities
rivaling those of established molecular viewers like
PyMOL [2], VMD [1] or RasMol [4]. The main
difference lies however in the user interface (see
Figure 1), which is based on state-of-the-art user-
interface design principles (see Section 3). The user
interface of BALLView is highly configurable. Its
individual components, called widgets, can be
freely arranged within or outside the main win-
dow, and can be switched on or off. Through

usability studies with small student groups, we
have ensured that despite its functionality, BALL-
View remains intuitively useable. A built-in step-
by-step tutorial leads the unexperienced user
through the basic functionality in just a few
minutes. Context-dependent help texts provide
additional information for the whole interface.

Rich Functionality

In contrast to most other molecular visualization
tools, BALLView also provides access to a rich
molecular modeling functionality. Force field
methods or electrostatics calculation capabilities
similar to those of tools like GRASP [14] and
DelPhi [15] are available through the same inter-
face and do not require the user to change between
tools or to get acquainted to different file formats
and interfaces. The ease of use of this functionality
can be demonstrated by, e.g. the computation and
visualization of the electrostatic potential of the
glucocorticoid receptor (PDB ID: 1GLU), as
shown in Figure 2. Generating the potential and
projecting it onto molecular representations like
Connolly surfaces is a matter of just a few mouse
clicks: first, the file 1GLU is downloaded from the
PDB [16], using BALLView’s file dialogs. Then,
hydrogen atoms are added and optimized using
BALL’s implementation of the AMBER force
field. Using the integrated Finite-Difference Pois-
son-Boltzmann solver, we can now compute a
user-defined potential grid. From the variety of
available molecular representations we select a
cartoon model for the DNA and a Conolly surface
for the protein. The surface is then colored with
respect to the computed electrostatic potential.

Extensibility

The functionality of BALLView can be extended
on several levels with little effort. First, the user
can add C++ code for arbitrary methods which
can be easily made available from the graphical
user interface with minimal changes to the BALL-
View code (see Section 3). This option is clearly
intended for more experienced code developers.
Second, users can employ Python as a scripting
language to extend BALLView. Python [12] is a
powerful, nevertheless easy to read and easy to
learn, object-oriented language. Thus, this option

792

Representation

Geometric Object

ModelProcessor

ColorProcessor

AtomContainer 0..*0..*

<<use>>

0..10..1

0..10..*

0..10..1

<<use>>

Figure 2. Each visualized object corresponds to an instance of the class Representation. The ModelProcessor creates Geometric
Objects, e.g. tubes or meshes for all atoms stored in the AtomContainers. Next, the ColorProcessor colors the GeometricObjects,
e.g. by element, charge or temperature factor. The individual model types and coloring methods are realized by derived classes.
This approach simplifies the creation of new models and coloring methods and allows their free combination.

Figure 1. The user interface of BALLView is based on QT [13]. It contains several independent subwindows (widgets) that can be
freely arranged, resized, and completely hidden, if they are not needed. The main widget is the 3D view displaying all currently
activated models (6). The currently loaded molecular structures are shown in a hierarchical fashion in the structure widget (4). For
any of these structures or parts thereof the user can construct representations, i.e. models of these structures, which can be manip-
ulated, enabled and disabled through the representation widget (5).

793

is also suited for less experienced users. BALL-
View provides an embedded Python interpreter
giving access to the full functionality of BALL and
allowing a simple automation of frequently occur-
ing tasks. The object-oriented design of the under-
lying libraries and the application itself simplify
the extension tremendously. A simple but none-
theless useful example is given below:

This script creates a MOPAC [17] input file
containing the atoms of the first system currently
loaded in BALLView, calls MOPAC to execute a
single-point calculation using the PM3 semi-
empirical Hamiltonian and prints out the resulting
total energy. With just a few lines more, this
example could be adapted to other quantum
chemistry packages or to minimize the structure’s
energy and return the optimized structure. The
execution of such a Python script can also be
linked to a user-defined hotkey, allowing to
execute the script by pressing a single key.

BALLView as a Tool for Teaching

We have been using BALL and BALLView
extensively in graduate and undergraduate courses
on computer-aided drug design, molecular model-
ing, structural bioinformatics, and protein struc-
ture. In our experience, BALLView has proved to
be an ideal tool for teaching structural bioinfor-
matics and molecular modeling. This is mainly due
to the intuitive interface which lowers the barriers
usually imposed by the difficult handling of many
standard tools. Teaching can thus focus on the
methods and the theory behind them rather than
spending too much time on interface and file
format issues.

Due to its portability, BALLView runs on most
relevant platforms. It has been successfully tested
on Solaris, Linux, MacOS, and Microsoft Win-
dows machines in different class room setups. A
further advantage is its free availability. Students
can easily download the latest version and install it
on their own desktop machines or laptops. We are
currently working on course materials specifically

designed for use with BALLView and intend to
make them available on the BALLView website.

Further Functionality

In order to give the interested reader a more
detailed impression of its capabilities and func-
tionality, some of the more important features of
BALLView are summarized in this section.

Models
BALLView provides all standard graphical models
(see Table 1) and coloring methods. The models

Table 1. Models and coloring methods supported by BALL-
View. Any models and coloring schemes can be freely com-
bined and applied to arbitrary subsets of atoms in a molecule.

Models Coloring Methods

Line by element

Stick by atom charge/distance

Ball and stick by residue index/name/type

Van der Waals (VDW) by secondary structure

Solvent-excluded/accessible

surface

by chain/molecule

Isocontour surface by forces

Backbone by occupancy

Cartoon by temperature factor

Hydrogen-bonds by a custom color

794

and coloring methods can be freely combined.
Furthermore, every model can be drawn in three
different rendering styles (solid, wireframe, dots)
and can be displayed transparently. BALLView’s
ability to freely combine different models, coloring
and rendering styles enables the user to visualize
complex molecular scenes, e.g. the visualization of
a molecule’s charge along with its structure (see
Figure 2).

Among the most important models imple-
mented in BALLView are three different surface
definitions: solvent-accessible and solvent-
excluded surfaces (SES/SAS) can be created with
adaptable probe radius and resolution. Regulary
spaced data grids can be used to calculate isocon-
tour surfaces, e.g. for electrostatics (see Figure 2).
The viewer also provides the possibility to visualize
surface patches, e.g. the binding pocket in the
vicinity of a ligand (see Figure 3). To offer the user
an intuitive way of handling models and their
coloring, we created the class Representation. For
each visualized object, this class stores the selec-
tion of molecular entities, the model and coloring
method, the drawing style and the geometric
objects representing the model (see Figure 4). This

allows the user to enable and disable individual
representations or to store them in a file for later
usage.

Selections
It is often desirable to work on specific subsets of
atoms in a structure. These subsets can be defined
in three different ways: first, users can select atoms
or molecules from the OpenGL widget by clicking
into the scene. The second possiblity is provided
by the structure widget (see number 4 in Figure 1)
which contains a hierarchical overview of the
amino acid sequence and the corresponding atoms.
Furthermore, advanced users can enter complex
boolean expressions into a special widget. As an
example, the expression ‘‘element (H) AND resi-
due (LYS)’’ would select all hydrogen atoms in
lysine side chains. These selections can also be used
to apply a model to subsets of structures, e.g. to
highlight specific regions of a molecule.

High-quality images and movies
The 3D view of BALLView is just one way of
rendering representations of molecular structures.
In a similar fashion, every model can also be

Figure 3. This image was created using BALLView’s POVRay export feature. It shows a cartoon model in combination with a
transparent surface and a split surface.

795

exported to other output devices, e.g. to POV-
Ray format (Persistence of Vision, a raytracer
[18]) to produce publication quality images (see
Figures 3 and 4) with correct shadows and
arbitrary resolution.

Trajectories, created by molecular dynamics
simulations in BALLView or by external pro-
grams, can be read and stored in DCD-format.
They can also be visualized with any possible
model or combination of models. Additionally,
movies can be created from trajectories.

File formats
Importing and exporting datasets are prerequisites
for virtually all computational tasks. Thus, BALL-
View contains native support for a wide range of file
formats: it can read andwrite e.g. PDB,HIN,MOL,
MOL2, and SD files. The graphical user interface
also provides the means to download PDB files
directly from the protein data bank [16] either by
using the PDB ID or by searching for keywords.

Molecular modeling
BALLView provides a common graphical interface
for the wide range of molecular modeling capabil-
ities implemented in the library BALL [11, 19].
BALLView thus shares BALL’s molecular

mechanics features: we have a native implementa-
tion of the AMBER [20] and CHARMM [21] force
fields and we are currently working on adding
further forcefields e.g. MMFF94 [22]. With these
force fields, users can calculate single point energies
or relax strained conformations by using energy
minimizations. Multithreading allows the online
visualization of the molecular dynamics simula-
tions and energy minimizations. The resulting
trajectories can be exported, visualized, and used
to create movies. To calculate the electrostatic
potentials of molecular structures we have imple-
mented a Finite-Difference Poissons-Boltzmann
(FDPB) solver. The resulting potentials can be
visualized by coloring solvent accessible/excluded
surfaces. It is also possible to create isocontour
surfaces, which can be colored at the user’s
discretion. Furthermore, it is possible to export
the potential grids, e.g. for usage in external
programs.

A frequent problem when applying molecular
mechanics methods are incomplete structures due
to missing atoms, in particular hydrogens. The
efficient heuristics for placing missing atoms
implemented in BALL estimate good atom posi-
tions automatically. Using BALL’s fragment data-
base, BALLView can also check for common

Figure 4. This image shows the DNA-binding domain of the glucocorticoid receptor binding to DNA. The receptor is shown as a
solvent-excluded surface colored by its electrostatic potential (blue: positive potential, red: negative potential). The potential was
computed using the FDPB solver integrated in BALLView. The DNA is drawn as a cartoon model showing the individual bases,
sugar residues and the phosphate backbone in a schematic representation.

796

structural problems, e.g. overlapping atoms,
strange charges, or bond lengths. The atoms in
question become highlighted for easier identifica-
tion and manipulation.

An implementation of a variant of the DSSP
algorithm [23] allows the automatic assignment of
secondary structure elements.

The design and usage of the molecular model-
ing components have been described previously
[11, 19]. It has been tested thoroughly and yields
results that are consistent with those of the original
packages, e.g. AMBER and DelPhi.

High performance 3D graphics
For high performance hardware accelerated 3D
graphics, BALLView uses the OpenGL or Mesa
libraries, which are available for almost all plat-
forms and graphics accelerator cards. To adapt to
different hardware capabilities, three different
detail levels can be choosen for each model.
Therefore it is possible to create visualizations
for molecules with thousands of atoms even on
laptops with low-end graphics cards. For best
results, users can define the position and intensity
of the light sources, e.g. to highlight a specific
section of a molecule.

BALLView also provides support for stereo 3D
viewing, both for shutter glasses and side-by-side
stereo, e.g. for use with two projectors and
polarization filters.

Documentation and support
BALL and BALLView provide extensive docu-
mentation, available in HTML format, describing
the installation of the library, the interface of the
classes and usage of the standalone viewer. To
familiarize new users with BALLView, a demo and
tutorial are provided. For developers, we created
an additional detailed tutorial showing among
other things how to extend the viewer or use
BALL’s data structures. Furthermore, the pro-
ject’s website offers an FAQ section and a mailing
list for obtaining support.

Design and implementation

The design of BALLView is based on the princi-
ples employed for our application framework
BALL [11, 19, 24]. The main design goals are

extensibility, portability, robustness, and ease-of-
use. The targeted users of BALLView are twofold:
first, users requiring an easy-to-use visualization
and modeling tool; second, software developers
building tailor-made applications for their own
tasks, e.g. as visualization front end for their own
code. To satisfy these very different needs, we have
developed an object-oriented application frame-
work allowing for a number of different levels of
customization and extension.

To meet the need for a state-of-the-art, user-
friendly, and portable graphical user interface
(GUI), we decided to base the visualization on
QT [13], a GUI toolkit available for most relevant
platforms. QT provides all essential functionality
to build graphical applications in C++. Its object-
oriented design fits well with the design of BALL,
allowing for a seamless integration of the two
libraries. The three-dimensional visualization is
based on OpenGL [25], the current industry
standard for platform-independent 3D graphics.
Since OpenGL does not provide an object-oriented
API, we wrapped the key functionality of OpenGL
into a class interface. This combination of QT and
OpenGL ensures a maximum of performance and
portability. Therefore, BALL and BALLView are
almost platform-independent. Both run on virtu-
ally all common graphical operating systems: most
current versions of Unix/Linux, Windows, and
MacOS X are supported.

To keep the design of the viewer modular and
extensible, we have developed a way to add further
functionality with minimal effort. Most of the
effort in GUI programming is spent on implement-
ing the interactions of the individual elements of
the user interface with each other (e.g. defining
menu entries, button actions, etc.). In order to
reduce these efforts, functionality has been bundled
into different modules (e.g. OpenGL rendering,
force field methods, an interface to the scripting
language, etc.), which can be freely combined to an
application. These modules automatically connect
to each other and thus allow the user to add further
functionality with as little as a single line of code.

To this end, we have designed a set of base
classes describing the interactions of the interface
elements (see Figure 5). The two most important
components in this design are MainControl and
ModularWidget. MainControl is the application’s
main window (and as such it is derived from QT’s
QMainWindow). ModularWidget is a common

797

base class for all the interface elements contained in
the application’s main window. The main window
contains just the most essential data structures: a
set of structures and a set of representations (i.e.
geometric models). Additional functionality (e.g.
reading and writing of structures, OpenGL visual-
ization, etc.) can be easily added to the main
window by instantiating one of the classes derived
from ModularWidget. The following code snippet
illustrates the use of these modular widgets:

This example creates an application with the
full set of widgets as shown in Figure 1. These few
lines of code (header includes were omitted for
brevity) create a fully-fledged molecular structure
viewer. Additional functionality can easily be
added by instantiating further modular widgets.

As soon as a Modular Widget registers with the
MainControl, it adds menu entries and preferences

dialogs to the application. Similarly, all these
widgets add new tabs to the application’s prefer-
ences dialog. Users can easily implement new
modular widgets and thus add new functionality to
their viewer applications.

With the help of the object-oriented scripting
language Python, the functionality of the viewer
can be extended at runtime. For each C++ class in
BALL we provide a corresponding Python class
with virtually identical interface. These Python

classes are semiautomatically generated by the
wrapper generator SIP [26]. The use of Python can
significantly reduce the development time for new
methods because Python, as an interpreted lan-
guage, does not require recompilation of the code
between changes. Furthermore, Python scripts can
be used to automate recurring tasks. A simple
example is given below.

Figure 5. UML diagram of BALLView’s core architecture: The MainControl is the main window of every BALLView application
and the container for all loaded molecules and representations. It also connects the modular widgets with the messaging system.
The classes derived from ModularWidgets, which are shown in this diagram, can also be found in Figure 1. The class QMainWin-
dow stems from the QT-library.

798

This script reads a molecule from a PDB file,
adds the missing hydrogen atoms and selects these.
Next, a steepest-descent minimization is per-
formed for a hundred steps on the hydrogen
atoms. Another common use case for the Python
interface is to implement user defined visualization
capabilities. The BALLView website contains a
forum, where users can share these scripts.

Conclusion

BALLView is a new visualization framework,
providing a flexible and intuitive interface to the
molecular modeling functionality of our C++
software library BALL, which has been in use
since 1996. It provides a wide range of function-
ality in electrostatics, molecular mechanics, solva-
tion methods, and many other areas of structural
bioinformatics. BALLView is a powerful and
convenient molecular viewer. In addition, ad-
vanced users can easily expand and adapt it to
their own needs. In doing so, they can benefit from
the rapid prototyping capabilities and the embed-
ding of functionality in one common graphical
user interface, which considerably accelerates the
development of new techniques.

Furthermore, BALLView’s easy-to-use inter-
face makes it an ideal tool for teaching structural
bioinformatics and molecular modeling. It allows a
faster introduction to the key issues in structural
biology and structural bioinformatics. We use
BALL and BALLView as a basis for student
exercises on implementations and algorithms.Here,
tasks which could not be performed before due to
the amount of program code necessary, can now be
realized with a few lines of Python or C++ code.

In contrast to most compareable software
tools, BALL and BALLView are Open Source

software and available free of charge. Documen-
tation is provided in HTML format and the
project’s website offers support with forums and
mailing lists. Furthermore, BALL and BALLView
are available for almost all major platforms and
operating systems.

Currently, we are working on adding more
modeling features, in particular functionality for
editing molecules, aligning of structures, and detec-
tion of binding pockets. We are also developing an
interface for protein-protein and protein-ligand
docking, which will be contained in the next major
BALLView release. Furthermore, we are currently
implementing the Merck Molecular Force Field
(MMFF94 [22]) and other force fieldswhich arewell
suited for designing and modeling ligands.

Availability

BALL and BALLView are Open Source software
available under the GNU Public License (BALL-
View) and the Lesser GNU Public License
(BALL). The source code and precompiled bina-
ries and installers for various operating systems
including Linux, MacOS X, and Microsoft
Windows are available from our website at
http://www.ballview.org.

Acknowledgements

This work was supported in parts by Deutsche
Forschungsgemeinschaft grants BIZ 1/1-3, BIZ
4/1-1 and LE 952/2-3. We want to thank the
following student workers and fellow team mem-
bers for their efforts: Andreas Bertsch, Andreas
Kerzmann, Anne Dehof, Bettina Leonhardt,
Carla Haid, Christian Bender.

799

References

1. Humphrey, W., Dalke, A. and Schulten, K., VMD-Visual
Molecular Dynamics. J. Mol. Graphics, 14 (1996) 33.

2. DeLano W.L. The PyMOL molecular graphics system,
2002.

3. Discovery Studio (2005): http://www.accelrys.com/prod-
ucts/dstudio/index.html.

4. Sayle, R. and Milner-White, E.J., RasMol: Biomolecular
graphics for all. Trend. Biochem. Sci. (TIBS), 20(9) (1995)
374.

5. Guex, N. and Peitsch, M.C., SWISS-MODEL and the
Swiss-PdbViewer: An environment for comparative protein
modeling. Electrophoresis, 18 (1997) 2714–2723.

6. AVS visualization software (2005): http://www.avs.com.
7. Open MOIV: http://www.tecn.upf.es/openmoiv/.
8. Open Inventor: http://oss.sgi.com/projects/inventor/.
9. SYBYL 7.0, Tripos Inc., 1699 South Hanley Rd., St. Louis,

Missouri, 63144, USA.
10. Molecular Operating Environment (MOE) (2005): http://

www.chemcomp.com/.
11. Kohlbacher, O. and Lenhof, H.P., BALL - Rapid Software

Prototyping in Computational Molecular Biology. Bioin-
formatics, 16(9) (2000) 815–824.

12. Python scripting language (2005): http://www.python.org.
13. QT library (2005): http://www.trolltech.com.
14. Nicholls, A., Sharp, K. and Honig, B., Protein folding and

association: Insights from the interfacial and thermody-
namic properties of hydrocarbons. PROTEINS, Struct.
Func. Genet., 11(4) (1991) 281ff.

15. Nicholls, A. and Honig, B., A rapid finite difference algo-
rithm, utilizing successive over-relaxation to solve the
Poisson-Boltzmann equation. J. Comp. Chem., 12(4) (1990)
435–445.

16. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat,
T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. The
Protein Data Bank. Nucl.Acids Res., 28, (2000) 235–242.

17. MOPAC (2005): http://www.cachesoftware.com/mopac/
index.shtml.

18. POVRay renderer (2005): http://www.povray.org.
19. Boghossian, N.P., Kohlbacher, O. and Lenhof, H.P., Rapid

software prototyping in molecular modeling using the
Biochemical Algorithms Library (BALL). J. Exp. Algo-
rithmics, 5 (2000) 16.

20. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz,
K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Cald-
well, J.W. and Kollman, P.A., A second generation force
field for the simulation of proteins, nucleic acids, and or-
ganic molecules. J.Am.Chem.Soc., 117 (1995) 5179–5197.

21. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J.,
Swaminathan, S. and Karplus, M., CHARMM: A program
for macromolecular energy minimization and dynamics
calculations. J. Comput. Chem., 4 (1983) 187–217.

22. Halgren, T.A., Merck molecular force field: I. basis, form,
scope, parameterization and performance of MMFF94. J.
Comp. Chem., 17 (1996) 490–519.

23. Kabsch, W. and Sander, C., Dictionary of protein sec-
ondary structure: Pattern recognition of hydrogen bonded
and geometrical features. Biopolymers, 22 (1983) 2577–
2637.

24. Boghossian, N.P., Kohlbacher, O. and Lenhof, H.-P.
BALL: Biochemical Algorithms Library. In Algorithm
Engineering, 3rd International Workshop, WAE’99, Pro-
ceedings, volume 1668 of Lecture Notes in Computer Sci-
ence (LNCS), pages 330–344. Springer, Heidelberg, 1999.

25. OpenGL library (2005): http://www.opengl.org.
26. SIP (Python bindings generator) (2005): http://www.river-

bankcomputing.co.uk/sip.

800

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

